Infineon SKP06N60, SKA06N60 Data Sheet

SKP06N60
SKA06N60
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
compared to previous generation
off
combined with low conduction losses
Short circuit withstand time – 10 µs
Designed for: Motor controls, Inverter
NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Very soft, fast recovery anti-parallel EmCon diode
Isolated TO-220, 2.5kV, 60s
Pb-free lead plating; RoHS compliant
Qualified according to JEDEC
1
for target applications
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
I
V
CE
V
C
Tj Marking Package
CE(sat)
C
G
E
PG-TO-220-3-1 (TO-220AB)
PG-TO-220-3-31 / -111 (FullPAK)
SKP06N60 600V 6A 2.3V
SKA06N60 600V 5A 2.3V
150°C
150°C
Maximum Ratings
Collector-emitter voltage
DC collector current
= 25°C
T
C
= 100°C
T
C
Pulsed collector current, tp limited by T
Turn off safe operating area V
600V, Tj 150°C
CE
I
jmax
Diode forward current
= 25°C
T
C
= 100°C
T
C
Diode pulsed current, tp limited by T
I
jmax
Gate-emitter voltage
Short circuit withstand time2
= 15V, V
V
GE
600V, Tj 150°C
CC
Power dissipation
= 25°C
T
C
Mounting Torque, Screw: M2.5 (Fullpak), M3 (TO220)3
Operating junction and storage temperature
Soldering temperature
wavesoldering, 1.6 mm (0.063 in.) from case for 10s
K06N60 PG-TO-220-3-1
K06N60 PG-TO-220-3-31 / -111
Value
Parameter Symbol
SKP06N60
V
CE
I
C
600 600 V
SKA06N60
12
6.9
Cpuls
-
I
F
24 24
24 24
12
6
Fpuls
V
GE
24 24
±20 ±20
tSC
10 10
P
M
T
T
tot
j
s
, T
stg
68 32
0.6 0.5 Nm
-55...+150 -55...+150
260 260 °C
9
5.0
12
6
Unit
A
V µs
W
°C
1
J-STD-020 and JESD-022
2
Allowed number of short circuits: <1000; time between short circuits: >1s.
3
Maximum mounting processes: 3
1 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
Thermal Resistance
Parameter Symbol Conditions
Max. Value
Unit
SKP06N60
SKA06N60
Characteristic
IGBT thermal resistance,
R
thJC
1.85 3.9
junction – case
Diode thermal resistance,
R
thJCD
3.5 5.0
junction – case
Thermal resistance,
junction – ambient
thJA
PG-TO-220-3-1
PG-TO220-3-31 /-111
62
65
R
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter Symbol Conditions
Value
min. Typ. max.
Static Characteristic
Collector-emitter breakdown voltage
Collector-emitter saturation voltage
Diode forward voltage
Gate-emitter threshold voltage
Zero gate voltage collector current
Gate-emitter leakage current
Transconductance
V
(BR)CES
V
CE(sat)
V
VGE=0V, IF=6A
F
V
GE(th)
I
CES
I
GES
VCE=20V, IC=6A
g
fs
VGE=0V, IC=500µA
VGE = 15V, IC=6A
T
=25°C
j
T
=150°C
j
T
=25°C
j
=150°C
T
j
=250µA,VCE=V
I
C
VCE=600V,VGE=0V
T
=25°C
j
T
=150°C
j
VCE=0V,VGE=20V
600 - -
GE
1.7
-
1.2
-
3 4 5
-
-
2.0
2.3
1.4
1.25
-
-
- - 100 nA
- 4.2 - S
Dynamic Characteristic
Input capacitance
Output capacitance
Reverse transfer capacitance
Gate charge
Internal emitter inductance
measured 5mm (0.197 in.) from case
Short circuit collector current2)
C
iss
C
oss
C
rss
VCC=480V, IC=6A
Q
Gate
L
E
I
C(SC)
=25V,
V
CE
V
=0V,
GE
f=1MHz
- 350 420
- 38 46
- 23 28
- 32 42 nC
V
=15V
GE
-
=15V,tSC≤10µs
V
GE
600V,
V
CC
150°C
T
j
- 60 - A
7
2.4
2.8
1.8
1.65
20
700
-
K/W
Unit
V
µA
pF
nH
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter Symbol Conditions
min. typ. max.
IGBT Characteristic
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
j
=400V,IC=6A,
V
CC
V
=0/15V,
GE
=50Ω,
R
G
1)
L
=180nH,
σ
1)
C
=250pF
σ
Energy losses include “tail” and diode reverse recovery.
