Infineon TLE9278-3BQX Datasheet

Datasheet Rev. 1.5
www.infineon.com 1 2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip

Features

SMPS with integrated switches up to 750 mA (DC/DC buck) with 5.0 V output voltage
DC/DC Boost converter for low V at 6.5 V, 8 V, 10 V and 12 V
Low-Drop Voltage Regulator with external PNP device with configurable 5.0 V, 3.3 V, 1.8 V and 1.2 V output voltage, protected for off-board usage
supply voltage with integrated switch
sup
Very low quiescent current consumption in Stop and Sleep Mode
Dedicated pin for I/O voltage supply selection
Four CAN Transceivers compliant to CAN Flexible Data-rate (FD)
ISO 11898-2: 2016 standard up to 5 Mb
Partial Networking (PN) support
One universal High-Voltage Wake Input for voltage level monitoring including wake up capability
Cyclic wake feature via an integrated timer
Reset Output to ensure stable supply to the MCU
Fail Output to activate external load in case of system malfunctions are detected
Output voltage supervision functions in all output supply voltages
Fast Battery Voltage Monitoring Feature
16-bit Serial Perpheral Interface (SPI)
Overtemperature and short circuit protection feature
Wide input voltage and temperature range
Software Compatibility to other SBC family members for the TLE926x and TLE927x families
Green Product (RoHS compliant) & AEC Qualified
7 × 7 mm PG-VQFN-48 package

Potential applications

•Gateways
Body control modules
Driver assistance
Chasis control
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
Overview

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100/101.

Description

Infineon’s TLE9278-3BQX offers the highest level of integration at smallest footprint for automotive applications requiring multiple channels of CAN transceivers like gateways and high-end Body Control Modules (BCM). A high-efficient Switch Mode Power Supply (SMPS) buck regulator provides an external 5.0 V output voltage at up to 750 mA while an additional DC/DC boost converter supports applications or conditions at low supply input voltages. The device is controlled and monitored via a 16-bit Serial Peripheral Interface (SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and undervoltage reset. The device offers low-power modes in order to support applications that are connected permanently to the battery. A wake-up from the low-power mode is possible via a message on the buses, via the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278-3BQX is offered in a very small footprint, exposed pad PG-VQFN-48 (7 × 7 mm) power package.
Type Package Marking
TLE9278-3BQX PG-VQFN-48 TLE9278-3BQX
Datasheet 2 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip

Table of Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 State Machine Description and SBC Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1 Device Configuration and SBC Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1.1 Supply and Power up configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1.2 Watchdog trigger failure configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1.3 SBC Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 SBC Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.3 SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.4 SBC Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.5 SBC Restart Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.6 SBC Fail-Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.7 SBC Development Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Wake Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 Cyclic Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Internal Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 CAN Partial Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 CAN Partial Networking - Selective Wake Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 SBC Partial Networking Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2.1 Activation of SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2.2 Wake-up Pattern (WUP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2.3 Wake-up Frame (WUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2.4 CAN Protocol Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.3 Diagnoses Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3.1 PWRON/RESET-FLAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3.2 BUSERR-Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3.3 TxD Dominant Time-out flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3.4 WUP_x Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Datasheet 3 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
5.3.3.5 WUF Flag (WUF_x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3.6 SYSERR Flag (SYSERR_x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3.7 Configuration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3.8 CAN BUS Time-out-Flag (CANTO_x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3.9 CAN BUS Silence-Flag (CANSIL_x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3.10 SYNC-FLAG (SYNC_x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3.11 SWK_SET FLAG (SWK_SET_x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.4 SBC Modes for Selective Wake (SWK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.4.1 SBC Normal Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.4.2 SBC Stop Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.4.3 SBC Sleep Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.4.4 SBC Restart Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.4.5 SBC Fail-Safe Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.5 Wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.6 Configuration for SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.7 CAN Flexible Data Rate (CAN FD) Tolerant Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.8 Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.8.1 Configuring the Clock Data Recovery for SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.8.2 Setup of Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6 DC/DC Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.1 Functional Description of the Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.1.1 Startup Procedure (Soft Start) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.1.2 Buck regulator Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.1.3 External components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.2 Functional Description of the Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2.1 Boost Regulator Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2.2 External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Power Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.1 Buck behavior in SBC Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2 Buck behavior in SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2.1 Automatic Transition from PFM to PWM in SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2.2 Manual Transition from PFM to PWM in SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2.3 SBC Stop to Normal Mode transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.3 Buck behavior in SBC Sleep or Fail Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.3.1 SBC Sleep/Fail Safe Mode to SBC Normal Mode transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7 External Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Calculation of R
7.5 Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
SHUNT
Datasheet 4 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
8 High Speed CAN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2.1 CAN OFF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.2 CAN Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.3 CAN Receive Only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.4 CAN Wake Capable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2.5 TXD Time-out Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.6 Bus Dominant Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.7 Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9 Wake Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2.1 Wake Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10 Interrupt Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.1 Block and Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
11 Fail Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
11.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
11.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
12 Supervision Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
12.1 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
12.1.1 Reset Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
12.1.2 Soft Reset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
12.2 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
12.2.1 Time-Out Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12.2.2 Window Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
12.2.3 Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
12.2.4 Watchdog during Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
12.2.4.1 Watchdog Start in SBC Stop Mode due to BUS Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
12.3 V
12.4 Measurement Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
12.5 Fast Battery Voltage Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
12.6 VBSENSE Boost deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
12.7 VIO Undervoltage and Undervoltage Prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.8 VIO Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.9 VIO Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.10 VEXT Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.11 Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.11.1 Temperature Prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12.12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Power ON Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
S
13 Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13.1 SPI Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13.2 Failure Signalization in the SPI Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Datasheet 5 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
13.3 SPI Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
13.4 SPI Bit Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.4.1 SPI Mapping Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.4.2 SPI Register Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.4.3 SPI Mapping Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.5 SPI Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
13.5.1 General Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
13.5.2 Selective Wake Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.5.3 Selective Wake Trimming and Calibration Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.6 SPI Status Information Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
13.6.1 General Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
13.6.2 Selective Wake Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.6.3 Family and Product Information Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
14 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.2 ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.3 Thermal Behavior of Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
16 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Datasheet 6 Rev. 1.5
2019-09-27
V
CC1
Buck
V
ext
SPI
Interrupt
Control
SBC
STATE
MACHINE
SDI
SDO
CLK CSN
BCKSW
Window Watchdog
WK
TXDCAN2
RXDCAN2
VCAN
CANH2
CANL2
WK
RESET
GENERATOR
INTN
WAKE
REGISTER
Vint.
Fail Safe
RSTN
FO/TEST
GND
VCC 1
Boost
BSTD
GND
GND
4
VEXTIN
VS
VS
Selective W ake
Logic
VEXT REF
VEXTSH
VEXT B
TXDCAN3
RXDCAN3
CANH3
CANL3
4
4
TXDCAN0
RXDCAN0
CANH0
CANL0
TX D CA N1
RXDCAN1
CANH1
CANL1
VBSENSE
CAN
Module 2
CAN
Module 3
CAN
Module 1
CAN
Module 0
BSTD
PCFG
VIO
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
Block Diagram

