Datasheet BCR108, BCR108F, BCR108L3, BCR108S, BCR108T Datasheet (Infineon) [ru]

...
NPN Silicon Digital Transistor
Switching circuit, inverter, interface circuit,
driver circuit
BCR108.../SEMH10
Built in bias resistor (R
=2.2k, R2=47k)
1
For 6-PIN packages: two (galvanic) internal
isolated transistors with good matching
in one package
BCR108/F/L3 BCR108T/W
C
3
R
1
R
2
21
EB
EHA07184
BCR108S SEMH10
C1 B2 E2
6 54
R
2
R
1
R
TR1
1
R
2
TR2
321
C2B1E1
EHA07174
Type Marking Pin Configuration Package
BCR108
WHs
1=B
2=E
3=C
-
-
-
SOT23
BCR108F
BCR108L3
BCR108S
BCR108T
BCR108W
SEMH10
WHs
WH
WHs
WHs
WHs
WH
1=B
1=B
1=E1
1=B
1=B
1=E1
2=E
2=E
2=B1
2=E
2=E
2=B1
3=C
3=C
3=C2
3=C
3=C
3=C2
-
-
4=E2
-
-
4=E2
-
-
5=B2
-
-
5=B2
-
-
6=C1
-
-
6=C1
TSFP-3
TSLP-3-4
SOT363
SC75
SOT323
SOT666
1
Jun-14-2004
Maximum Ratings
BCR108.../SEMH10
Parameter
Symbol Value Unit
Collector-emitter voltage V
Collector-base voltage V
Emitter-base voltage V
Input on voltage V
Collector current I
Total power dissipation-
BCR108, T
BCR108F, T
BCR108L3, T
BCR108S, T
BCR108T, T
BCR108W, T
SEMH10, T
102°C
S
128°C
S
135°C
S ≤
115°C
S
109°C
S
124°C
S
75°C
S
P
Junction temperature T
Storage temperature T
CEO
CBO
EBO
i(on)
C
tot
j
stg
50 V
50
5
10
100 mA
200
250
250
250
250
250
250
150 °C
-65 ... 150
mW
Thermal Resistance Parameter
Junction - soldering point1)
BCR108
BCR108F
BCR108L3
BCR108S
BCR108T
BCR108W
SEMH10
1
For calculation of R
please refer to Application Note Thermal Resistance
thJA
Symbol Value Unit
R
thJS
K/W
240
90
60 140 165 105 300
2
Jun-14-2004
BCR108.../SEMH10
Electrical Characteristics at T
= 25°C, unless otherwise specified
Parameter
DC Characteristics
Collector-emitter breakdown voltage
I
= 100 µA, IB = 0
C
Collector-base breakdown voltage
I
= 10 µA, IE = 0
C
Collector-base cutoff current
V
= 40 V, IE = 0
CB
Emitter-base cutoff current
V
= 5 V, IC = 0
EB
DC current gain1)
I
= 5 mA, VCE = 5 V
C
Collector-emitter saturation voltage1)
I
= 10 mA, IB = 0.5 mA
C
Symbol Values Unit
min. typ. max.
V
(BR)CEO
V
(BR)CBO
I
CBO
I
EBO
h
FE
V
CEsat
50 - -
50 - -
- - 100 nA
- - 164 µA
70 - - -
- - 0.3 V
V
Input off voltage
I
= 100 µA, VCE = 5 V
C
Input on voltage
I
= 2 mA, VCE = 0.3 V
C
Input resistor R
V
V
i(off)
i(on)
1
Resistor ratio R1/R
AC Characteristics
Transition frequency
= 10 mA, VCE = 5 V, f = 1 MHz
I
C
Collector-base capacitance
= 10 V, f = 1 MHz
V
CB
1
Pulse test: t < 300µs; D < 2%
f
C
T
cb
0.4 - 0.8
0.5 - 1.1
1.5 2.2 2.9 k
2
0.042 0.047 0.052 -
- 170 - MHz
- 2 - pF
3
Jun-14-2004
BCR108.../SEMH10
DC current gain h
= 5V (common emitter configuration)
V
CE
3
10
-
2
10
FE
h
1
10
0
10
-1
10
FE
10
= ƒ(I
0
)
C
1
10
mA
IC
10
Collector-emitter saturation voltage
V
2
= ƒ(I
CEsat
2
10
mA
C
I
1
10
0
10
0 0.1 0.2 0.3
), hFE = 20
C
V
V
CEsat
0.5
Input on Voltage Vi
= 0.3V (common emitter configuration)
V
CE
2
10
mA
1
10
C
I
0
10
-1
10
-1
10
10
(on)
0
= ƒ(IC)
10
1
Input off voltage V
= 5V (common emitter configuration)
V
CE
1
10
mA
0
10
C
I
-1
10
-2
10
-3
10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
i(on)
10
2
V
V
i(off)
= ƒ(I
)
C
V
1
V
i(off)
4
Jun-14-2004
BCR108.../SEMH10
Total power dissipation P
BCR108
300
mW
200
tot
P
150
100
50
0
0 20 40 60 80 100 120
= ƒ(T
tot
)
S
Total power dissipation P
= ƒ(T
tot
)
S
BCR108F
300
mW
200
tot
P
150
100
50
°C
T
150
S
0
0 20 40 60 80 100 120
