Infineon TLE5014SP16 E0002 Users guide

Data Sheet Rev. 1.1
www.infineon.com 1 2019-04-04
TLE5014SP16 E0002
GMR-based Angle Sensor
Fast SSC interface up to 8MHz
Giant Magneto Resistance (GMR)-based principle
Integrated magnetic field sensing for angle measurement
360° angle measurement
EEPROM for storage of configuration (e.g. zero angle) and customer specific ID
15 bit representation of absolute angle value on the output
Max. 1° angle error over lifetime and temperature range
Developed according to ISO26262 with process complying to ASIL-D
Internal safety mechanisms with a SPFM > 97%
32 point look-up table to correct for systematic angle errors (e.g. magnetic circuit)
112 bit customer ID (programmable)
Automotive qualified Q100, Grade 1: -40°C to 125°C (ambient temperature)
•ESD: 4 kV (HBM) on V
RoHS compliant and halogen free package
and 2kV (HBM) on output pins
DD
Functional Safety
Safety Manual and Safety Analysis Summary Report available on request

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

The TLE5014SP16 E0002 is an iGMR (integrated GMR) based angle sensor with a high speed serial interface (SSC interface). It provides high accurate angular position information for various applications.
Table 1 Derivative Ordering codes
Product Type Marking Ordering Code Package Comment
TLE5014SP16 E0002 014SP02 SP004531446 PG-TDSO-16 SSC Interface, single die
TLE5014SP16 E0002
GMR-based Angle Sensor

Table of contents

1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Sensing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 EEPROM Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Reset Concept and Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 External & Internal Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Device Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Synchronous Serial Communication (SSC) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Bit Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Update of update-registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Command Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Safety word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Cyclic Redundancy Check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Data Sheet 2 Rev. 1.1
2019-04-04
PMU Clock EEPROM
ADC_X Filter
ADC_Y Fil ter
GMR_X
GMR_Y
Temp. ADC_T
ISM_ALG
CORDIC
(Hardware)
SSC
Interface
ISM_SAF
CORDIC
(Software)
Interface compare
TLE5014SP16 E0002
GMR-based Angle Sensor
Functional Description

1 Functional Description

1.1 Block Diagram

Figure 1-1 TLE5014SP16 E0002 block diagram

1.2 Functional Block Description

Internal Power Supply (PMU)
The internal blocks of the TLE5014SP16 E0002 are supplied from several voltage regulators:
GMR Voltage Regulator, VRS
Analog Voltage Regulator, VRA
Digital Voltage Regulator, VRD
These regulators are directly connected to the supply voltage VDD.
Oscillator and PLL (Clock)
The digital clock of the TLE5014SP16 E0002 is given by the Phase-Locked Loop (PLL), which is fed by an internal oscillator.
SD-ADC
The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature voltage into the digital domain.
Digital Signal Processing Unit ISM_ALG
The Digital Signal Processing Unit ISM_ALG contains the:
Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift, amplitude synchronicity and orthogonality of the raw signals from the GMR bridges.
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle calculation
Data Sheet 3 Rev. 1.1
2019-04-04
TLE5014SP16 E0002
GMR-based Angle Sensor
Functional Description
Digital Signal Processing Unit ISM_SAF
The Digital Signal Processing Unit ISM_SAF performs the internal safety mechanism and plausibility checks. Furthermore, a second CORDIC algorithm is implemented in a diverse way as in the ISM_ALG. This is for cross checking the angle calculation
Interface
The Interface block is used to generate the SSC signals
Angle Compare
This digital block compares the angle value calculated by ISM_ALG and ISM_SAF. In case they are not identical, an error is indicated in the transmitted protocol.
EEPROM
The EEPROM contains the configuration and calibration parameters. A part of the EEPROM can be accessed by the customer for application specific configuration of the device. Programming of the EEPROM is achieved with the SSC interface. Programming mode can be accessed directly after power-up of the IC.

1.3 Sensing Principle

The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the GMR-sensitive areas are integrated above the logic part of the TLE5014SP16 E0002 device. These GMR elements change their resistance depending on the direction of the magnetic field.
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense one of two components of the applied magnetic field:
•X component, V
•Y component, V
With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each other.
(cosine) or the
x
(sine)
y
Data Sheet 4 Rev. 1.1
2019-04-04
10111213141516
1
9
87654321
Reference Direction:
Resist anc e low when external magnetic field is in this direction
Y
X
TLE5014SP16 E0002
GMR-based Angle Sensor
Functional Description
Figure 1-2 Sensitive bridges of the GMR sensor (not to scale)
In Figure 1-2 the arrows in the resistors represent the magnetic direction which is fixed in the reference layer. If the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If they are anti-parallel, resistance is maximal.
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are oriented orthogonally to each other to measure 360°.
With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals from the sensor bridges.
Data Sheet 5 Rev. 1.1
2019-04-04
10111213141516
1
9
87654321
Center of Sensitive area
TLE5014SP16 E0002
GMR-based Angle Sensor
Functional Description

1.4 Pin Configuration

Figure 1-3 Pin configuration (top view)

