INFINEON IRLR3114ZPBF Datasheet

Features
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
l
Logic Level
Description
This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.
G
IRLR3114ZPbF
PD - 97284A
IRLR3114ZPbF IRLU3114ZPbF
HEXFET® Power MOSFET
D
V
= 40V
DSS
R
S
D-Pak
IRLU3114ZPbF
DS(on)
I-Pak
= 4.9m
Absolute Maximum Ratings
ID @ TC = 25°C ID @ TC = 100°C
@ TC = 25°C
I
D
I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
E
(Tested )
AS
I
AR
E
AR
T
J
T
STG
Parameter Units
Continuous Drain Current, V Continuous Drain Current, V Continuous Drain Current, V
Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Reflow Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw
c
GS
GS
GS
c
g
@ 10V @ 10V @ 10V
d
(Silicon Limited)
(Silicon Limited)
(Package Limited)
h
See Fig.12a, 12b, 15, 16
Max.
130
89
42 500 140
0.95 ±16
130 260
-55 to + 175
300
y
10 lbf
in (1.1Nym)
A
W
W/°C
V
mJ
A
mJ
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θJA
R
θJA
Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient
j
ij
j
––– 1.05 ––– 40 °C/W ––– 110
HEXFET® is a registered trademark of International Rectifier.
www.irf.com 1
10/01/10
IRLR/U3114ZPbF
El
l Ch
@ T
= 25°C (unl
ified)
/
g
g
(
)
ectrica
aracteristics
J
ess otherwise spec
Parameter Min. Typ. Max. Units
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
fs Forward Transconductance 98 ––– ––– S
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
eff.
C
oss
Drain-to-Source Breakdown Voltage40––––V
T
Breakdown Voltage Temp. Coefficient ––– 0.032 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 3.9 4.9
––– 5.2 6.5
Gate Threshold Voltage 1.0 ––– 2.5 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 nA Gate-to-Source Reverse Leaka
e–-100 Total Gate Charge ––– 40 56 Gate-to-Source Charge–12nC Gate-to-Drain ("Miller") Charge–18– Turn-On Delay Time ––– 25 ––– Rise Time ––– 140 ––– Turn-Off Delay Time ––– 33 ––– ns Fall Time ––– 50 ––– Internal Drain Inductance ––– 4.5 ––– Between lead,
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 3810 ––– Output Capacitance ––– 650 ––– Reverse Transfer Capacitance ––– 350 ––– pF Output Capacitance ––– 2390 ––– Output Capacitance ––– 580 ––– Effective Output Capacitance ––– 820 –––
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current ––– ––– 130
(Body Diode) A Pulsed Source Current ––– ––– 500
Body Diode
c
Diode Forward Voltage–1.3V Reverse Recovery Time –3045ns Reverse Recovery Charge ––– 27 41 nC Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VGS = 0V, ID = 250µA Reference to 25°C, I
m
V
= 10V, ID = 42A
GS
VGS = 4.5V, ID = 42A VDS = VGS, ID = 100µA V
= 10V, ID = 42A
DS
V
= 40V, VGS = 0V
DS
V
= 40V, VGS = 0V, TJ = 125°C
DS
VGS = 16V V
= -16V
GS
= 42A
I
D
V
= 20V
DS
e
= 4.5V
V
GS
VDD = 20V I
= 42A
D
R
= 3.7
G
VGS = 4.5V
e
nH 6mm (0.25in.)
and center of die contact VGS = 0V
V
= 25V
DS
ƒ = 1.0MHz V
= 0V, VDS = 1.0V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 32V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 0V to 32V
GS
Conditions
MOSFET symbol
showing the integral reverse
p-n junction diode. T
= 25°C, IS = 42A, VGS = 0V
J
TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs
e
= 1mA
D
e
e
G
D
G
S
f
D
S
e
2 www.irf.com
IRLR/U3114ZPbF
1000
2.5V
VGS
10V
8.0V
4.5V
3.5V
3.0V
2.7V
60µs PULSE WIDTH
Tj = 25°C
TOP 15V
) A
(
100
t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
BOTTOM 2.5V
10
1
0.1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1000
1000
VGS
10V
8.0V
4.5V
3.5V
3.0V
2.7V
2.5V
60µs PULSE WIDTH
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
100
10
D
TOP 15V
BOTTOM 2.5V
Tj = 175°C
1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
200
) A
( t
100
n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
10
1
TJ = 175°C
TJ = 25°C
V
= 15V
DS
60µs PULSE WIDTH
0.1 1 2 3 4 5 6 7
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
S
( e
c
150
n a
t c u d n o c s
100
n a
r T
d
r a
w
r o
50
F ,
s
f
G
0
0 20406080100
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
TJ = 25°C
TJ = 175°C
V
= 10V
DS
380µs PULSE WIDTH
)
vs. Drain Current
www.irf.com 3
IRLR/U3114ZPbF
100000
) F
10000
p
( e
c n a
t
i c a p a
C
1000
, C
100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
rss
oss
= C
= C
gs
gd
ds
C
iss
C
oss
C
rss
C
C
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
+ Cgd, C
+ C
gd
SHORTED
ds
) V
( e
g a
t
l o V
e c
r u o S
­o
t
­e
t a
G ,
S G
V
10000
6.0 ID= 42A
5.0
4.0
3.0
2.0
1.0
0.0
VDS= 32V
VDS= 20V
VDS= 8.0V
0 1020304050
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
) A
( t n e
r
r u
C n
i a
r D e
s
r e v e
R ,
D S
I
TJ = 175°C
100
10
1.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
VSD, Source-to-Drain Voltage (V)
TJ = 25°C
Fig 7. Typical Source-Drain Diode
V
GS
= 0V
) A
( t
1000
n e
r
r u
C e
c
r u
100
o S
­o
t
­n
i a
r D
10
,
D
I
Tc = 25°C Tj = 175°C Single Pulse
1
1 10 100
Fig 8. Maximum Safe Operating Area
OPERATION IN THIS AREA LIMITED BY RDS(on)
100µsec
1msec
10msec
DC
VDS, Drain-to-Source Voltage (V)
Forward Voltage
4 www.irf.com
Loading...
+ 7 hidden pages