2 Block Diagram

Figure 1 Block Diagram
Datasheet 7 Rev. 1.5
2019-09-27
1 CANH0
2 CANL0
3 GND
4 CANL1
5 CANH1
6 GND
7 CANH2
8 CANL2
9 GND
10 CANL 3
11 CANH3
12 PCFG
FO/TEST 48
VEXTREF 47
VEXTB 46
VEXTSH 45
VEXTIN 44
WK 42
GND 41
CLK 40
SDI 39
SDO 38
CSN 37
14 RXDCAN0
15 TXDCAN1
16 RXDCAN1
17 TXDCAN2
18 RXDCAN2
19 VCAN
20 TXDCAN3
21 RXDCAN3
22 VCC1
23 VIO
25 INTN
26 GND
28 n.c.
29 VS
30 VS
31 n.c.
32 GND
33 GND
34 n.c.
35 BSTD
TLE9278
PG-VQFN-48
24 RSTN
13 TX DCAN0
36 BSTD
27 BCKSW
VBSENSE 43
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
Pin Configuration

3 Pin Configuration

3.1 Pin Assignment

Figure 2 Pin Configuration TLE9278-3BQX
Datasheet 8 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
Pin Configuration

3.2 Pin Definitions and Functions

Pin Symbol Function
1CANH0 CAN High 0 Bus Pin.
2CANL0 CAN Low 0 Bus Pin.
3 GND Ground. CAN0 and CAN1 common ground.
4CANL1 CAN Low 1 Bus Pin.
5CANH1 CAN High 1 Bus Pin.
6GND Ground. Analog GND.
7CANH2 CAN High 2 Bus Pin.
8CANL2 CAN Low 2 Bus Pin.
9 GND Ground. CAN2 and CAN3 common ground.
10 CANL3 CAN Low 3 Bus Pin.
11 CANH3 CAN High 3 Bus Pin.
12 PCFG Configuration pin. For power up hardware configuration (refer to Chapter 5.1.1).
13 TXDCAN0 Transmit CAN0.
14 RXDCAN0 Receive CAN0.
15 TXDCAN1 Transmit CAN1.
16 RXDCAN1 Receive CAN1.
17 TXDCAN2 Transmit CAN2.
18 RXDCAN2 Receive CAN2.
19 VCAN Supply Input for internal HS-CAN modules.
20 TXDCAN3 Transmit CAN3.
21 RXDCAN3 Receive CAN3.
22 VCC1 Buck Regulator. Input feedback for Buck Converter.
23 VIO I/O voltage supply, reference voltage for over-/undervoltage monitoring
(see Chapter 5.1.1).
24 RSTN Reset Output. Active LOW, internal pull-up.
25 INTN Interrupt Output. Active LOW.
26 GND Ground. Buck regulator ground.
27 BCKSW Buck regulator switch node output.
28 n.c. not connected. Not bondend internally.
29 VS Buck Supply Voltage. Connected to Battery Voltage or Boost output voltage
with reverse protection diode. Use a filter against EMC in case that the Boost is not used.
30 VS Buck Supply Voltage. Connected to Battery Voltage or Boost output voltage
with reverse protection diode. Use a filter against EMC in case that the Boost is not used.
31 n.c. not connected. Not bondend internally.
32 GND Ground. Boost regulator ground.
33 GND Ground. Boost regulator ground.
Datasheet 9 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
Pin Configuration
Pin Symbol Function
34 n.c. not connected. Not bondend internally.
35 BSTD Boost Transistor Drain. Connected between inductor and diode for boost
functionality (refer to Chapter 14.1 for additional information). Connect to ground if the Boost regulator is not used.
36 BSTD Boost Transistor Drain. Connected between inductor and diode for boost
functionality (refer to Chapter 14.1 for additional information). Connect to ground if the Boost regulator is not used.
37 CSN SPI Chip Select Not Input.
38 SDO SPI Data Output. Out of SBC (=MISO).
39 SDI SPI Data Input. Into SBC (=MOSI).
40 CLK SPI Clock Input.
41 GND Ground. Common digital ground.
42 WK Wake Input.
43 VBSENSE Battery Voltage Monitoring Input.
44 VEXTIN Input Supply Voltage for VEXT. Connected to Battery Voltage with Reverse
Protection Diode and Filter against EMC.
45 VEXTSH VEXTSH. Emitter connection for external PNP, shunt connection to VEXTIN.
46 VEXTB VEXTB. Base connection for external PNP.
47 VEXTREF VextREF. Collector connection for external PNP, reference input.
48 FO/TEST Fail Output. active LOW, open-drain;
TEST. Connect to GND to activate SBC Development Mode; Integrated pull-up resistor. Connect to VS with a pull-up resistor or leave open for normal operation.
Cooling Tab
1) The exposed die pad at the bottom of the package allows better power dissipation of heat from the SBC via the PCB. The exposed die pad is not connected to any active part of the IC and can be left floating or it can be connected to GND (recommended) for the best EMC performance.
Note: All VS pins must be connected to battery potential or insert a reverse polarity diodes where required;
GND Cooling Tab - Exposed Die Pad; For cooling purposes only, do not use as an
electrical ground.
All GND pins as well as the Cooling Tab must be connected to one common GND potential.
1)
Datasheet 10 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
Pin Configuration

