INFINEON SPP06N60C3 User Manual

SPP06N60C3
CoolMOSTM Power Transistor
Features
• New revolutionary high voltage technology
• Ultra low gate charge
Product Summary
V
@ T
DS
R
DS(on),max
I
D
• Periodic avalanche rated
• Ultra low effective capacitances
• Extreme dv /dt rated
• Improved transconductance
Type Package Ordering Code Marking
j,max
650 V
0.75
6.2 A
PG-TO220-3-1
SPP06N60C3 PG-TO220-3-1 Q67040-S4629 06N60C3
Maximum ratings, at T
Parameter Symbol Conditions Unit
Continuous drain current
Pulsed drain current
Avalanche energy, single pulse
Avalanche energy, repetitive t
Avalanche current, repetitive t
Drain source voltage slope dv /dt
Gate source voltage
Power dissipation
=25 °C, unless otherwise specified
j
I
D
TC=25 °C
T
1)
AR
AR
1),2)
1)
I
D,pulse
E
AS
E
AR
I
AR
TC=25 °C
ID=3.1 A, VDD=50 V
ID=6.2 A, VDD=50 V
I T
V
GS
V
GS
P
tot
static V
AC (f >1 Hz)
TC=25 °C
=100 °C
C
=6.2 A, VDS=480 V,
D
=125 °C
j
Value
6.2
3.9
18.6
200 mJ
0.5
6.2
50
±20
±30
74
A
A
V/ns
W
Operating and storage temperature
T
j
stg
-55 ... 150
°C
, T
Rev. 1.3 page 1 2007-08-28
SPP06N60C3
Parameter Symbol Conditions Unit
Values
min. typ. max.
Thermal characteristics
Thermal resistance, junction - case
R
thJC
R
thJA
leaded - - 62
- - 1.7 K/W
SMD version, device
Thermal resistance, junction ­ambient
R
thJA
on PCB, minimal footprint
--62
SMD version, device
2
cooling
-35-
- - 260 °C
Soldering temperature
4)
Electrical characteristics, at T
on PCB, 6 cm
3)
area
T
sold
=25 °C, unless otherwise specified
j
1.6 mm (0.063 in.) from case for 10 s
Static characteristics
Drain-source breakdown voltage
Avalanche breakdown voltage
Gate threshold voltage
Zero gate voltage drain current
Gate-source leakage current
Drain-source on-state resistance
Gate resistance
Transconductance
V
(BR)DSSVGS
V
(BR)DSVGS
V
GS(th)
I
DSS
I
GSS
R
DS(on)
R
G
g
fs
=0 V, ID=250 µA
=0 V, ID=6.2 A
VDS=VGS, ID=0.26 mA
VDS=600 V, VGS=0 V, T
=25 °C
j
V
=600 V, VGS=0 V,
DS
T
=150 °C
j
VGS=20 V, VDS=0 V
VGS=10 V, ID=3.9 A, T
=25 °C
j
V
=10 V, ID=3.9 A,
GS
T
=150 °C
j
600 - - V
- 700 -
2.1 3 3.9
- 0.1 1 µA
- - 100
- - 100 nA
- 0.68 0.75
- 1.82 -
f =1 MHz, open drain - 1 -
|VDS|>2|ID|R
I
=3.9 A
D
DS(on)max
,
- 5.6 - S
Rev. 1.3 page 2 2007-08-28
SPP06N60C3
Parameter Symbol Conditions Unit
Values
min. typ. max.
Dynamic characteristics
Input capacitance
Output capacitance
Reverse transfer capacitance
Effective output capacitance, energy
5)
related
Effective output capacitance, time
6)
related
Turn-on delay time
Rise time
Turn-off delay time
Fall time
C
C
C
C
C
t
t
t
t
iss
oss
rss
o(er)
o(tr)
d(on)
r
d(off)
f
=0 V, VDS=25 V,
V
GS
f =1 MHz
=0 V, VDS=0 V
V
GS
to 480 V
V
=480 V,
DD
V
=10 V, ID=6.2 A,
GS
=12
R
G
- 620 - pF
- 200 -
-17-
-28-
-47-
-7-ns
-12-
-52-
-10-
Gate Charge Characteristics
Gate to source charge
Gate to drain charge
Gate charge total
Gate plateau voltage
1)
Pulse width limited by maximum temperature T
2)
Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR*f.
3)
Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 µm thick) copper area for drain
Q
Q
Q
V
gs
gd
g
plateau
j,max
V
=480 V, ID=6.2 A,
DD
V
=0 to 10 V
GS
only
connection. PCB is vertical in still air.
4)
Soldering temperature for TO263: 220 °C, reflow
5)
C
is a fixed capacitance that gives the same stored energy as C
o(er)
6)
C
is a fixed capacitance that gives the same charging time as C
o(tr)
while VDS is rising from 0 to 80% V
oss
while VDS is rising from 0 to 80% V
oss
- 3.3 - nC
-12-
-2431
- 5.5 - V
DSS.
DSS.
Rev. 1.3 page 3 2007-08-28
SPP06N60C3
Parameter Symbol Conditions Unit
Values
min. typ. max.
Reverse Diode
Diode continuous forward current
Diode pulse current
Diode forward voltage
Reverse recovery time
Reverse recovery charge
Peak reverse recovery current
I
S
I
S,pulse
V
SD
t
rr
Q
I
rrm
=25 °C
T
C
- - 18.6
- - 6.2 A
VGS=0 V, IF=6.2 A, T
=25 °C
j
- 0.97 1.2 V
- 400 - ns
V
=480 V, IF=IS,
rr
R
di
/dt =100 A/µs
F
- 3.5 - µC
-25-A
Typical Transient Thermal Characteristics
Symbol Value Unit Symbol Value Unit
typ. typ.
