Infineon SGP15N120, SGW15N120 Data Sheet

SGP15N120
SGW15N120
Fast IGBT in NPT-technology
compared to previous generation
off
Short circuit withstand time – 10 μs
Designed for:
- Motor controls
- Inverter
- SMPS
NPT-Technology offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Qualified according to JEDEC
1
for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type V
I
CE
C
E
Tj Marking Package
off
PG-TO-220-3-1
G
PG-TO-247-3
C
E
SGP15N120 1200V 15A 1.5mJ SGW15N120 1200V 15A 1.5mJ
150°C 150°C
GP15N120 PG-TO-220-3-1
SGW15N120 PG-TO-247-3
Maximum Ratings Parameter Symbol Value Unit
Collector-emitter voltage VCE 1200 V DC collector current
= 25°C
T
C
= 100°C
T
C
Pulsed collector current, tp limited by T Turn off safe operating area
1200V, Tj 150°C
V
CE
I
jmax
I
C
Cpuls
-
Gate-emitter voltage VGE Avalanche energy, single pulse
= 15A, V
I
C
= 50V, R
CC
= 25Ω, start at Tj = 25°C
GE
Short circuit withstand time2
= 15V, 100VV
V
GE
1200V, Tj 150°C
CC
Power dissipation
= 25°C
T
C
E
85 mJ
AS
tSC 10
P
198 W
tot
Operating junction and storage temperature Tj , T
30 15
52
52
±20
-55...+150
stg
A
V
μs
°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
1
J-STD-020 and JESD-022
2
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1 Rev. 2.5 Febr. 08
SGP15N120
SGW15N120
Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic
IGBT thermal resistance, junction – case Thermal resistance, junction – ambient
Electrical Characteristic, at T
= 25 °C, unless otherwise specified
j
Parameter Symbol Conditions
Static Characteristic
Collector-emitter breakdown voltage V
Collector-emitter saturation voltage V
Gate-emitter threshold voltage V Zero gate voltage collector current I
Gate-emitter leakage current I Transconductance gfs VCE=20V, IC=15A 11 - S
Dynamic Characteristic
Input capacitance C Output capacitance C Reverse transfer capacitance C Gate charge Q
Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current2) I
R
0.63
thJC
K/W
R
PG-TO-220-3-1
thJA
PG-TO-247-3
62 40
Value
Unit
min. typ. max.
(BR)CES
CE(sat)
GE(th)
CES
GES
- 1250 1500
iss
oss
rss Gate
VGE=0V, I
=1000μA
C
VGE = 15V, IC=15A
=25°C
T
j
=150° C
T
j
=600μA,VCE=V
I
C
VCE=1200V,VGE=0V
=25°C
T
j
=150° C
T
j
VCE=0V,VGE=20V - - 100 nA
=25V,
V
CE
V
- 100 120
=0V,
GE
f=1MHz
VCC=960V, IC=15A
=15V
V
GE
LE PG-TO-220-3-1
PG-TO-247-3
C(SC)
=15V,tSC≤5μs
V
GE
100VV
150°C
T
j
CC
1200V,
1200 - -
GE
2.5
-
3 4 5
-
-
3.1
3.7
-
-
- 65 80
- 130 175 nC
-
7
13
- 145 - A
3.6
4.3
200 800
-
V
μA
pF
nH
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2 Rev. 2.5 Febr. 08
SGP15N120
SGW15N120
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter Symbol Conditions
min. typ. max.
IGBT Characteristic
Turn-on delay time t Rise time tr - 23 30 Turn-off delay time t Fall time tf - 22 29 Turn-on energy Eon - 1.1 1.5 Turn-off energy E Total switching energy Ets
- 18 24
T
d(on)
- 580 750
d(off)
- 0.8 1.1
off
=25°C,
j
V
=800V,IC=15A,
CC
V
=15V/0V,
GE
=33Ω,
R
G
1)
=180nH,
L
σ
1)
=40pF
C
σ
Energy losses include “tail” and diode
- 1.9 2.6
reverse recovery.
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time t Rise time tr - 30 36 Turn-off delay time t Fall time tf - 31 37 Turn-on energy Eon - 1.9 2.3 Turn-off energy E Total switching energy Ets
- 38 46
T
d(on)
- 652 780
d(off)
- 1.5 2.0
off
=150° C
j
V
=800V,
CC
I
=15A,
C
V
=15V/0V,
GE
=33Ω,
R
G
1)
L
=180nH,
σ
1)
=40pF
C
σ
Energy losses include “tail” and diode reverse recovery.