3.3 Unused Pins

It must be ensured that the correct configurations are also selected, i.e. in case functions are not used that they are disabled via SPI:
CANHx, CANLx, TXDCANx, RXDCANx: leave pins open.
•BSTD: connect to GND.
WK: connect to GND and disable WK input via SPI.
RSTN / INTN: leave open.
FO/TEST: connect to GND during power-up to activate SBC Development Mode; connect to VS or leave open for normal user mode operation.
VBSENSE: connect to VS in case that Fast Battery Voltage Monitoring and Boost deactivation features are not used and keep them disabled.
VEXT: See Chapter 7.5.
n.c.: leave open.
Unused pins routed to an external connector which leaves the ECU should feature a zero ohm jumper (depopulated if unused) or ESD protection.
Datasheet 11 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 1 Absolute Maximum Ratings
1)
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note or
Min. Typ. Max.
Test Condition
Voltages
Supply Voltage VS and
V
S1, max
-0.3 28 V P_4.1.1
VEXTIN pin
Supply Voltage VS and VEXTIN pin
Boost drain Voltage BSTD
V
S2, max
V
BSTD2, max
-0.3 40 V Load Dump, max. 400 ms
-0.3 28 V P_4.1.3
pin
Boost drain Voltage BSTD pin
Buck switch BCKSW pin V
Buck Regulator feedback,
V
BSTD2, max
BCKSW, max
V
CC1, max
-0.3 40 V Load Dump, max. 400 ms
-0.3 VS+0.3 V P_4.1.8
-0.3 5.5 V P_4.1.9
pin VCC1
External Voltage Regulator (VEXTREF)
V
EXTREF, max
-0.3 28 V V
= 40 V for
EXTREF
Load Dump, max. 400 ms
Number
P_4.1.2
P_4.1.4
P_4.1.26
External Voltage Regulator (VEXTB)
External Voltage Regulator (VEXTSH)
Battery Voltage Monitoring V
Wake Input V
Fail Pins FO/TEST V
Interrupt/Configuration Pin INTN
Configuration Pin PCFG V
Configuration Pin VIO V
CANH, CANL V
Digital Input / Output pin’s V
VCAN Input Voltage V
Maximum Differential CAN Bus Voltage
V
EXTB, max
V
EXTSH, maxVEXTIN
-0.3 V
-0.3
VBSENSE,
max
WK, max
HV, max
V
INTN, max
PCFG, max
VIO, max
BUS, max
IO, max
VCAN, max
V
CAN_DIFF,
max
-18 40 V P_4.1.12
-0.3 40 V P_4.1.13
-0.3 40 V P_4.1.14
-0.3 5.5 V P_4.1.15
-0.3 40 V P_4.1.25
-0.3 5.5 V P_4.1.28
-40 40 V P_4.1.16
-0.3 5.5 V P_4.1.17
-0.3 5.5 V P_4.1.18
-5 10 V P_4.1.30
V
EXTIN
+10
EXTIN
+0.3
V V
= 40 V for
EXTB
Load Dump, max. 400 ms
V– P_4.1.11
P_4.1.27
Datasheet 12 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
General Product Characteristics
Table 1 Absolute Maximum Ratings1) (cont’d)
= -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin
T
j
(unless otherwise specified)
Parameter Symbol Values Unit Note or
Min. Typ. Max.
Test Condition
Number
Temperatures
Junction Temperature T
Storage Temperature T
j
stg
-40 150 °C P_4.1.19
-55 150 °C P_4.1.20
ESD Susceptibility
ESD Resistivity to GND V
ESD Resistivity to GND,
ESD
V
ESD
-2 2 kV HBM
-8 8 kV HBM
2)
2)3)
P_4.1.21
P_4.1.22
CANH, CANL
ESD Resistivity to GND V
ESD Resistivity Pin 1, 12,13,24,25,36,37,48 (corner
ESD
V
ESD1,12,13,2
4,25,36,37,48
-500 500 V CDM
-750 750 V CDM
4)
4)
P_4.1.23
P_4.1.24
pins) to GND
1) Not subject to production test, specified by design.
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 k, 100 pF).
3) ESD “GUN” Resistivity with ±6 KV (according to IEC61000-4-2 “GUN test” (300 , 150 pF)) it is shown in Application Information and test will be provided from IBEE institute.
4) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1, usually not tested but rather ESD SDM.
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.
Datasheet 13 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
General Product Characteristics

4.2 Functional Range

Table 2 Functional Range
Parameter Symbol Values Unit Note or
Test Condition
see section
POR
Supply Voltage V
S,func
Min. Typ. Max.
V
POR
–28V1) V
Number
P_4.2.1
Chapter 12.12
CANx Supply Voltage V
SPI frequency f
CAN
SPI
4.75 5.25 V P_4.2.2
––4MHz see
P_4.2.3
Chapter 13.7 for
f
SPI,max
Junction Temperature T
1) Including Power-On Reset, Over- and Undervoltage Protection.
j
-40 150 °C P_4.2.4
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Device Behavior Outside of Specified Functional Range:
28 V < V
< 40 V: Device will still be functional; the specified electrical characteristics might not be
S,func
ensured anymore. The absolute maximum ratings are not violated. However, a thermal shutdown might occur due to high power dissipation.
V
< 4.75 V: The undervoltage bit VCAN_UV will be set in the SPI register BUS_STAT_0 and the transmitter
CAN
will be disabled as long as the UV condition is present.
5.25 V < V
< 5.5 V: CANx transceiver still functional. However, the communication might fail due to out-
CAN
of-spec operation.
•V
< VS < 5.5 V: Device will be still functional; the specified electrical characteristics might not be ensured
POR,f
anymore:
The voltage regulators will enter the low-drop operation mode.
VIO_UV reset could be triggered depending on the VRTx settings.
Datasheet 14 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
General Product Characteristics

4.3 Thermal Resistance

thJSP
thJA
1)
Number
Min. Typ. Max.
Test Condition
–7 –K/WExposed PadP_4.3.1
–33–K/W
2)
P_4.3.2
Table 3 Thermal Resistance
Parameter Symbol Values Unit Note or
Junction to Soldering Point R
Junction to Ambient R
1) Not subject to production test, specified by design.
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board for 1.5 W. Board: 76.2 × 114.3 × 1.5 mm3 with 2 inner copper layers (35 µm thick), with thermal via array under the exposed pad . Top and bottom layers are 70 µm thick.