1.5 Pin Description

The following Table 1-1 describes the pin-out of the chip.
Table 1-1 Pin description TLE5014SP16
Pin Symbol In/Out Function
1 IF1 I/O DATA (MOSI/MISO)
2 IF2 I SCK (SSC clock)
3 IF3 I CSQ (chip select)
4 VDD Supply voltage, positive
5 GND Supply voltage, ground
6 IFA Connect to GND
7 IFB Connect via pull-up to V
8 IFC Keep open
9-16 - n.c.
DD
Data Sheet 6 Rev. 1.1
2019-04-04
µController
Master
TLE501 4
GND
10 0nF
V
DD
GND
IF1
IF2
IF3
IFA
IFB
IFC
V
µC
2.2k
50k
C
D
R
PU
R
P1
SC K
MOSI/MISO
CSQ
GND
C
L
V
DD
V
DD
V
DD
TLE5014SP16 E0002
GMR-based Angle Sensor
Application Circuits

2 Application Circuits

The application circuit in this chapter shows the communication possibilities of the TLE5014SP16 E0002. To improve robustness against electro-magnetic disturbances, a capacitor of 100nF on the supply is recommended. This capacitor shall be placed as close as possible to the corresponding sensor pins. The load capacitor C but the driver is switched off once reaching the HIGH state. Therefore, a pull-up resistor is recommended to maintain a stable HIGH level.
In case of a high speed communication, an additional serial resistor in the range of 140Ω can be implemented in the DATA, SCK and CSQ line to avoid reflections and enhance communication reliability. In this case the user is responsible to verify that the intended communication speed can be reached in his specific setup.
shall not exceed the specified value (Table 3-5). The DATA line is actively driven to HIGH and LOW
L
Figure 2-1 Application circuit for TLE5014SP16 E0002 with SSC interface, microcontroller switches pin
between MISO and MOSI
Data Sheet 7 Rev. 1.1
2019-04-04
TLE5014SP16 E0002
GMR-based Angle Sensor
Specification

3 Specification

3.1 Absolute Maximum Ratings

Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device.
Table 3-1 Maximum Ratings for Voltages and Output Current
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Absolute maximum supply voltage
Voltage Peaks V
Absolute maximum voltage
V
DD
DD
V
IF
-18 26 V for 40h, no damage of device;
-18V means V
< GND
DD
30 V for 50µs, no current limitation
-0.3 6 V no damage of device
for pin IF1, IF2, IF3
Absolute maximum voltage
V
IO
for pin IFB
Voltage Peaks (for pin IFB) V
IO
Table 3-2 Maximum Temperature and Magnetic Field
-18 19.5 V for 40h; no damage of device,
-18V means V
< GND
DD
30 V for 50µs, no current limitation
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Maximum ambient
T
A
-40 125 °C Q100, Grade 1
temperature
Maximum allowed magnetic
B 200 mT max 5 min @ T
= 25°C
A
field
Maximum allowed magnetic
B 150 mT max 5 h @ T
= 25°C
A
field
Storage & Shipment
1) 2)
T
storage
5 40 °C for dry packed devices,
Relative humidity < 90%, storage time < 3a
1) Air-conditioning of ware houses, distribution centres etc. is not necessary, if the combination of the specified limits of 75% R.H. and 40 °C will not be exceeded during storage for more than 10 events per year, irrespective of the duration per event, and one of the specified limits (75 % R.H. or 40 °C) will not be exceeded for longer than 30 days per year
2) See Infineon Application Note: “Storage of Products Supplied by Infineon Technologies”
Table 3-3 Mission Profile
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Mission Profile T
Data Sheet 8 Rev. 1.1
A,max
125 °C for 2000h
2019-04-04
TLE5014SP16 E0002
GMR-based Angle Sensor
Specification
Table 3-4 Lifetime & Ignition Cycles
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Operating life time t
op_life
15.000 h see Table 3-3 for mission
profile
Total life time t
Ignition cycles N
1) The lifetime shall be considered as an anticipation with regard to the product that shall not extend the warranty period
tot_life
ignition
19 a additional 2a storage time
200.000 during operating lifetime t
The device qualification is done according to AEC Q100 Grade 1 for ambient temperature range -40°C < T
1)
op_life
<
A
125°C

3.2 Operating Range

The following operating conditions must not be exceeded in order to ensure correct operation of the angle sensor. All parameters specified in the following sections refer to these operating conditions, unless otherwise noted. Table 3-5 is valid for -40°C < T
Table 3-5 Operating Range
Parameter Symbol Values Unit Note / Test Condition
Operating supply voltage V
Supply Voltage Slew Rate V
Operating ambient
T
temperature
< 125°C unless otherwise noted.
A
Min. Typ. Max.
DD
DD_slew
A
3.0 5.5 V -
0.1 10
-40 125 °C -
8
V/s -
Angle speed n 30000 rpm -
Capacitive output load on
C
L
––50pF
SSC interface (DATA pin)
Magnetic Field Range
The operating range of the magnetic field describes the field values where the performance of the sensor, especially the accuracy, is as specified in Table 3-11 and Table 3-12. This value is valid for a NdFeB magnet with a Tc of -1300ppm/K. In case a different magnet is used, the individual Tc of this magnet has to be considered and ensured that the limits are not exceeded. The allowed magnetic field range is given in
Figure 3-1.
Table 3-6 Magnetic Field Range
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Angle measurement field range @ 25°C
B25 80mTT
= 25°C, valid for NdFeB
A
magnet
The below figure Figure 3-1 shows the magnetic field range which shall not be exceeded during operation at the respective ambient temperature. The temperature dependency of the magnetic field is based on a NdFeB magnet with Tc = -1300ppm/K.
Data Sheet 9 Rev. 1.1
2019-04-04
Loading...
+ 20 hidden pages