
PD -97693
IRFB812PbF
Applications
• Zero Voltage Switching SMPS
• Uninterruptible Power Supplies
• Motor Control applications
V
DSSRDS(on)
500V
HEXFET® Power MOSFET
Trr
typ.
I
75ns 3.6A
1.75Ω
typ.
Features and Benefits
• Fast body diode eliminates the need for external
diodes in ZVS applications.
• Lower Gate charge results in simpler drive requirements.
• Higher Gate voltage threshold offers improved noise
immunity
.
TO-220AB
Absolute Maximum Ratings
Parameter Max. Units
I
@ TC = 25°C Continuous Drain Current, V
D
I
@ TC = 100°C Continuous Drain Current, VGS @ 10V 2.3 A
D
I
DM
P
@TC = 25°C Power Dissipation 78 W
D
V
GS
dv/dt
T
J
T
STG
Pulsed Drain Current
Linear Derating Factor 0.63 W/°C
Gate-to-Source Voltage ± 20 V
Peak Diode Recovery dv/dt
Operating Junction and -55 to + 150
Storage Temperature Range °C
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torque, 6-32 or M3 screw
c
@ 10V 3.6
GS
e
10lbxin (1.1Nxm)
14.4
32 V/ns
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units Conditions
I
I
V
t
Q
I
t
S
SM
SD
rr
rr
RRM
on
Continuous Source Current ––– ––– 3.6 MOSFET symbol
(Body Diode) A showing the
Pulsed Source Current ––– ––– 14.4 integral reverse
(Body Diode)
Diode Forward Voltage ––– ––– 1.2 V TJ = 25°C, IS = 3.6A, VGS = 0V
Reverse Recovery Time ––– 75 110 ns TJ = 25°C, IF = 3.6A
Reverse Recovery Charge ––– 135 200 nC
Reverse Recovery Current ––– 3.2 4.8 A
Forward Turn-On Time
c
p-n junction diode.
––– 94 140 T
––– 220 330 TJ = 125°C, di/dt = 100A/μs
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
= 125°C, di/dt = 100A/μs
J
= 25°C, IS = 3.6A, VGS = 0V
T
J
= 25°C
T
J
G
f
f
f
f
Notes through are on page 2
www.irf.com 1
D
D
S
6/23/11

IRFB812PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
Δ
V
R
DS(on)
V
GS(th)
I
DSS
I
GSS
(BR)DSS
Drain-to-Source Breakdown Voltage 500 ––– ––– V
/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.37 ––– V/°C
Static Drain-to-Source On-Resistance ––– 1.75 2.2
Ω
Gate Threshold Voltage 3.0 ––– 5.0 V
Drain-to-Source Leakage Current ––– ––– 25 μA
––– ––– 2.0 mA
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
VGS = 0V, ID = 250μA
Reference to 25°C, I
V
GS
V
DS
V
DS
V
DS
VGS = 20V
V
GS
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 7.6 ––– ––– S
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 5.9 –––
oss
eff. (ER) Effective Output Capacitance ––– 37 –––
C
oss
Total Gate Charge ––– ––– 20
Gate-to-Source Charge ––– ––– 7.3 nC
Gate-to-Drain ("Miller") Charge ––– ––– 7.1
Turn-On Delay Time ––– 14 –––
Rise Time –––22–––ns
Turn-Off Delay Time ––– 24 –––
Fall Time –––17–––
Input Capacitance ––– 810 –––
Output Capacitance ––– 47 –––
Reverse Transfer Capacitance ––– 7.3 –––
Output Capacitance ––– 610 ––– pF VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 16 ––– VGS = 0V, VDS = 400V, ƒ = 1.0MH
(Energy Related)
VDS = 50V, ID = 2.2A
= 3.6A
I
D
V
DS
V
GS
VDD = 250V
= 3.6A
I
D
R
G
V
GS
VGS = 0V
V
DS
ƒ = 1.0MHz, See Fig. 5
V
GS
Avalanche Characteristics
E
AS
I
AR
E
AR
Symbol
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Parameter Typ. Units
d
c
c
––– mJ
––– A
––– mJ
Thermal Resistance
Symbol Parameter Typ. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface 0.5 °C/W
Junction-to-Ambient
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See Fig. 11)
Starting T
I
AS
I
SD
TJ ≤ 150°C.
= 25°C, L = 93mH, RG = 25Ω,
J
= 1.8A. (See Figure 13).
= 3.6A, di/dt ≤ 520A/μs, VDDV
h
(BR)DSS
–––
h
–––
Pulse width ≤ 300μs; duty cycle ≤ 2%.
C
eff. is a fixed capacitance that gives the same charging time
oss
as C
,
R
while V
oss
C
eff.(ER) is a fixed capacitance that stores the same energy
oss
as C
while VDS is rising from 0 to 80% V
oss
is measured at TJ approximately 90°C
θ
is rising from 0 to 80% V
DS
2 www.irf.com
Conditions
= 250μA
D
= 10V, ID = 2.2A
f
= VGS, ID = 250μA
= 500V, VGS = 0V
= 400V, VGS = 0V, TJ = 125°C
= -20V
Conditions
= 400V
= 10V, See Fig.14a &14b
= 17Ω
= 10V, See Fig. 15a & 15b
= 25V
= 0V,VDS = 0V to 400V
Max.
150
1.8
7.8
Max.
1.6
–––
62
.
DSS
.
DSS
f
f
g

IRFB812PbF
100
5.3V
VGS
10V
6.2V
5.9V
5.8V
5.6V
5.5V
60μs PULSE WIDTH
≤
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
TOP 15V
10
BOTTOM 5.3V
1
0.1
Tj = 25°C
0.01
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
100
V
= 50V
DS
60μs PULSE WIDTH
10
≤
TJ = 150°C
1
TJ = 25°C
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
0.1
4 5 6 7 8
VGS, Gate-to-Source Voltage (V)
100
TOP 15V
)
A
(
t
n
e
r
10
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
BOTTOM 5.3V
1
0.1
VGS
10V
6.2V
5.9V
5.8V
5.6V
5.5V
5.3V
60μs PULSE WIDTH
≤
Tj = 150°C
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
e
c
n
a
t
s
i
s
e
R
n
O
e
c
r
u
o
S
o
t
n
i
a
r
D
,
)
n
o
(
S
D
R
ID = 3.6A
V
= 10V
GS
2.5
2.0
)
d
e
z
i
l
1.5
a
m
r
o
N
(
1.0
0.5
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com 3