4.4 Current Consumption

Table 4 Current Consumption
Current consumption values are specified at T (unless otherwise specified)
Parameter Symbol Values Unit Note or
SBC Normal Mode
= 25°C, VS = 13.5 V, all outputs open
j
Min. Typ. Max.
Number
Test Condition
Normal Mode current consumption
SBC Stop Mode
Stop Mode current Consumption
Stop Mode current Consumption, T
= 85°C
j
I
Normal
I
Stop,25
I
Stop,85
– 1016mAVS = 5.5 V to 28 V;
T
= -40°C to +150°C;
j
BOOST/VEXT/CANx = OFF
– 557A1) Buck in PFM
BOOST/VEXT = OFF; No load on VCC1
VBSENSE_EN = 0
CANx/WK not wake capable Watchdog = OFF
–95–µA2) Tj = 85°C;
Buck in PFM BOOST/VEXT = OFF; No load on VCC1
VBSENSE_EN = 0
CANx/WK not wake capable Watchdog = OFF
P_4.4.1
P_4.4.2
B
P_4.4.3
B
SBC Sleep Mode
Sleep Mode current consumption
I
Sleep,25
– 305ABOOST/VEXT = OFF;
VBSENSE_EN = 0
P_4.4.4
B
CANx/WK not wake capable
Datasheet 15 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
General Product Characteristics
Table 4 Current Consumption (cont’d)
Current consumption values are specified at T (unless otherwise specified)
= 25°C, VS = 13.5 V, all outputs open
j
Parameter Symbol Values Unit Note or
Test Condition
BOOST/VEXT = OFF;
Sleep Mode current consumption, T
= 85°C
j
I
Sleep,85
Min. Typ. Max.
–65–µA2) Tj = 85°C;
VBSENSE_EN = 0
CANx/WK not wake capable
Feature Incremental Current Consumption
Current consumption per CAN module, recessive state
I
CAN,rec
–23mASBC Normal Mode;
CAN Normal Mode;
V
= 5 V;
CAN
V
TXDCAN
no RL on CANx
Current consumption per CAN module, dominant state
I
CAN,dom
–34.5mA2) SBC Normal Mode;
CAN Normal Mode;
V
= 5 V;
CAN
V
TXDCAN
no RL on CANx
Current consumption per CAN module, Receive Only Mode, SBC Normal Mode
I
CAN,RcvOnly,N
M
–0.40.6mA2) CAN Receive Only
Mode; V
V
TXDCAN
no RL on CANx
= VIO;
= GND;
= 5 V;
CAN
= VIO;
Number
P_4.4.5
B
P_4.4.6
P_4.4.7
P_4.4.8
Current consumption per CAN module, Receive Only Mode, SBC Stop Mode
Current consumption during CAN Partial Networking frame detect mode for one CAN module
Current consumption during CAN Partial Networking frame detect mode for one CAN module
I
CAN,RcvOnly,St
M
I
CAN,SWK,25
I
CAN,SWK,85
–11.4mA2) CAN Receive Only
Mode; V
V
TXDCAN
= 5 V;
CAN
= VIO;
no RL on CANx
700 790 µA
2)3)4)
Tj = 25°C;
VEXT = OFF; WK not wake capable; CAN SWK wake capable, SWK Receiver enabled, WUF detect; no RL on CANx
750 830 µA
2)3)4)
Tj = 85°C;
VEXT= OFF; WK not wake capable; CAN SWK wake capable, SWK Receiver enabled, WUF detect; no RL on CANx
P_4.4.25
P_4.4.9
P_4.4.10
Datasheet 16 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
General Product Characteristics
Table 4 Current Consumption (cont’d)
Current consumption values are specified at T (unless otherwise specified)
= 25°C, VS = 13.5 V, all outputs open
j
Parameter Symbol Values Unit Note or
Test Condition
2)
Tj = 25°C; SBC Stop
Mode; VEXT = OFF; WK not wake capable;
Current consumption during CAN Partial Networking frame detect mode per additional CAN module
I
CAN,SWK2,25
Min. Typ. Max.
250 300 µA
CAN SWK wake capable, WUF detect; no RL on CANx
Current consumption for WK wake capability
Current consumption for WK wake capability T
= 85°C
j
I
Wake,WK,25
I
Wake,WK,85
–0.51.A
–2.04.A
4)5)
SBC Sleep Mode;
CANx = OFF
2)4)5)
SBC Sleep Mode;
T
= 85°C;
j
CANx = OFF
Current consumption for CAN wake capability
Current consumption for CAN wake capability
I
Wake,CAN,25
I
Wake,CAN,85
–4.56µA
–61A
1)4)
SBC Sleep Mode;
WK = OFF
t
SILENCE
1)2)4)
SBC Sleep Mode;
= 85°C;
T
j
WK = OFF
t
SILENCE
Current consumption for VEXT in SBC Sleep Mode
I
Sleep,VEXT,25
– 456A4) SBC Sleep Mode;
VEXT = ON (no load); CANx / WK = OFF
Current consumption for VEXT in SBC Sleep Mode,
= 85°C
T
j
I
Sleep,VEXT,85
– 557A
2)4)
SBC Sleep Mode;
= 85°C; VEXT = ON
T
j
(no load); CANx / WK = OFF
Current consumption for cyclic wake function
Current consumption for cyclic wake function,
= 85°C
T
j
Current consumption for watchdog active in Stop
I
Stop,C25
I
Stop,C85
I
Stop,WD25
– 202A
– 243A
– 202A2) SBC Stop Mode;
4)6)
SBC Stop Mode;
WD = OFF
2)4)6)
SBC Stop Mode;
= 85°C;
T
j
WD = OFF
Watchdog running
Mode
Number
P_4.4.22
P_4.4.11
P_4.4.12
P_4.4.13
expired
P_4.4.14
expired
P_4.4.15
P_4.4.16
P_4.4.17
P_4.4.18
P_4.4.19
Current consumption for watchdog active in Stop Mode
Current consumption for active fail output (FO)
I
Stop,WD85
I
Stop,FO
– 243A2) SBC Stop Mode;
T
= 85°C;
j
Watchdog running
–0.51.5mA2) All SBC Modes;
= 25°C;
T
j
P_4.4.20
P_4.4.21
FO = ON (no load);
Datasheet 17 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
General Product Characteristics
Table 4 Current Consumption (cont’d)
Current consumption values are specified at T (unless otherwise specified)
= 25°C, VS = 13.5 V, all outputs open
j
Parameter Symbol Values Unit Note or
Min. Typ. Max.
Current consumption Fast
I
Stop,FBM
–5–µA2) SBC Stop Modes; Battery Monitoring in SBC Stop Mode
Additional V
current
S
I
BOOST,ON
– 1020mA2) SBC Normal / Stop consumption with Boost Module Active
1) Current consumption for CANx transceiver and WK input to be added if set to be wake capable or receiver only.
2) Not subject to production test, specified by design.
3) Current consumption adder applies during WUF detection (frame detect mode) when CAN Partial Networking is
activated. The current consumption will be reduced per module when multiple CAN transceivers are activated for SWK.
4) Current consumption adders of features defined for SBC Sleep Mode also apply for SBC Stop Mode and vice versa
(unless otherwise specified).
5) No pull-up or pull-down configuration selected.
6) Cyclic wake configuration: Timer with 20 ms period.
Test Condition
VBSENSE_EN = 1
Tj = 25°C;
Modes;
V
< VS< V
BSTx
BOOST_EN = 1
BST,thx
B
Number
P_4.4.30
B
P_4.4.31
;
Datasheet 18 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features

5 System Features

This chapter describes the system features and behavior of the TLE9278-3BQX:
State machine and SBC mode control.
Device configurations.
State of supply and peripherals.
Wake features.
Supervision and diagnosis functions.
The System Basis Chip is controlled via a 16-bit SPI interface. A detailed description can be found in
Chapter 13. The configuration as well as the diagnosis is handled via the SPI. The SPI mapping of the TLE9278-
3BQX is compatible to other devices of TLE926x and TLE927x family.
The System Basis Chip (SBC) offers six operating modes:
SBC Init Mode: power-up of the device and after soft reset.
SBC Normal Mode: the main operating mode of the device.
SBC Stop Mode: the first-level power saving mode with the main voltage regulator enabled.
SBC Sleep Mode: the second-level power saving mode with Buck regulator disable.
SBC Restart Mode: an intermediate mode after a wake event from SBC Sleep or SBC Fail-Safe Mode or after
a failure (e.g. WD failure in config 1/3) to bring the microcontroller into a defined state via a reset. Once the failure condition is not present anymore, the device will automatically change to SBC Normal Mode after a delay time (t
SBC Fail-Safe Mode: a safe-state mode after critical failures (e.g. TSD2 thermal shutdown) to bring the
system into a safe state and to ensure a proper restart of the system. Buck regulator is disabled.
A special mode called SBC Development Mode is available during software development or debugging of the system. All of the operating modes mentioned above can be accessed in this mode. However, the watchdog counter is stopped and does not need to be triggered. This mode can be accessed by setting the TEST pin to GND during SBC Init Mode.
RD1
).