- 25 30
- 18 22
- 220 264
- 54 65
- 0.110 0.127
- 0.105 0.137
- 0.215 0.263
=25°C,
T
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Diode peak reverse recovery current
Diode peak rate of fall of reverse recovery current during t
b
t
t
tF
Q
I
di
rr
S
rr
rrm
rr
/dt
=25°C,
T
j
V
=200V, IF=6A,
R
di
/dt=200A/µs
F
-
-
-
- 200 - nC
- 2.8 - A
- 180 -
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter Symbol Conditions
IGBT Characteristic
=150°C
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
T
j
=400V,IC=6A,
V
CC
V
=0/15V,
GE
=50,
R
G
1)
L
=180nH,
σ
1)
C
=250pF
σ
Energy losses include “tail” and diode reverse recovery.
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Diode peak reverse recovery current
Diode peak rate of fall of reverse recovery current during t
b
t
t
tF
Q
I
di
rr
S
rr
rrm
rr
/dt
=150°C
T
j
V
=200V, IF=6A,
R
di
/dt=200A/µs
F
min. typ. max.
- 24 29
- 17 20
- 248 298
- 70 84
- 0.167 0.192
- 0.153 0.199
- 0.320 0.391
-
-
-
- 500 - nC
- 5.0 - A
- 200 -
Value
200
17
183
Value
290
27
263
Unit
ns
mJ
-
ns
-
-
A/µs
Unit
ns
mJ
-
ns
-
-
A/µs
1)
Leakage inductance L
an d Stray capacity Cσ due to dynamic test circuit in Figure E.
σ
3 Rev. 2.3 Sep 07
I
SKP06N60
SKA06N60
SKP06N60
30A
20A
10A
, COLLECTOR CURRENT
C
I
0A
10Hz 100Hz 1kHz 10kHz 100kHz
SKA06N60
TC=80°C
TC=110°C
c
f, SWITCHING FREQUENCY
I
c
10A
1A
, COLLECTOR CURRENT
C
I
0.1A
Figure 1. Collector current as a function of switching frequency
(T
150°C, D = 0.5, VCE = 400V,
j
V
= 0/+15V, RG = 50Ω)
GE
tp=2µs
15µs
50µs
200µs
SKP06N60
1ms
SKA06N60
DC
1V 10V 100V 1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, T
= 25°C, Tj 150°C)
C
80W
SKP06N60
60W
40W
SKA06N60
, POWER DISSIPATION
tot
20W
P
0W
25°C 50°C 75°C 100°C 125°C
, CASE TEMPERATURE
T
C
Figure 3. Power dissipation as a function of case temperature
150°C)
(T
j
SKP06N60
10A
SKA06N60
5A
, COLLECTOR CURRENT
C
I
0A
25°C 50°C 75°C 100°C 125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of case temperature
15V, Tj 150°C)
(V
GE
4 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
20A
20A
15A
VGE=20V
10A
, COLLECTOR CURRENT
5A
C
I
0A
0V 1V 2V 3V 4V 5V
15V 13V 11V 9V 7V 5V
V
, COLLECTOR-EMITTER VOLTAGE
CE
Figure 5. Typical output characteristics
= 25°C)
(T
j
15A
10A
, COLLECTOR CURRENT
5A
C
I
0A
Figure 6. Typical output characteristics
(Tj = 150°C)
20A
18A
16A
14A
12A
10A
Tj=+25°C
-55°C +150°C
4.0V
3.5V
3.0V
2.5V
VGE=20V
15V 13V 11V 9V 7V 5V
0V 1V 2V 3V 4V 5V
VCE, COLLECTOR-EMITTER VOLTAGE
IC = 12A
IC = 6A
8A
6A
, COLLECTOR CURRENT
C
I
4A
2A
0A
0V 2V 4V 6V 8V 10V
, GATE-EMITTER VOLTAGE
V
GE
Figure 7. Typical transfer characteristics
(V
= 10V)
CE
2.0V
1.5V
, COLLECTOR-EMITTER SATURATION VOLTAGE
CE(sat)
1.0V
V
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
(V
= 15V)
GE
5 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
t
d(off)
t
d(off)
100ns
t
f
100ns
t, SWITCHING TIMES
t
d(on)
t
r
10ns
0A 3A 6A 9A 12A 15A
, COLLECTOR CURRENT
I
C
Figure 9. Typical switching times as a function of collector current
(inductive load, T V
= 0/+15V, RG = 50Ω,
GE
= 150°C, VCE = 400V,
j
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
10ns
Figure 10. Typical switching times as a function of gate resistor
(inductive load, T V
GE
Dynamic test circuit in Figure E)
5.5V
t
f
t
d(on)
0 50 100 150
RG, GATE RESISTOR
= 150°C, VCE = 400V,
j
= 0/+15V, IC = 6A,
t
r
t
d(off)
100ns
t
f
t
d(on)
t, SWITCHING TIMES
t
r
10ns
0°C 50°C 100°C 150°C
, JUNCTION TEMPERATURE
T
j
Figure 11. Typical switching times as a function of junction temperature
(inductive load, V
= 6A, RG = 50Ω,
I
C
= 400V, VGE = 0/+15V,
CE
Dynamic test circuit in Figure E)
5.0V
4.5V
4.0V
3.5V
3.0V
, GATE-EMITTER THRESHOLD VOLTAGE
2.5V
GE(th)
V
2.0V
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as a function of junction temperature
(I
= 0.25mA)
C
max.
typ.
min.