1)
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E.
min. typ. max.
- 3.4 4.3
Value
Value
Unit
ns
mJ
Unit
ns
mJ
Power Semiconductors
3 Rev. 2.5 Febr. 08
A
SGP15N120
SGW15N120
70
60A
I
c
100A
tp=2μs
15μs
50A
10A
40A
30A
20A
, COLLECTOR CURRENT
C
I
10A
0A
10Hz 100Hz 1kHz 10kHz 100kHz
f, SWITCHING FREQUENCY
I
c
TC=80°C
TC=110°C
1A
, COLLECTOR CURRENT
C
I
0.1A
Figure 1. Collector current as a function of switching frequency
150°C, D = 0.5, VCE = 800V,
(T
j
= +15V/0V, RG = 33Ω)
V
GE
35A
200W
30A
175W
1V 10V 100V 1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, T
= 25°C, Tj 150°C)
C
50μs
200μs
1ms
DC
25A
20A
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
25°C 50°C 75°C 100°C 125°C
, POWER DISSIPATION
tot
P
150W
125W
100W
75W
50W
25W
0W
25°C 50°C 75°C 100°C 125°C
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of case temperature
150°C)
(T
j
Figure 4. Collector current as a function of case temperature
(VGE 15V, Tj 150°C)
Power Semiconductors
4 Rev. 2.5 Febr. 08
0A
0A
V
SGP15N120
SGW15N120
5
5
40A
VGE=17V
30A
20A
, COLLECTOR CURRENT
C
I
10A
0A
0V 1V 2V 3V 4V 5V 6V 7V
15V 13V 11V 9V 7V
40A
VGE=17V
30A
20A
, COLLECTOR CURRENT
C
I
10A
0A
0V 1V 2V 3V 4V 5V 6V 7V
15V 13V 11V 9V 7V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
= 25°C)
(T
j
Figure 6. Typical output characteristics
(Tj = 150°C)
50A
6V
40A
5V
4V
30A
TJ=+150°C
3V
20A
, COLLECTOR CURRENT
C
I
10A
TJ=+25°C
TJ=-40°C
2V
1V
, COLLECTOR-EMITTER SATURATION VOLTAGE
0A
3V 5V 7V 9V 11
CE(sat)
V
0V
-50°C 0°C 50°C 100°C 150°C
VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(V
= 20V)
CE
Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
(V
= 15V)
GE
IC=30A
IC=15A
IC=7.5A
Power Semiconductors
5 Rev. 2.5 Febr. 08
Ω25Ω
SGP15N120
SGW15N120
t, SWITCHING TIMES
000ns
t
d(off)
100ns
t
f
t
r
t
d(on)
10ns
0A 10A 20A 30A 40A
1000ns
t, SWITCHING TIMES
100ns
10ns
t
d(off)
t
d(on)
t
f
t
r
0
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a function of collector current
(inductive load, T
= 800V, VGE = +15V/0V, RG = 33Ω,
V
CE
= 150°C,
j
dynamic test circuit in Fig.E )
Figure 10. Typical switching times as a function of gate resistor
(inductive load, T V
= 800V, VGE = +15V/0V, IC = 15A,
CE
= 150°C,
j
dynamic test circuit in Fig.E )
1000ns
6V
50Ω
t
d(off)
5V
4V
100ns
t
t, SWITCHING TIMES
t
r
t
f
10ns
-50°C 0°C 50°C 100°C 150°C
d(on)
3V
2V
, GATE-EMITTER THRESHOLD VOLTAGE
1V
GE(th)
V
0V
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a function of junction temperature
(inductive load, V V
= +15V/0V, IC = 15A, RG = 33Ω,
GE
= 800V,
CE
Figure 12. Gate-emitter threshold voltage as a function of junction temperature
(I
= 0.3mA)
C
dynamic test circuit in Fig.E )
max.
typ.
min.
Power Semiconductors
6 Rev. 2.5 Febr. 08
A
s
τ
τ
τ
SGP15N120
SGW15N120
14mJ
*) Eon and Ets include losses due to diode recovery.
12mJ
Ets*
10mJ
5mJ
*) Eon and Ets include losses due to diode recovery.