5.1 State Machine Description and SBC Mode Control

The different SBC Modes are selected via SPI by setting the respective SBC MODE bits in the register
M_S_CTRL.
The SBC MODE bits are cleared when going trough SBC Restart Mode, so the current SBC mode is always shown.
Figure 3Figure 4 shows the SBC State Diagram.
Datasheet 19 Rev. 1.5
2019-09-27
SBC Init Mode
*
(Long open window )
VCC1 ON
(2)
FO
inact.
CAN
OFF
(3)
Wake up event
via CANx or WK
Any SPI
command
SPI cmd
WD trigger
First battery connection
VIO Undervolta ge
Automatic
SBC Soft Reset
§ Reset is released
§ WD starts with long open window
(1) After Fail-Safe Mode entry, the device will stay for at least typ. 1s in this mode (with RO low) after a TSD2 event and min. typ. 100ms af ter other Fail -Safe Ev ents. Only t hen the dev ice can l eave the mode via a wake -up event. Wake ev ents are stored during this time .
(2) The behaviour depends of the PCFG configuration . If PCFG is open, the VEXT is by default off and it can be acivated from the µC with one of the four configurable output voltages . If PCFG = GND, the VEXT follows the VCC1 in the state machine with fixed output voltage value at 3.3V.
(3) Fo r SBC Developm ent Mode C AN is in N ormal Mode in SBC Init Mode and will stay ON when going from there to SBC Normal Mode
(4) See chapter CAN for detailed behavior in SBC Restart Mode
(5) CA N transceiver can be SWK capab le , depending on configurat ion
(6) Th e Boost regul ator activati on depends from the VS value .
SBC Normal Mode
FO
act/inact
CAN
Config.
(3)
Boost
(6)
conf./OFF
SBC Restart Mode
(RO pin is as serted)
Config.: settings can be configur ed in this SBC mode;
Fixed: set tings stay as defined in SBC Normal Mode
*
The SBC Development Mode is a
super set of state machi ne where the
WD ti mer is stopped and CANx
behavior differs in SBC Init Mode.
Otherwi se, there are no diff erences in
behavior ( see also Chapter 5.1.7).
Cyc.Wake
OFF
Cyc.Wake
config .
CANx, WK wake-up event
VIO over v oltage
Config 1/3 (if VIO_OV_RST set)
Watc hdog Failure :
Config 1/3 (MAX_3_RST not set)
& 1st WD failure in Config4
Boost
OFF
VEXT
(2)
def.
by PCFG pin
VCC1
(2)
ON
VEXT
(2)
def.
by PCFG pin
SBC Stop Mode
Cyc.Wake
fixed
Boost
(6)
fixed/OFF
CAN
(5)
fixed
FO
fixed
VCC1
(2)
ON
VEXT
(2)
def.
by PCFG pin
SBC Sleep Mode
Boost
OFF
Cyc.Wake
OFF
CAN
(5)
Wake
cap./OFF
FO
fixed
VCC1
OFF
SPI cmd
SPI cmd
1st W atchdog Failure Config 2,
2nd Watchdog F ailure, Config 4
VIO Short to GND
SBC Fail-Saf e Mode
(1)
TSD2 event
VIO over volt age
Config 2/4 (if VIO_OV_RST set)
4th consec utive VIO under vol tage ev ent (if VS > VS_UV_TO)
VCC1
OFF
FO
fixed
Boost
OFF
VEXT
OFF
Cyc.Wake
OFF
CAN
Wake
capable
VCC1
(2)
ON
VEXT
(2)
def.
by PCFG pin
Boost
(6)
fixed/OFF
FO
active /
fixed
Cyc.Wake
OFF
CAN
(4)
Woken /
OFF
VEXT
(2)
def.
by PCFG pin
WD
Config.
WD
Config.
WD
OFF
WD
fixed
WD
OFF
WD
OFF
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features
Figure 3 State Diagram showing the SBC Operating Modes
Datasheet 20 Rev. 1.5
2019-09-27
SBC Init Mode
*
(Long open window )
VCC1 ON
(2)
FO
inact.
CAN
OFF
(3)
Wake up event
via CANx or WK
Any SPI
command
SPI cmd
WD trigger
First battery connection
VIO Undervolta ge
Automatic
SBC Soft Reset
§ Reset is released
§ WD starts with long open window
(1) After Fail-Safe Mode entry, the device will stay for at least typ. 1s in this mode (with RO low) after a TSD2 event and min. typ. 100ms af ter other Fail -Safe Ev ents. Only t hen the dev ice can l eave the mode via a wake -up event. Wake ev ents are stored during this time .
(2) The behaviour depends of the PCFG configuration . If PCFG is open, the VEXT is by default off and it can be acivated from the µC with one of the four configurable output voltages . If PCFG = GND, the VEXT follows the VCC1 in the state machine with fixed output voltage value at 3.3V.
(3) Fo r SBC Developm ent Mode C AN is in N ormal Mode in SBC Init Mode and will stay ON when going from there to SBC Normal Mode
(4) See chapter CAN for detailed behavior in SBC Restart Mode
(5) Th e Boost regul ator activati on depends from the VS value .
SBC Normal Mode
FO
act/inact
CAN
Config.
(3)
Boost
(5)
conf./OFF
SBC Restart Mode
(RO pin is as serted)
Config.: settings can be configur ed in this SBC mode;
Fixed: set tings stay as defined in SBC Normal Mode
*
The SBC Development Mode is a
super set of state machi ne where the
WD ti mer is stopped and CANx
behavior differs in SBC Init Mode.
Otherwi se, there are no diff erences in
behavior ( see also Chapter 5.1.7).
Cyc.Wake
OFF
Cyc.Wake
config .
CANx, WK wake-up event
VIO over v oltage
Config 1/3 (if VIO_OV_RST set)
Watc hdog Failure :
Config 1/3 (MAX_3_RST not set)
& 1st WD failure in Config4
Boost
OFF
VEXT
(2)
def.
by PCFG pin
VCC1
(2)
ON
VEXT
(2)
def.
by PCFG pin
SBC Stop Mode
Cyc.Wake
fixed
Boost
(5)
fixed/OFF
CAN fixed
FO
fixed
VCC1
(2)
ON
VEXT
(2)
def.
by PCFG pin
SBC Sleep Mode
Boost
OFF
Cyc.Wake
OFF
CAN
Wake
cap./OFF
FO
fixed
VCC1
OFF
SPI cmd
SPI cmd
1st W atchdog Failure Config 2,
2nd Watchdog F ailure, Config 4
VIO Short to GND
SBC Fail-Saf e Mode
(1)
TSD2 event
VIO over volt age
Config 2/4 (if VIO_OV_RST set)
4th consec utive VIO under vol tage ev ent (if VS > VS_UV_TO)
VCC1
OFF
FO
fixed
Boost
OFF
VEXT
OFF
Cyc.Wake
OFF
CAN
Wake
capable
VCC1
(2)
ON
VEXT
(2)
def.
by PCFG pin
Boost
(5)
fixed/OFF
FO
active /
fixed
Cyc.Wake
OFF
CAN
(4)
Woken /
OFF
VEXT
(2)
def.
by PCFG pin
WD
Config.
WD
Config.
WD
OFF
WD
fixed
WD
OFF
WD
OFF
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features
Figure 4 State Diagram showing the SBC Operating Modes
Datasheet 21 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features

