SPP17N80C3
SPA17N80C3
Cool MOS™ Power Transistor
Feature
• New revolutionary high voltage technology
• Worldwide best R
DS(on
• Ultra low gate charge
• Periodic avalanche rated
• Extreme dv /dt rated
• Ultra low effective capacitances
• Improved transconductance
• PG -TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
Type Package Ordering Code
SPP17N80C3 PG -TO220 Q67040-S4353
in TO 220
Marking
17N80C3
V
DS
R
DS(on
I
D
PG -TO220-3-31 PG -TO220
1
P-TO220-3-31
3
2
800 V
0.29 Ω
17 A
SPA17N80C3 PG -TO220-3-31 SP000216353
Maximum Ratings
Parameter
Continuous drain current
T
= 25 °C
C
= 100 °C
T
C
Pulsed drain current, t p limited by T
Avalanche energy, single pulse
I
=3.4A, V
D
Avalanche energy, repetitive t
=17A, V
I
D
Avalanche current, repetitive t
DD
DD
=50V
=50V
limited by T
AR
limited by T
R
max
jmax
max
Symbol Value Unit
I
I
E
2)
E
I
Gate source voltage V
Gate source voltage AC (f >1Hz)
Power dissipation, T
= 25°C P
C
V
17N80C3
D
Dpuls
AS
AR
R
GS
GS
tot
SPP
SPA
A
17
11
17
11
1)
1)
51 51 A
670 670 mJ
0.5 0.5
17 17 A
±20 ±20 V
± 30 ± 30
208 42 W
Operating and storage temperature
Rev. 2. 4 P age 1 2005-0 8 -24
T
, T
st
-55...+150 °C
Maximum Ratings
SPP17N80C3
SPA17N80C3
Parameter
Drain Source voltage slope
V
= 640 V, I
DS
= 17 A, T
D
= 125 °C
j
Symbol Value Unit
dv /dt 50 V/ns
Thermal Characteristics
Parameter
Thermal resistance, junction - case
Symbol Values Unit
R
Thermal resistance, junction - case, FullPAK R
Thermal resistance, junction - ambient, leaded
R
Thermal resistance, junction - ambient, FullPAK R
SMD version, device on PCB:
R
@ min. footprint
@ 6 cm
2
cooling area
Soldering temperature, wavesoldering
1.6 mm (0.063 in.) from case for 10s
3)
T
4)
thJC
thJC_FP
thJA
thJA_FP
thJA
sold
min. typ. max.
- - 0.6 K/W
- - 3.6
- - 62
- - 80
-
-
-
35
62
-
- - 260 °C
Electrical Characteristics, at T j=25°C unless otherwise specified
Parameter
Drain-source breakdown voltage
Drain-Source avalanche
Symbol Conditions Values Unit
V
(BR)DSS
V
(BR)DS
V
=0V, I D=0.25mA 800 - - V
GS
V
=0V, I D=17A - 870 -
GS
breakdown voltage
Gate threshold voltage V
Zero gate voltage drain current I
Gate-source leakage current I
Drain-source on-state resistance R
Gate input resistance
R
GS(th
DSS
GSS
DS(on)
G
ID=1000µ A, VGS=V
VDS=800V, V
T
=25°C
j
T
=150°C
j
VGS=20V, V
V
=10V, I D=11A
GS
T
=25°C
j
T
=150°C
j
f=1MHz, open drain - 0.7 -
DS
D
=0V,
GS
=0V - - 100 nA
min. typ. max.
2.1 3 3.9
-
-
-
-
0.5
-
0.25
0.78
25
250
0.29
-
µA
Ω
Rev. 2.4 Page 2 2005-08 -24
Electrical Characteristics
SPP17N80C3
SPA17N80C3
Parameter
Symbol Conditions Values Unit
Transconductance g
Input capacitance C
Output capacitance C
Reverse transfer capacitance C
Effective output capacitance,
5)
C
energy related
Effective output capacitance,
6)
C
time related
Turn-on delay time t
Rise time t
Turn-off delay time t
Fall time t
fs
iss
oss
rss
o(er)
o(tr)
d(on)
r
d(off)
f
V
≥2*I D*R
DS
I
=11A
D
VGS=0V, V
f=1MHz
V
=0V,
GS
V
=0V to 480V
DS
VDD=400V, V
I
=17A,
D
R
=4.7 Ω , T
G
DS
DS(on)max
=25V,
=0/10V,
GS
=125°C
j
min. typ. max.