R
th1
0.0325 K/W C
th1
0.0000502 Ws/K
R
R
R
R
7)
R
th2
th3
th4
th5
C
thCA
th6
=0 K/W.
0.0448 C
0.251 C
0.31 C
0.301 C
th2
th3
th4
th5
C
th6 1.09
0.000303
0.000428
0.00243
0.00526
7)
models the additional heat capacitance of the package in case of non-ideal cooling. It is not needed if
Rev. 1.3 page 4 2007-08-28
1 Power dissipation 2 Safe operating area
P
=f(TC) ID=f(VDS); TC=25 °C; D =0
tot
parameter: t
80
60
10
10
2
1
p
limited by on-state resistance
SPP06N60C3
1 µs
10 µs
100 µs
[W]
40
tot
P
20
0
0 40 80 120 160
TC [°C]
[A]
D
I
10
10
10
0
-1
-2
10
0
10
1
VDS [V]
3 Max. transient thermal impedance 4 Typ. output characteristics
I
=f(VDS); Tj=25 °C ID=f(VDS); Tj=25 °C
D
parameter: D=t
1
10
0
10
[K/W]
thJC
Z
-1
10
/T parameter: V
p
0.5
0.2
0.1
0.05
0.02
0.01
single pulse
[A]
D
I
GS
20
16
12
8
4
DC
10
6 V
5.5 V
5 V
1 ms
10 ms
7 V
10
3
2
20 V
6.5 V
4.5 V
10
-2
0
-1
-2
-3
-4
-5
10
-6
10
10
10
10
10
10
tp [s]
0
0 5 10 15 20
VDS [V]
4 V
Rev. 1.3 page 5 2007-08-28
SPP06N60C3
5 Typ. output characteristics 6 Typ. drain-source on-state resistance
I
=f(VDS); Tj=150 °C R
D
parameter: V
GS
=f(ID); Tj=150 °C
DS(on)
parameter: V
GS
8
20 V
7 V
6.5 V
6
4
[A]
D
I
2
0
0 5 10 15 20
VDS [V]
6 V
5.5 V
5 V
4.5 V
4 V
4
V 4
V 4.5
3
]
[
2
DS(on)
R
1
0
0246810
ID [A]
7 Drain-source on-state resistance 8 Typ. transfer characteristics
R
=f(Tj); ID=3.9 A; VGS=10 V ID=f(VGS); |VDS|>2|ID|R
DS(on)
parameter: T
j
DS(on)max
V 5
V 5.5
V 6
V 20
2
1.6
1.2
]
[
R
DS(on)
0.8
98 %
typ
0.4
0
-60 -20 20 60 100 140 180
Tj [°C]
25
C °25
20
15
[A]
D
I
10
C °150
5
0
0246810
VGS [V]
Rev. 1.3 page 6 2007-08-28
SPP06N60C3
9 Typ. gate charge 10 Forward characteristics of reverse diode
V
=f(Q
GS
parameter: V
[V]
GS
V
); ID=6.2 A pulsed IF=f(VSD)
gate
DD
parameter: T
12
10
V 120
V 480
8
6
4
2
0
0102030
Q
[nC]
gate
j
2
10
[A]
F
I
10
10
10
25 °C
1
150 °C
0
-1
25 °C, 98%
0 0.5 1 1.5 2 2.5
VSD [V]
150 °C, 98%
11 Avalanche SOA 12 Avalanche energy
I
=f(tAR) EAS=f(Tj); ID=3.1 A; VDD=50 V
AR
parameter: T
[A]
AV
I
j(start)
8
250
200
6
150
4
125 °C 25 °C
[mJ]
AS
E
100
2
50
0
3
2
1
0
-1
-2
10
-3
10
10
10
10
10
10
0
20 60 100 140 180
tAR [µs]
Tj [°C]
Rev. 1.3 page 7 2007-08-28
13 Drain-source breakdown voltage 14 Typ. capacitances
SPP06N60C3
V
BR(DSS)
=f(Tj); ID=0.25 mA C =f(VDS); VGS=0 V; f =1 MHz
700
660
[V]
620
BR(DSS)
V
580
540
-60 -20 20 60 100 140 180
Tj [°C]
4
10
3
10
2
10
C [pF]
1
10
0
10
0 100 200 300 400 500
Ciss
Coss
Crss
VDS [V]
15 Typ. C
E
= f(VDS)
oss
5
4
3
[µJ]
oss
E
2
1
0
stored energy
oss
0 100 200 300 400 500 600
VDS [V]
Rev. 1.3 page 8 2007-08-28
Definition of diode switching characteristics
SPP06N60C3
Rev. 1.3 page 9 2007-08-28
PG-TO220-3-1
SPP06N60C3
Rev. 1.3 page 10 2007-08-28
SPP06N60C3
Published by Infineon Technologies AG Bereich Kommunikation St.-Martin-Straße 53 D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices, please contact your nearest Infineon Technologies office in Germany or our Infineon Technologies representatives worldwide (see address list).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.
Infineon Technologies' components may only be used in life-support devices or systems with the expressed written approval of Infineon Technologies if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Rev. 1.3 page 11 2007-08-28
Loading...