
Features
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
l
Logic Level
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
G
IRLR3114ZPbF
PD - 97284A
IRLR3114ZPbF
IRLU3114ZPbF
HEXFET® Power MOSFET
D
V
= 40V
DSS
R
S
D-Pak
IRLU3114ZPbF
DS(on)
I-Pak
= 4.9mΩ
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
@ TC = 25°C
I
D
I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
E
(Tested )
AS
I
AR
E
AR
T
J
T
STG
Parameter Units
Continuous Drain Current, V
Continuous Drain Current, V
Continuous Drain Current, V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Reflow Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
c
GS
GS
GS
c
g
@ 10V
@ 10V
@ 10V
d
(Silicon Limited)
(Silicon Limited)
(Package Limited)
h
See Fig.12a, 12b, 15, 16
Max.
130
89
42
500
140
0.95
±16
130
260
-55 to + 175
300
y
10 lbf
in (1.1Nym)
A
W
W/°C
V
mJ
A
mJ
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
j
ij
j
––– 1.05
––– 40 °C/W
––– 110
HEXFET® is a registered trademark of International Rectifier.
www.irf.com 1
10/01/10

IRLR/U3114ZPbF
ectrica
aracteristics
J
ess otherwise spec
Parameter Min. Typ. Max. Units
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
fs Forward Transconductance 98 ––– ––– S
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
eff.
C
oss
Drain-to-Source Breakdown Voltage40––––––V
∆T
Breakdown Voltage Temp. Coefficient ––– 0.032 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 3.9 4.9
––– 5.2 6.5
Gate Threshold Voltage 1.0 ––– 2.5 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leaka
e––––––-100
Total Gate Charge ––– 40 56
Gate-to-Source Charge–––12–––nC
Gate-to-Drain ("Miller") Charge–––18–––
Turn-On Delay Time ––– 25 –––
Rise Time ––– 140 –––
Turn-Off Delay Time ––– 33 ––– ns
Fall Time ––– 50 –––
Internal Drain Inductance ––– 4.5 ––– Between lead,
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 3810 –––
Output Capacitance ––– 650 –––
Reverse Transfer Capacitance ––– 350 ––– pF
Output Capacitance ––– 2390 –––
Output Capacitance ––– 580 –––
Effective Output Capacitance ––– 820 –––
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current ––– ––– 130
(Body Diode) A
Pulsed Source Current ––– ––– 500
Body Diode
c
Diode Forward Voltage––––––1.3V
Reverse Recovery Time –––3045ns
Reverse Recovery Charge ––– 27 41 nC
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, I
m
V
= 10V, ID = 42A
GS
VGS = 4.5V, ID = 42A
VDS = VGS, ID = 100µA
V
= 10V, ID = 42A
DS
V
= 40V, VGS = 0V
DS
V
= 40V, VGS = 0V, TJ = 125°C
DS
VGS = 16V
V
= -16V
GS
= 42A
I
D
V
= 20V
DS
e
= 4.5V
V
GS
VDD = 20V
I
= 42A
D
R
= 3.7Ω
G
VGS = 4.5V
e
nH 6mm (0.25in.)
and center of die contact
VGS = 0V
V
= 25V
DS
ƒ = 1.0MHz
V
= 0V, VDS = 1.0V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 32V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 0V to 32V
GS
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
= 25°C, IS = 42A, VGS = 0V
J
TJ = 25°C, IF = 42A, VDD = 20V
di/dt = 100A/µs
e
= 1mA
D
e
e
G
D
G
S
f
D
S
e
2 www.irf.com

IRLR/U3114ZPbF
1000
2.5V
VGS
10V
8.0V
4.5V
3.5V
3.0V
2.7V
60µs PULSE WIDTH
≤
Tj = 25°C
TOP 15V
)
A
(
100
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
BOTTOM 2.5V
10
1
0.1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1000
1000
VGS
10V
8.0V
4.5V
3.5V
3.0V
2.7V
2.5V
60µs PULSE WIDTH
≤
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
I
100
10
D
TOP 15V
BOTTOM 2.5V
Tj = 175°C
1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
200
)
A
(
t
100
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
10
1
TJ = 175°C
TJ = 25°C
V
= 15V
DS
≤
60µs PULSE WIDTH
0.1
1 2 3 4 5 6 7
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
S
(
e
c
150
n
a
t
c
u
d
n
o
c
s
100
n
a
r
T
d
r
a
w
r
o
50
F
,
s
f
G
0
0 20406080100
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
TJ = 25°C
TJ = 175°C
V
= 10V
DS
380µs PULSE WIDTH
)
vs. Drain Current
www.irf.com 3

IRLR/U3114ZPbF
100000
)
F
10000
p
(
e
c
n
a
t
i
c
a
p
a
C
1000
,
C
100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
rss
oss
= C
= C
gs
gd
ds
C
iss
C
oss
C
rss
C
C
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
+ Cgd, C
+ C
gd
SHORTED
ds
)
V
(
e
g
a
t
l
o
V
e
c
r
u
o
S
o
t
e
t
a
G
,
S
G
V
10000
6.0
ID= 42A
5.0
4.0
3.0
2.0
1.0
0.0
VDS= 32V
VDS= 20V
VDS= 8.0V
0 1020304050
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
)
A
(
t
n
e
r
r
u
C
n
i
a
r
D
e
s
r
e
v
e
R
,
D
S
I
TJ = 175°C
100
10
1.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
VSD, Source-to-Drain Voltage (V)
TJ = 25°C
Fig 7. Typical Source-Drain Diode
V
GS
= 0V
)
A
(
t
1000
n
e
r
r
u
C
e
c
r
u
100
o
S
o
t
n
i
a
r
D
10
,
D
I
Tc = 25°C
Tj = 175°C
Single Pulse
1
1 10 100
Fig 8. Maximum Safe Operating Area
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
1msec
10msec
DC
VDS, Drain-to-Source Voltage (V)
Forward Voltage
4 www.irf.com