,
- 15 - S
- 2320 - pF
- 1250 -
- 60 -
- 59 -
- 124 -
- 25 - ns
- 15 -
- 72 82
- 6 9
Gate Charge Characteristics
Gate to source charge
Gate to drain charge Q
Gate charge total Q
Gate plateau voltage V
1
Limited only by maximum temperature
2
Repetitve avalanche causes additional power losses that can be calculated as P
3
Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
4
Soldering temperature for TO-263: 220°C, reflow
5
C
is a fixed capacitance that gives the same stored energy as C
o(er)
6
C
is a fixed capacitance that gives the same charging time as C
o(tr)
Q
gs
gd
g
plateau
V
=640V, I D=17A - 12 - nC
DD
- 46 -
V
=640V, I D=17A,
DD
V
=0 to 10V
GS
V
=640V, I D=17A - 6 - V
DD
while V
oss
while V
oss
- 91 177
=E AR*f .
AV
is rising from 0 to 80% V
DS
is rising from 0 to 80% V
DS
DSS
DSS
.
.
Rev. 2. 4 P age 3 2005-0 8 -24
Electrical Characteristics
SPP17N80C3
SPA17N80C3
Parameter
Inverse diode continuous
Symbol Conditions Values Unit
I
S
forward current
Inverse diode direct current,
I
SM
pulsed
Inverse diode forward voltage V
Reverse recovery time t
Reverse recovery charge Q
Peak reverse recovery current I
Peak rate of fall of reverse
SD
rr
rr
rrm
dirr/dt
recovery current
Typical Transient Thermal Characteristics
Symbol
SPP SPP
Value Unit Symbol Value Unit
SPA SPA
min. typ. max.
T
=25°C - - 17 A
C
- - 51
V
=0V, I F=I
GS
V
=400V, I F=I S ,
R
di
/dt=100A/µs
F
S
- 1 1.2 V
- 550 - ns
- 15 - µC
- 51 - A
T
=25°C - 1200 - A/µs
j
R
R
R
R
R
R
th1
th2
th3
th4
th5
th6
0.00812 0.00812 K/W C
0.016 0.016 C
0.031 0.031 C
0.114 0.16 C
0.135 0.324 C
0.059 2.522 C
T
R
j T
th1
P
(t)
tot
C
th1
C
th2
R
C
th,n
th,n
th1
th2
th3
th4
th5
th6
0.0003562 0.0003562 Ws/K
0.001337 0.001337
0.001831 0.001831
0.005033 0.005033
0.012 0.008657
0.092 0.412
External Heatsink
T
case
amb
Rev. 2.4 Page 4 2005-08 -24
SPP17N80C3
SPA17N80C3
1 Power dissipation
P
= f (T
tot
tot
P
240
W
200
180
160
140
120
100
80
60
40
20
)
C
SPP17N80C3
0
0 20 40 60 80 100 120
°C
2 Power dissipation FullPAK
= f (T
P
tot
45
W
35
30
tot
P
25
20
15
10
160
T
C
)
C
5
0
0 20 40 60 80 100 120
°C
160
T
C
3 Safe operating area
= f ( VDS )
I
D
parameter : D = 0 , T
2
10
A
1
10
D
I
0
10
-1
10
-2
10
0
10
C
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
1
10
=25°C
10
4 Safe operating area FullPAK
= f (V
I
D
parameter: D = 0, T
10
A
10
D
I
10
10
2
V
3
10
V
DS
10
)
DS
= 25°C
C
2
1
0
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
0
tp = 1 ms
tp = 10 ms
DC
10
1
10
2
V
3
10
V
DS
-1
-2
10
Rev. 2. 4 P age 5 2005-0 8 -24
SPP17N80C3
SPA17N80C3
5 Transient thermal impedance
= f (tp)
Z
thJC
parameter: D = t
1
10
K/W
0
10
thJC
-1
Z
10
-2
10
-3
10
-4
10
-7
10
10
/T
p
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
-6
10
-5
10
-4
10
-3
6 Transient thermal impedance FullPAK
= f (t
Z
thJC
parameter: D = t
10
K/W
10
thJC
Z
10
10
10
-1
10
s
t
p
10
)