°C
T
150
S
Total power dissipation P
BCR108L3
300
mW
200
tot
P
150
100
50
0
0 20 40 60 80 100 120
= ƒ(T
tot
)
S
Total power dissipation P
= ƒ(T
tot
)
S
BCR108S
300
mW
200
tot
P
150
100
50
°C
150
T
S
0
0 20 40 60 80 100 120
°C
T
150
S
5
Jun-14-2004
BCR108.../SEMH10
Total power dissipation P
BCR108T
300
mW
200
tot
P
150
100
50
0
0 20 40 60 80 100 120
= ƒ(T
tot
)
S
Total power dissipation P
= ƒ(T
tot
)
S
BCR108W
300
mW
200
tot
P
150
100
50
°C
150
T
S
0
0 20 40 60 80 100 120
°C
T
150
S
Total power dissipation P
SEMH10
300
mW
200
tot
P
150
100
50
0
0 20 40 60 80 100 120
= ƒ(T
tot
)
S
°C
150
T
S
6
Jun-14-2004
BCR108.../SEMH10
Permissible Pulse Load R
BCR108
3
10
K/W
2
10
thJS
R
1
10
0
10
-1
10
10
-6
10
-5
10
-4
10
-3
thJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005 D = 0
= ƒ(t
-2
10
)
p
Permissible Pulse Load
P
totmax/PtotDC
= ƒ(t
)
p
BCR108
3
10
-
totDC
/ P
2
10
totmax
P
1
10
0
10
s
t
0
10
p
10
-6
10
-5
10
-4
10
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-3
10
-2
s
t
0
10
p
Permissible Puls Load R
BCR108F
2
10
K/W
1
10
thJS
R
0
10
-1
10
10
-6
10
-5
10
-4
10
thJS
D=0.5
0.2
0.1
0.05
0.02
0.01
0.005 0
-3
= ƒ (t
-2
10
)
p
Permissible Pulse Load
P
totmax/PtotDC
= ƒ(t
)
p
BCR108F
3
10
totDC
/P
2
10
totmax
P
1
10
0
10
s
t
0
10
p
10
-6
10
-5
10
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-4
10
-3
10
-2
s
t
0
10
p
7
Jun-14-2004
BCR108.../SEMH10
Permissible Puls Load R
BCR108L3
2
10
1
10
thJS
R
0
10
-1
10
-7
-6
-5
10
10
10
10
-4
thJS
10
= ƒ (t
0.5
0.2
0.1
0.05
0.02
0.01
0.005 D = 0
-3
10
)
p
Permissible Pulse Load
P
totmax/PtotDC
= ƒ(t
)
p
BCR108L3
3
10
totDC
/ P
2
10
totmax
P
1
10
0
-2
s
t
0
10
p
10
10
-7
-6
10
-5
10
10
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-4
-3
10
10
-2
t
0
s
10
p
Permissible Puls Load R
BCR108S
3
10
K/W
2
10
thJS
R
1
10
0
10
-1
10
10
-6
10
-5
10
-4
10
thJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005 D = 0
-3
= ƒ (t
-2
10
)
p
Permissible Pulse Load
P
totmax/PtotDC
= ƒ(t
)
p
BCR108S
3
10
-
totDC
/ P
2
10
totmax
P
1
10
0
s
t
0
10
p
10
10
-6
10
-5
10
-4
10
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-3
10
-2
s
t
0
10
p
8
Jun-14-2004
BCR108.../SEMH10
Permissible Puls Load R
BCR108T
3
10
K/W
2
10
thJS
R
1
10
D=0.5
0.2
0.1
0.05
10
0.02
0.01
0.005 0
-4
10
10
10
-1
0
10
-6
10
-5
thJS
-3
= ƒ (t
-2
10
)
p
Permissible Pulse Load
P
totmax/PtotDC
= ƒ(t
)
p
BCR108T
3
10
totDC
/ P
10
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-4
10
-3
10
-2
s
t
0
10
p
2
10
totmax
P
1
10
0
s
t
0
10
p
10
10
-6
10
-5
Permissible Puls Load R
BCR108W
3
10
K/W
2
10
thJS
R
1
10
0
10
-1
10
10
-6
10
-5
10
-4
10
thJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005 D = 0
-3
= ƒ (t
-2
10
)
p
Permissible Pulse Load
P
totmax/PtotDC
= ƒ(t
)
p
BCR108W
3
10
-
totDC
/ P
2
10
totmax
P
1
10
0
s
t
0
10
p
10
10
-6
10
-5
10
-4
10
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-3
10
-2
s
t
0
10
p
9
Jun-14-2004
BCR108.../SEMH10
Permissible Puls Load R
SEMH10
3
10
K/W
2
10
thJS
R
1
10
0
10
-1
10
-7
-6
-5
10
10
10
10
-4
thJS
10
= ƒ (t
-3
0.5
0.2
0.1
0.05
0.02
0.01
0.005 D = 0
-2
10
)
p
Permissible Pulse Load
P
totmax/PtotDC
= ƒ(t
)
p
SEMH10
3
10
totDC
/ P
2
10
totmax
P
1
10
0
s
t
0
10
p
10
10
-7
-6
-5
10
10
10
-4
10
-3
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-2
10
0
s
10
t
p
10
Jun-14-2004
Loading...