5.1.1 Device Configuration and SBC Init Mode

The SBC Init Mode is the mode where the hardware configuration of the SBC is stored and where the microcontroller finishes the initialization phase.
The SBC starts up in SBC Init Mode after crossing the power-on reset V and the watchdog will start with a long open window (t
typical 200ms) after the RSTN is released.
LW
threshold (see also Chapter 12.3)
POR,r
During this power-on phase following configurations are stored in the device:
Supply and Power up configurability.
The device behavior regarding a watchdog trigger failure and a VIO overvoltage condition is determined by
the external circuitry on the INTN pin (see below).
The selection of the normal device operation or the SBC Development Mode (watchdog disabled for
debugging purposes) will be set depending on the voltage level of the FO/TEST pin (see also
Chapter 5.1.7).
5.1.1.1 Supply and Power up configurability
The TLE9278-3BQX has the possibility to define the level of the digital IO’s using a dedicated pin (VIO). A separate pin (PCFG) is available to store the I/O supply voltage configuration during power-up. The respective configuration will be stored for all conditions and can only be changed by powering down the device (V
).
V
POR,f
Depending of the configuration, the supervision functions can refer to VCC1 or VEXT.
The Table 5 shows the only allowed combinations and related behavior.
Table 5 Supply and power up Configurability
<
S
VCC1 Output
PCFG pin VIO Supply µC Supply VEXT
Output voltage
VEXT Behavior
Supervision Functions
Voltage
V
= 5 V Open VCC1 VCC1 Configurable via
CC1
SPI using
VEXT_VCFG
SPI configurable, OFF after Power Up
Supervision functions on VIO with 5 V level;
VREG_UV SPI
status bit active
V
= 5 V GND VEXT VEXT V
CC1
= 3.3 V
EXT
(fixed)
Follow the VCC1 (ON at Power up /SBC Normal / Stop / Sleep / Fails-Safe Mode)
Supervision functions on VIO with 3.3 V level;
VREG_UV status
not active but rerouted to VCC1
Note: VIO can be connected only to VCC1 or VEXT.
5.1.1.2 Watchdog trigger failure configuration
There are four different device configurations (Table 6) available defining the watchdog failure and the VIO overvoltage behavior. The configurations can be selected via the external connection on the INTN pin and the SPI bit CFG2 in the HW_CTRL_0 register (see also Chapter 13.4):
A watchdog trigger failures leads to SBC Restart Mode (Config 1/3) and depending on CFG2 the Fail Output
(FO) are activated after the 1st or 2nd watchdog trigger failure;
Datasheet 22 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features
If VIO_OV_RST is set and in Config 1/3, then SBC Restart Mode will be entered in case of VIO_OV and the FO is activated.
A watchdog trigger failures leads to SBC Fail-Safe Mode (Config 2/4) and depending on CFG2 the Fail
Output (FO) are activated after the 1st or 2nd watchdog trigger failure. The first watchdog trigger failure in Config 4 will lead to SBC Restart Mode; If VIO_OV_RST is set and in Config 2/4, then SBC Fail-Safe Mode will be entered in case of VIO_OV and the FO is activated.
The respective device configuration can be identified by reading the SPI bits CFG2_STATE and CFG1_STATE in the WK_LVL_STAT register.
Table 6 Watchdog Trigger Failure Configuration
Config Event FO Activation SBC Mode Entry SPI Bit CFG2 INTN Pin
(CFG1_STATE)
1 1 × Watchdog Failure after 1st WD Failure SBC Restart Mode 1 External pull-up
2 1 × Watchdog Failure after 1st WD Failure SBC Fail-Safe Mode 1 No ext. pull-up
3 2 × Watchdog Failure after 2nd WD Failure SBC Restart Mode 0 External pull-up
4 2 × Watchdog Failure after 2nd WD Failure SBC Fail-Safe Mode 0 No ext. pull-up
The respective configuration will be stored for all conditions and can only be changed by powering down the device (V
< V
S
POR,f
).
Table 7 shows the possible SBC hardware configurations.
Table 7 SBC Configuration
Configuration Description FO/Test
Pin
Config 0 SBC Development Mode: no reset is
0- XX triggered in case of watchdog trigger failure. After the Power Up, one arbitrary SPI command must be sent.
Config 1 After missing the WD trigger for the first
time, the state of VCC1 remains
Open or
>V
TEST,H
unchanged, FO pin is active, SBC in Restart Mode
INTN Pin (CFG1_ST
ATE)
External pull-up to
V
IO
CFG2_STATECFG1_STA
TE
11
Config 2 After missing the WD trigger for the first
time,VCC1 turns OFF, FO pin are active,
Open or
>V
TEST,H
Open or GND
10
SBC in Fail-Safe mode
Config 3 After missing the WD trigger for the
second time, the state of VCC1 remains unchanged, FO pin is active, SBC in
Open or
>V
TEST,H
External pull-up to
V
IO
01
Restart Mode
Config 4 After missing the WD trigger for the
second time,VCC1 turns OFF, FO pin is
Open or
>V
TEST,H
Open or GND
00
active, SBC in Fail-Safe mode
Datasheet 23 Rev. 1.5
2019-09-27
t
VIO
t
RSTN
t
VS
V
POR,r
t
RD1
V
RT1,r
t
CFG_F
Configuration selection monitoring period
Config Select filter time
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features
In case of 3 consecutive resets due to WD fail, it is possible in Config 1 and 3 not to generate additional reset by setting the MAX_3_RST on WD_CTRL.
Figure 5 shows the timing diagram of the hardware configuration selection. The hardware configuration is
defined during SBC Init Mode. The INTN pin is internally pulled LOW with a weak pull-down resistor during the reset delay time t INTN pin is monitored during this time and the configuration (depending on the voltage level at INTN) is read and stored at the rising edge of RSTN (with a filter time of t
, i.e. after VIO crosses the reset threshold VRT1 and before the RSTN pin goes HIGH. The
RD1
).
CFG_F
Figure 5 Hardware Selection Timing Diagram
Note: If the POR bit is not cleared then the internal pull-down resistor will be reactivated every time RSTN
is pulled LOW the configuration will be updated at the rising edge of RSTN. Therefore it is recommended to clear the POR bit right after initialization.
5.1.1.3 SBC Init Mode
In SBC Init Mode, the device waits for the microcontroller to finish its startup and initialization sequence. In the SBC Init Mode any SPI command will bring the SBC to SBC Normal Mode. During the long open window the watchdog has to be triggered. Thereby the watchdog will be automatically configured. A missing watchdog trigger during the long open window will cause a watchdog failure and the device will enter SBC Restart Mode.
Wake events are ignored during SBC Init Mode and will therefore be lost.
Note: Any SPI command will bring the SBC to SBC Normal Mode even if non-valid (see Chapter 13.2).
Note: For a safe start-up, it is recommended to use the first SPI command to trigger and to configure the
watchdog (see Chapter 12.2).
Datasheet 24 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features
RT1
RT1
, the
Note: At power up, no VIO_UV will be issued nor will FO be triggered as long as VIO is below the V
threshold and V low as long as VIO is below the selected V RSTN is released after t
is below the VIO short circuit detection threshold V
S
threshold. As soon as the VIO is higher than V
RT1
.
RD1
. The RSTN pin will be kept
S,UV