6 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
0.8mJ
*) Eon and Ets include losses due to diode recovery.
Ets*
0.6mJ
0.6mJ
0.4mJ
*) Eon and Ets include losses due to diode recovery.
Ets*
0.4mJ
Eon*
0.2mJ
E, SWITCHING ENERGY LOSSES
0.0mJ
Figure 14. Typical switching energy losses as a function of gate resistor
(inductive load, T V
GE
Dynamic test circuit in Figure E)
0.2mJ
E, SWITCHING ENERGY LOSSES
0.0mJ 0A 3A 6A 9A 12A 15A
, COLLECTOR CURRENT
I
C
Figure 13. Typical switching energy losses as a function of collector current
(inductive load, T V
= 0/+15V, RG = 50Ω,
GE
= 150°C, VCE = 400V,
j
Dynamic test circuit in Figure E)
E
off
0.4mJ
*) Eon and Ets include losses due to diode recovery.
0.3mJ
Ets*
E
0 50 100 150
RG, GATE RESISTOR
= 150°C, VCE = 400V,
j
= 0/+15V, IC = 6A,
off
Eon*
0.2mJ
0.1mJ
E, SWITCHING ENERGY LOSSES
0.0mJ
0°C 50°C 100°C 150°C
, JUNCTION TEMPERATURE
T
j
Figure 15. Typical switching energy losses as a function of junction temperature
(inductive load, V
= 6A, RG = 50Ω,
I
C
= 400V, VGE = 0/+15V,
CE
Dynamic test circuit in Figure E)
Eon*
E
off
7 Rev. 2.3 Sep 07
µ
SKP06N60
SKA06N60
25V
20V
1nF
C
iss
120V
480V
15V
100pF
10V
C, CAPACITANCE
, GATE-EMITTER VOLTAGE
GE
5V
V
0V
0nC 15nC 30nC 45nC
, GATE CHARGE
Q
GE
10pF
Figure 16. Typical gate charge
(I
= 6A)
C
25
20
s
µs
100A
C
C
0V 10V 20V 30V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical capacitance as a function of collector-emitter voltage
(V
= 0V, f = 1MHz)
GE
80A
oss
rss
µs
15
µs
10
5
µs
, SHORT CIRCUIT WITHSTAND TIME
sc
t
µs
0
10V 11V 12V 13V 14V 15V
, GATE-EMITTER VOLTAGE
V
GE
Figure 18. Short circuit withstand time as a function of gate-emitter voltage
(V
= 600V, start at Tj = 25°C)
CE
60A
40A
20A
, SHORT CIRCUIT COLLECTOR CURRENT
C(sc)
I
0A 10V 12V 14V 16V 18V 20V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Typical short circuit collector current as a function of gate-emitter voltage
(VCE 600V, Tj = 150°C)
8 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
500ns
1000nC
400ns
300ns
200ns
IF = 12A
IF = 6A
800nC
600nC
400nC
IF = 3A
, REVERSE RECOVERY TIME
rr
100ns
t
0ns
50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
di
/dt, DIODE CURRENT SLOPE
F
Figure 20. Typical reverse recovery time as a function of diode current slope
(V
= 200V, Tj = 125°C,
R
Dynamic test circuit in Figure E)
, REVERSE RECOVERY CHARGE
200nC
rr
Q
Figure 21. Typical reverse recovery charge as a function of diode current slope
(VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E)
12A
600A/
IF = 12A
IF = 6A
IF = 3A
0nC
50A/µs150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
diF/dt, DIODE CURRENT SLOPE
µs
10A
8A
6A
IF = 6A
IF = 12A
IF = 3A
4A
, REVERSE RECOVERY CURRENT
2A
rr
I
0A
50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
/dt, DIODE CURRENT SLOPE
di
F
Figure 22. Typical reverse recovery current as a function of diode current slope
(V
= 200V, Tj = 125°C,
R
Dynamic test circuit in Figure E)
µs
500A/
µs
400A/
µs
300A/
µs
200A/