Ets*
4mJ
8mJ
3mJ
Eon*
6mJ
4mJ
E, SWITCHING ENERGY LOSSES
2mJ
E
off
0mJ
0A 10A 20A 30A 40A 50
2mJ
1mJ
E, SWITCHING ENERGY LOSSES
0mJ
0Ω 25Ω 50Ω 75Ω
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses as a function of collector current
(inductive load, T
= 800V, VGE = +15V/0V, RG = 33Ω,
V
CE
= 150°C,
j
dynamic test circuit in Fig.E )
Figure 14. Typical switching energy losses as a function of gate resistor
(inductive load, T V
= 800V, VGE = +15V/0V, IC = 15A,
CE
= 150°C,
j
dynamic test circuit in Fig.E )
4mJ
*) Eon and Ets include losses due to diode recovery.
Ets*
D=0.5
Eon*
E
off
3mJ
2mJ
1mJ
E, SWITCHING ENERGY LOSSES
0mJ
-50°C 0°C 50°C 100°C 150°C
T
, JUNCTION TEMPERATURE
j
Figure 15. Typical switching energy losses as a function of junction temperature
(inductive load, V
= +15V/0V, IC = 15A, RG = 33Ω,
V
GE
= 800V,
CE
dynamic test circuit in Fig.E )
Eon*
E
10
10
off
, TRANSIENT THERMAL IMPEDANCE
thJC
Z
10-3K/W
t
Figure 16. IGBT transient thermal impedance as a function of pulse width
(D = t
0.2
-1
K/W
0.1
0.05
0.02
-2
K/W
0.01
single pulse
1µs 10µs 100µs 1ms 10ms 100ms 1
, PULSE WIDTH
p
/ T)
p
R,(K/W)
0.09751 0.67774
0.29508 0.11191
0.13241 0.00656
0.10485 0.00069
R
1
=
/
=
R
C
1
C
1
1
2
, (s)
/
R
2
R
2
2
Power Semiconductors
7 Rev. 2.5 Febr. 08
SGP15N120
SGW15N120
20V
C
1nF
15V
UCE=960V
10V
C, CAPACITANCE
, GATE-EMITTER VOLTAGE
5V
GE
V
100pF
0V
0nC 50nC 100nC 150nC
0V 10V 20V 30V
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(I
= 15A)
C
Figure 18. Typical capacitance as a function of collector-emitter voltage
(V
= 0V, f = 1MHz)
GE
μs
30
300A
iss
C
oss
C
rss
250A
μs
20
200A
150A
μs
10
, SHORT CIRCUIT WITHSTAND TIME
sc
t
0
μs
10V 11V 12V 13V 14V 15V
100A
50A
, SHORT CIRCUIT COLLECTOR CURRENT
C(sc)
I
0A
10V 12V 14V 16V 18V 20V
VGE, GATE-EMITTER VOLTAGE VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a function of gate-emitter voltage
= 1200V, start at Tj = 25°C)
(V
CE
Figure 20. Typical short circuit collector current as a function of gate-emitter voltage
(100VVCE 1200V, TC = 25°C, Tj 150°C)
Power Semiconductors
8 Rev. 2.5 Febr. 08
SGP15N120
SGW15N120
PG-TO220-3-1
Power Semiconductors
9 Rev. 2.5 Febr. 08
SGP15N120
SGW15N120
PG-TO247-3
Power Semiconductors
10 Rev. 2.5 Febr. 08
v
j
τ
τ
τ
C
SGP15N120
SGW15N120
i,
+
di /dt
F
I
F
t=t t
rr S F
Q=Q Q
rr S F
t
rr
t
S
+
t
F
Figure A. Definition of switching times
I
rrm
Q
S
Q
F
90% I
10% I
di /dt
rr
rrm
rrm
t
V
R
Figure C. Definition of diodes switching characteristics
p(t)
1
rrrr
1
T(t)
12 n
2 2
n
n
rr
T
Figure D. Thermal equivalent circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Leakage inductance L and stray capacity C
=180nH,
σ
=40pF.
σ
Power Semiconductors
11 Rev. 2.5 Febr. 08
SGP15N120
SGW15N120
Edition 2006-01 Published by
Infineon Technologies AG 81726 München, Germany
© Infineon Technologies AG 2/14/08. All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information For further information on technology, delivery terms and conditions and prices please contact your nea rest
Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
12 Rev. 2.5 Febr. 08
Loading...