p
/t
p
1
0
-1
D = 0.5
-2
-3
-4
10-710-610-510-410-310-210
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
-1
1
10
s
t
p
7 Typ. output characteristic
= f (V DS); T
I
D
parameter: t
70
A
60
55
50
45
D
I
40
35
30
25
20
15
10
5
0
0 5 10 15 20
=25°C
j
= 10 µs, V
p
GS
8V
7V
6V
5V
20V
10V
8 Typ. output characteristic
= f (V DS); T
I
D
parameter: t
35
A
25
D
I
20
15
10
5
V
DS
30
V
0
0 5 10 15 20
=150°C
j
= 10 µs, V
p
GS
20V
10V
8V
7V
6.5V
6V
5.5V
5V
4.5V
4V
V
DS
30
V
Rev. 2. 4 P age 6 2005-0 8 -24
SPP17N80C3
SPA17N80C3
9 Typ. drain-source on resistance
= f (I
R
DS(on)
parameter: T
1.5
Ω
1.3
1.2
DS(on)
R
1.1
1
0.9
0.8
0.7
0.6
0.5
)
D
=150°C, V
j
4.5V
4V
0 5 10 15 20 25
5V
5.5V
GS
6V
6.5V
A
I
D
7V
8V
10V
20V
35
10 Drain-source on-state resistance
R
DS(on)
parameter : I
R
= f (T j)
= 11 A, V
D
SPP17N80C3
1.6
Ω
1.2
DS(on)
1
0.8
0.6
0.4
0.2
0
-60 -20 20 60 100
98%
GS
typ
= 10 V
°C
180
T
j
11 Typ. transfer characteristics
= f ( VGS ); VDS≥ 2 x I D x R
I
D
DS(on)max
parameter: t p = 10 µs
65
A
55
50
45
D
I
40
35
30
25
20
15
10
5
0
0 2 4 6 8 10 12 14 16
25°C
150°C
V
12 Typ. gate charge
= f (Q
V
GS
parameter: I
SPP17N80C3
16
V
12
GS
10
V
8
6
4
2
20
V
GS
0
0 20 40 60 80 100 120
)
Gate
= 17 A pulsed
D
0,2
V
DS max
0,8 V
DS max
nC
Q
160
Gate
Rev. 2. 4 P age 7 2005-0 8 -24
SPP17N80C3
SPA17N80C3
13 Forward characteristics of body diode
= f (VSD)
I
F
parameter: T
2
SPP17N80C3
10
A
1
10
F
I
0
10
-1
10
0 0.4 0.8 1.2 1.6 2 2.4
, tp = 10 µs
Tj = 25 °C typ
Tj = 150 °C typ
Tj = 25 °C (98%)
Tj = 150 °C (98%)
3
V
V
SD
14 Avalanche SOA
= f (tAR)
I
AR
par.: T
I
≤ 150 °C
j
18
A
14
12
AR
10
8
6
4
2
0
10-310-210-110010110
T
(START)
j
=125°C
T
(START)
j
=25°C
2
µs
t
AR
10
4
15 Avalanche energy
= f (T
E
AS
par.: I
mJ
AS
E
700
600
550
500
450
400
350
300
250
200
150
100
)
j
= 3.4 A, V
D
50
0
25 50 75 100
DD
= 50 V
°C
16 Drain-source breakdown voltage
V
(BR)DSS
(BR)DSS
V
150
T
j
= f (T
SPP17N80C3
980
V
940
920
900
880
860
840
820
800
780
760
740
720
-60 -20 20 60 100
)
j
°C
180
T
j
Rev. 2.4 Page 8 2005-08 -24
SPP17N80C3
SPA17N80C3
17 Avalanche power losses
= f (f )
P
AR
parameter: E
500
W
400
350
AR
P
300
250
200
150
100
50
0
4
10
=0.5mJ
AR
10
5
Hz
18 Typ. capacitances
C = f (V
parameter: V
10
pF
10
10
C
10
10
6
10
f
10
)
DS
=0V, f =1 MHz
GS
5
4
C
iss
3
2
1
0
0 100 200 300 400 500 600
C
rss
C
oss
V
800
V
DS
19 Typ. C
=f (V
E
oss
18
µJ
14
12
oss
E
10
8
6
4
2
0
0 100 200 300 400 500 600
stored energy
oss
)
DS
V
800
V
DS
Rev. 2. 4 P age 9 2005-0 8 -24
Definition of diodes switching characteristics
SPP17N80C3
SPA17N80C3
Rev. 2.4 Page 10 2005-08 -24
PG -TO220-3-1, PG-TO220-3-21
SPP17 N8 0C3
SPA17 N8 0C3
Rev. 2. 4 P age 11
2005 -08 -24
PG -TO220-3-3 1 (FullPAK)
SPP17 N8 0C3
SPA17 N8 0C3
Rev. 2. 4 P age 12
2005 -08 -24
SPP17N80C3
SPA17N80C3
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Rev. 2.4 Page 13 2005-08 -24