Infineon TLE5501 Series, TLE5501 E0002, TLE5501 E0001 User Manual

User’s Manual 1 Rev. 1.0
www.infineon.com/sensors 2019-04-29
TLE5501
TMR-Based Angle Sensor
User’s Manual

About this document

Scope and purpose
Intended audience
This document is aimed at experienced hardware and software engineers using the TLE5501 angle
sensor
TLE5501
TMR-Based Angle Sensor

Table of Contents

1 Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Transient behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Bandwidth of the TMR bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Recommendation for the external capacitor C
3 Connection to a micro controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Sigma-Delta ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 SAR ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Load step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Load step reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
b
5 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
User’s Manual 2 Rev. 1.0
2019-04-29
TLE5501
VDD
GND1
SIN_P
10 0n
SIN_P
VDD
COS_P
GND1
COS_N SIN_N
GND2
TLE5501
C
b
C
b
COS_P
COS_N
VDD
GND1
SIN_P
SIN_N
100n
GND2
SIN_P
VDD
COS_P
GND1
COS_N SIN_N
GND2
TLE5501
C
b
C
b
C
b
C
b
TMR-Based Angle Sensor
Application Circuits

1 Application Circuits

The application circuits in this chapter show the various connection possibilities of the TLE5501. It can be used in a single ended mode (only one sine and one cosine signal, Figure 1 and Figure 3) and in a differential mode with a total of four output signals (Figure 2 and Figure 4).
To fully implement the safety concept of the TLE5001 E0002 version and achieve highest diagnostic coverage, the four output signals have to be sampled singled ended. This is necessary, as the proposed external safety mechanisms in the Safety Manual act on the single ended signals. Nevertheless, to reach highest angle accuracy, the differential calculated angle shall be used for the application. The single ended signals are for diagnostic only.
Figure 1 Application circuit for TLE5501 E0001 single ended signal used
Figure 2 Application circuit for TLE5501 E0001 differential signal used
User’s Manual 3 Rev. 1.0
2019-04-29
TLE5501
SIN_P
VDD_P
COS_P
GND_P
COS_N
SIN_N
GND_N
TLE5501
VDD_N
C
b
C
b
10 0n
SIN_P
VDD_P
COS_P
GND_P
SIN_P
VDD_P
COS_P
GND_P
COS_N
SIN_N
GND_N
TLE5501
VDD_N
C
b
C
b
10 0n10 0n
C
b
C
b
GND_N
SIN_N
VDD_N
COS_N
SIN_P
VDD_P
COS_P
GND_P
TMR-Based Angle Sensor
Application Circuits
Figure 3 Application circuit for TLE5501 E0002 single ended signal used
Figure 4 Application circuit for TLE5501 E0002 differential signal used
It is recommended to use a 100nF capacitor on the VDD pin to filter noise on the supply line. As the device is ratiometric, any noise on the supply is coupled to the sensor output.
2019-04-29
User’s Manual 4 Rev. 1.0
TLE5501
R
TMR
GND
VDD
U_out
C
b
R
TMR
Ut() U01e
t τ
()=
TMR-Based Angle Sensor
Transient behavior

2 Transient behavior

For the sine and cosine output pins, it is also recommended to use a buffer capacitor Cb for filtering purpose. As the device itself has a high output impedance, given by the TMR resistors R a low-pass filter together with the bridge resistivity.

2.1 Bandwidth of the TMR bridge

It has to be taken into account that the low pass filter limits the bandwidth of the sensor and increases step response time. Figure 5 shows a schematic of the sensor output structure with an external capacitor C resistivity of a TMR resistor R
is specified in the datasheet and has a value between 4kΩ and 8kΩ.
TMR
, this buffer capacitor builds
TMR
. The
b
Figure 5 Schematic of one branch of the TMR bridge with external buffer capacitor C
The result of a pSPICE simulation of this output structure is shown in Figure 6. A resistor of R capacitor value of C
= 1nF is assumed. Applying a voltage step of 5V on the supply VDD is simulated. This is
b
b
= 8kΩ and a
TMR
compared with analytical simulations using below Equation (2.1):
(2.1)
The time constant for the bridge τ
is defined as: τbr = RC, U0 is taken to be 2.5V = VDD/2.
br
A good approximation of the transient behavior in the analytical calculation can be achieved with R = 4kΩ and C
= 1nF, so R in the analytical simulation is half of the resistivity of one TMR resistor R
b
This behavior is equal to a low-pass filter at the sensor output with R = R
/2 and Cb.
TMR
of the bridge.
TMR
User’s Manual 5 Rev. 1.0
2019-04-29
TLE5501
0.00
0.50
1.00
1.50
2.00
2.50
3.00
0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05 3.0E-05 3.5E-05
U_ou t (V)
time (s)
pSPICE
analyt. R = 4k
analyt. R = 8k
Ut()
U
0
-----------
X
c
R2X
c
2
+
--------------------------
Xc,
1
2πfC
-----------------
==
Phase arc 2πfRC()tan=
TMR-Based Angle Sensor
Transient behavior
Figure 6 Simulation (pSPICE and analytical) of the RC behavior of the output voltage (R
= 1nF). Voltage step on V
. The 100nF capacitor on VDD is not included in the simulations
DD
= 8kΩ, Cb
TMR
The transient behavior when applying an AC magnetic field with frequency f is shown in Figure 7 and Figure 8. The pSPICE simulation is compared with analytical calculations according to Equation (2.2) and
Equation (2.3) below. Again, a good fit is achieved using R = 4kΩ for the calculation.
(2.2)
(2.3)
User’s Manual 6 Rev. 1.0
2019-04-29
Loading...
+ 13 hidden pages