5.1.2 SBC Normal Mode

The SBC Normal Mode is the standard operating Mode for the SBC. All configurations have to be done in SBC Normal Mode before entering a low-power mode (see also Chapter 5.1.6 for the device configuration defining the Fail-Safe Mode behavior). A wake-up event on CANx and WK will create an interrupt on pin INTN however, no change of SBC Mode will occur. The configuration options are listed below:
VCC1 is active, Buck in PWM Mode.
VEXT can be switched ON or OFF in accordance with Table 5.
CANx is configurable (OFF coming from SBC Init Mode; OFF or wake capable coming from SBC Restart
Mode, see also Chapter 5.1.5).
Wake pin level can be monitored and can be selected to be wake capable.
Cyclic wake period can be configured using TIMER_CTRL_0 and enabled by setting TIMER1_WK_ EN.
Watchdog is configurable.
FO is OFF by default.
In SBC Normal Mode, there is the possibility of testing the FO output, i.e. to verify if setting the FO pin to low will create the intended behavior within the system. The FO output can be enabled and then disabled again by the microcontroller by setting the FO_ON SPI bit. This feature is only intended for testing purposes.

5.1.3 SBC Stop Mode

The SBC Stop Mode is the first level technique to reduce the overall current consumption. All kind of settings have to be done before entering SBC Stop Mode. In SBC Stop Mode any kind of SPI write commands are ignored and the SPI_FAIL bit is set, except for changing to SBC Normal Mode, triggering a SBC Soft Reset, refreshing the watchdog, changing modulation of the buck. The configuration options are listed below:
VCC1 is ON, Buck in PFM Mode if I
VEXT is fixed ON or OFF in accordance with Table 5 and SPI configuration.
CANx can be selected for ‘Receive Only Mode’, to be wake capable or OFF.
WK pin can be selected to be wake capable, PWM_BY_WK (switch PFM/PWM buck modulation) or OFF.
Wake capability via cyclic wake can be selected.
Watchdog is fixed or OFF (if WD disable sequence was executed).
A wake-up event on CANx and WK will create an interrupt on pin INTN however, no change of SBC Mode will occur.
In SBC Stop Mode, it is allowed to use the Boost module (enabled before to enter in SBC Stop Mode) in case of the V
is dropping. The Boost works only in PWM and therefore the total amount of current consumption will
S
increase.
Note: It is not possible to switch directly from SBC Stop Mode to SBC Sleep Mode. Doing so will also set the
SPI_FAIL flag and will bring the SBC into Normal Mode via SBC Restart Mode.
VCC1
< I
PFM-PWM,TH
.
Datasheet 25 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features

5.1.4 SBC Sleep Mode

The SBC Sleep Mode is the second level technique to reduce the overall current consumption to a minimum needed to react on wake-up events.
All settings must be done before entering SBC Sleep Mode. In case that SPI configurations in Sleep Mode have been sent to the SBC, the commands are ignored and no reactions from the SBC.
The configuration options are listed below:
•VCC1 is OFF.
VEXT is fixed ON or OFF in accordance with Table 5 and SPI configuration.
CANx can be selected to be wake capable or OFF.
WK pin can be selected to be wake capable or OFF.
A wake-up event on CANx or WK pin will bring the device via SBC Restart Mode into SBC Normal Mode again and signal the wake event and corresponding sources.
It is not possible to switch off all wake sources in Sleep Mode. This will lead to SBC Normal Mode via SBC Restart Mode instead.
In order to enter SBC Sleep Mode successfully, all wake source signalization flags from WK_STAT_0 and
WK_STAT_2 need to be cleared. If a failure to do so, will result in an immediate wake-up from SBC Sleep Mode
by going via SBC Restart to Normal Mode.
Note: As soon as the Sleep Command is sent, the Reset will go low to avoid any undefined behavior
between SBC and microcontroller.

5.1.5 SBC Restart Mode

There are multiple reasons to enter the SBC Restart Mode. The purpose of the SBC Restart Mode is to reset the microcontroller:
From SBC Normal and Stop Mode, it is reached in case of undervoltage on VIO. In case of 4 consecutive
VIO_UV events, SBC Fail-Safe Mode is entered.
From SBC Normal and Stop Mode it is reached in case of overvoltage on VIO in config 1/3 if VIO_OV_RST is
set.
Incorrect Watchdog triggering (depending of the configuration).
From SBC Sleep and Fail-Safe Mode to ramp up VIO supply after wake event.
From SBC Restart Mode, the SBC goes automatically to SBC Normal Mode, i.e the mode is left automatically by the SBC without any microcontroller influence once the VIO_UV condition is not present anymore and when the reset delay time (t
Entering or leaving the SBC Restart Mode will not result in deactivation of the Fail output.
The following functions are not changed in SBC Restart mode:
VEXT is fixed ON or OFF in accordance with Table 5 and SPI configuration.
VCC1 is ON or ramping up.
) has expired. The Reset Output (RSTN) is released at the transition.
RD1
•BOOST is fixed or OFF.
Table 8 contains detailed descriptions of the reason to restart:
Datasheet 26 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features
Table 8 Reasons for Restart - State of SPI Status Bits after Return to Normal Mode
SBC Mode Event DEV_STAT WD_FAIL VIO_UV VIO_OV
Normal Watchdog Failure 01 01 x x
Normal VIO undervoltage reset 01 xx 1 x
Normal VIO overvoltage (VIO_OV_RST=1) 01 xx x 1
Sleep Mode Wake-up event 10 xx x x
Stop Mode Watchdog Failure 01 01 x x
Stop Mode VIO undervoltage reset 01 xx 1 x
Stop Mode VIO overvoltage (VIO_OV_RST=1) 01 xx x 1
Fail-Safe Wake-up event 01 see “Reasons for Fail-Safe, Table 9