/dt, DIODE PEAK RATE OF FALL
rr
di
µs
100A/
OF REVERSE RECOVERY CURRENT
µs
0A/
50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope
(V
= 200V, Tj = 125°C,
R
Dynamic test circuit in Figure E)
9 Rev. 2.3 Sep 07
A
τ
τ
τ
τ
SKP06N60
SKA06N60
2.0V
12A
10A
IF = 12
8A
6A
150°C
1.5V
100°C
4A
, FORWARD CURRENT
F
I
2A
25°C
-55°C
0A
0.0V 0.5V 1.0V 1.5V 2.0V
V
, FORWARD VOLTAGE
F
Figure 24. Typical diode forward current as a function of forward voltage
, FORWARD VOLTAGE
F
V
1.0V
Figure 25. Typical diode forward voltage as a function of junction temperature
10
D=0.5
0
K/W
10
10
, TRANSIENT THERMAL IMPEDANCE
thJCD
Z
10
Figure 26. Diode transient thermal impedance as a function of pulse width
(D = t
0.2
0.1
0.05
0.02
-1
K/W
0.01
single pulse
-2
K/W
1µs 10µs 100µs 1ms 10ms 100ms 1s
, PULSE WIDTH
t
p
/ T)
p
SKP06N60
R ,(K/W)
0.523 7.25*10-2
0.550 6.44*10
0.835 7.13*10-4
1.592 7.16*10-5
R
1
C1=
1/R1
C2=
τ
, (s)
2/R2
10
-3
10
R
2
, TRANSIENT THERMAL IMPEDANCE
thJCD
Z
10
Figure 27. Diode transient thermal impedance as a function of pulse width
(D = tp / T)
IF = 6A
-40°C 0°C 40°C 80°C 120°C
Tj, JUNCTION TEMPERATURE
1
K/W
D=0.5
0.2
0
K/W
0.1
0.05
0.02
-1
K/W
0.01
single pulse
-2
K/W
10µs 100µs 1ms 10ms 100ms 1s 10s
SKA06N60
R ,(K/W)
2.852 1.887
0.654 4.64*10
0.665 2.88*10-3
0.828 3.83*10-4
R
1
C1=
1/R1
C2=
τ
, (s)
2/R2
tp, PULSE WIDTH
-2
R
2
10 Rev. 2.3 Sep 07
s
τ
τ
τ
τ
SKP06N60
SKA06N60
10
D=0.5
0
K/W
10
0.2
0.1
10
0.02
SKP06N60
R ,(K/W)
τ
, (s)
0.05
-1
K/W
0.705 0.0341
0.561 3.74E-3
0.583 3.25E-4
R
1
C1=
1/R1
C2=
2/R2
R
2
10
, TRANSIENT THERMAL IMPEDANCE
thJC
Z
10-3K/W
0.01
-2
K/W
single pulse
1µs 10µs 100µs 1ms 10ms 100ms 1
tp, PULSE WIDTH
Figure 28. IGBT transient thermal impedance as a function of pulse width
(D = t
/ T)
p
10
10
10
, TRANSIENT THERMAL IMPEDANCE
thJC
Z
10
Figure 29. IGBT transient thermal impedance as a function of pulse width
(D = tp / T)
1
K/W
D=0.5
0
0.2
K/W
0.1
0.05
-1
K/W
0.02
SKA06N60
R ,(K/W)
τ
, (s)
2.73 1.83
0.01
0.395 2.93*10
0.353 2.46*10-3
-2
K/W
0.323 3.45*10-4
R
1
single pulse
C1=
/ R
C2=
-3
K/W
1µs 10µs 100µs 1ms 10ms 100ms 1s 10s
1
/ R
1
2
tp, PULSE WIDTH
-2
R
2
2
11 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
PG-TO220-3-1
12 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
PG-TO220-3-31 / PG-TO220-3-111
Please refer to mounting instructions
13 Rev. 2.3 Sep 07
τ
τ
τ
SKP06N60
SKA06N60
i,v
+
di /dt
F
I
F
t=t t
rr S F
Q=Q Q
rr S F
t
rr
t
S
+
t
F
Figure A. Definition of switching times
I
rrm
Q
S
Q
F
90% I
10% I
di /dt
rr
rrm
rrm
t
V
R
Figure C. Definition of diodes switching characteristics
p(t)
1
rrrr
1
T(t)
j
12 n
2 2
n
n
rr
T
C
Figure D. Thermal equivalent circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Leakage inductance L
=180nH
σ
an d Stray capacity Cσ =250pF.
14 Rev. 2.3 Sep 07
SKP06N60
SKA06N60
Edition 2006-01
Published by Infineon Technologies AG 81726 München, Germany
© Infineon Technologies AG 9/12/07. All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
15 Rev. 2.3 Sep 07
Loading...