5.1.6 SBC Fail-Safe Mode

The purpose of this mode is to bring the system in a safe status after a failure condition by turning off the VCC1 and VEXT supply and the FO pin is automatically activated. After a wake-up event the system is then able to restart again.
The Fail-Safe Mode is automatically reached in case of:
Overtemperature condition (TSD2).
After 1 or 2 watchdog fails (depending on config setting).
At the 4th consecutive VIO undervoltage event.
From SBC Normal and Stop Mode, in case of overvoltage on VIO in config 2/4, if VIO_OV_RST is set.
VIO is shorted to GND.
VIO is below the VRTx for time longer than t
In this case, the default wake sources are activated, the wake-up events are cleared in the register WK_STAT_0 and WK_STAT_2. The mode will be maintained for at least t to avoid any fast toggling behavior. All wake sources will be masked during this time but the wake-up events will be stored. Stored wake-up events and wake-up event after this minimum waiting time, will lead to SBC Restart Mode. Leaving the SBC Fail-Safe Mode will not result in deactivation of the Fail Output pin.
The following functions are influenced during SBC Fail-Safe Mode:
FO output is activated.
•VCC1 is OFF.
VIO,SC
in case of TSD2 event and t
TSD2
.
in case of other failure events
FS,min
VEXT is OFF.
•CANx is wake capable.
•WK is wake capable (in case that PWM_BY_WK was set, moving to SBC Fail-Safe Mode will clear the bit).
•Cyclic wake is disabled.
Table 9 Reasons for Fail-Safe - State of SPI Status Bits after Return to Normal Mode
Mode Config Event DEV_STAT TSD2 WD_FAIL VIO_UV VIO_SC VIO_OV
Normal 2 1 × watchdog
failure
Normal 4 2 × watchdog
failure
Datasheet 27 Rev. 1.5
01 x 01 x 0 x
01 x 10 x 0 x
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features
Table 9 Reasons for Fail-Safe - State of SPI Status Bits after Return to Normal Mode (cont’d)
Mode Config Event DEV_STAT TSD2 WD_FAIL VIO_UV VIO_SC VIO_OV
Normal 1, 2, 3, 4 TSD2 01 1 xx x 0 x
Normal 1, 2, 3, 4 VIO short to GND 01 x xx 1 1 x
Normal 2, 4 VIO overvoltage
(VIO_OV_RST=1,
CFG2=1)
Stop Mode 2 1 × watchdog
failure
Stop Mode 4 2 × watchdog
failure
Stop Mode 1, 2, 3, 4 TSD2 01 1 xx x 0 x
Stop Mode 1, 2, 3, 4 VIO short to GND 01 x xx 1 1 x
Stop Mode 2, 4 VIO overvoltage
(VIO_OV_RST=1,
CFG2=1)
01 x xx x 0 1
01 x 01 x 0 x
01 x 10 x 0 x
01 x xx x 0 1

5.1.7 SBC Development Mode

The SBC Development Mode is used during development phase of the application, especially for software development.
Compared to the default SBC user mode operation, this mode is a super set of the state machine. The device will start also in SBC Init Mode and it is possible to use all the SBC Modes and functions with following differences:
Watchdog is stopped and does not need to be triggered. Therefore no reset is triggered due to watchdog failure.
SBC Fail-Safe and Restart Mode are not reached due to watchdog failure but the other reasons to enter these modes are still valid.
CANx default value in SBC INIT MODE is ON instead of OFF.
The mode is reached by setting the FO/TEST pin to LOW for the entire SBC INIT Mode and by sending an arbitrary SPI command. The SBC Init Mode is reachable after the power-up or sending a software reset.
SBC Development Mode can only be left by a power-down or by providing a SBC Software Reset using the
MODE bits on M_S_CTRL register regardless the FO/TEST pin level.
When the FO/TEST pin is left open, or connected to V operation. The FO/TEST pin has an integrated pull-up resistor (switched ON only during SBC Init Mode) to prevent the SBC device from starting in SBC Development Mode during normal life of the vehicle. To avoid any disturbances, the FO/TEST pin is monitored during the SBC Init Mode when the RSTN is HIGH until SBC Init Mode is left. Only if the FO/TEST pin is LOW for the Init Mode time when the RSTN is HIGH, SBC Development Mode is reached and stored.
during the start-up, the SBC starts into normal
S
Datasheet 28 Rev. 1.5
2019-09-27
Cyclic Wake Configuration
Cyclic Wake starts / ends by
setting / clearing On-time
INT is pulled low at every rising edge
of On-time except first one
Select Timer Period in
TIMER_CTRL_0
Periods: 10 , 20 , 50, 100, 200ms, 1s, 2s
Reset the TIMER1_WK_EN bit on
WK_CTRL_0 register
To avoid unintentional inter rupts
Set the TIMER1_WK_EN bit on
WK_CTRL_0 register
No interrupt will be generated,
if the timer is not enabled as a wake source
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip
System Features

5.2 Wake Features

Following wake sources are implemented in the device:
Static Sense: WK input is permanently active (see Chapter 9).
Cyclic Wake: internal wake source controlled via internal timer (see Chapter 5.2.1).
CANx wake: wake-up via CAN message (see Chapter 8).
The wake source must be set before entering in SBC Sleep Mode. In case of critical situation, when the device will be set into SBC Fail-Safe mode, all default wake sources will be activated. For additional information about setting, refer to the respective chapters.

5.2.1 Cyclic Wake

The cyclic wake feature is intended to reduce the quiescent current of the device and application.
When the cyclic wake is enabled, a periodic INTN is generated in SBC Normal and Stop Mode based on the setting of TIMER_CTRL_0.
The correct sequence to configure the cyclic wake is shown in Figure 6. The sequence is as follows:
Disable the cyclic wake feature to ensure that there is not unintentional interrupt when activating cyclic wake (TIMER1_WK_ EN = 0).
Configure the cyclic wake timer period in TIMER_CTRL_0 register.
Enable the cyclic wake as a wake-up source in the register WK_CTRL_0 (TIMER1_WK_ EN = 1).
Figure 6 Cyclic Wake: Configuration and Sequence

5.2.2 Internal Timer

The integrated timer is typically used to wake up the microcontroller periodically (cyclic wake).
Following periods can be selected via the register TIMER_CTRL_0:
Period: 10ms / 20ms / 50ms / 100ms / 200ms / 1s / 2s
Datasheet 29 Rev. 1.5
2019-09-27
TLE9278-3BQX
Multi-CAN Power+ System Basis Chip

5.3 CAN Partial Networking

5.3.1 CAN Partial Networking - Selective Wake Feature

The CAN Partial Networking feature can be activated for SBC Normal Mode, in SBC Sleep Mode and in SBC Stop Mode. For SBC Sleep Mode the Partial Networking has to be activated before sending the SBC to Sleep Mode. For SBC Stop Mode the Partial Networking has to be activated before going to SBC Stop Mode.
There are 2 detection mechanism available:
WUP (Wake-Up Pattern) this is a CAN wake, that reacts on the CAN dominant time, with 2 dominant signals as defined in ISO WG11898-6.
WUF (Wake-Up frame) this is the wake-up on a CAN frame that matches the programmed message filter configured in the SBC via SPI.
The default baud rate is set to 500 kBaud. Besides the commonly used baud rate of 125 kBaud and 250 kBaud, other baud rate up to 1 MBaud can be selected (see Chapter 13.5.2 and Chapter 13.6.2 for more details).
Datasheet 30 Rev. 1.5
2019-09-27
Loading...
+ 164 hidden pages