
Features
l Advanced Process Technology
l Ultra Low On-Resistance
l 175°C Operating Temperature
l Fast Switching
l Repetitive Avalanche Allowed up to Tjmax
l Lead-Free
PD - 95129A
IRF3205ZPbF
IRF3205ZSPbF
IRF3205ZLPbF
HEXFET® Power MOSFET
D
V
= 55V
DSS
G
R
DS(on)
= 6.5mΩ
Description
This HEXFET® Power MOSFET utilizes the latest
S
ID = 75A
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
TO-220AB
IRF3205ZPbF
D2Pak
IRF3205ZSPbF
TO-262
IRF3205ZLPbF
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
@ TC = 25°C
I
D
I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
(Tested )
E
AS
I
AR
E
AR
T
J
T
STG
Parameter Units
Continuous Drain Current, V
Continuous Drain Current, V
Continuous Drain Current, V
urrent
Power Dissipation W
Linear Derating Factor W/°C
Gate-to-Source Voltage V
anche Ener
anche Ener
anche Current
epetitive Avalanche Ener
Operating Junction and
Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
GS
GS
GS
@ 10V
@ 10V
@ 10V
este
i
(Silicon Limited)
(Package Limited)
See Fig.12a, 12b, 15, 16
300 (1.6mm from case )
Max.
110
440
170
1.1
± 20
180
250
-55 to + 175
y
in (1.1Nym)
10 lbf
78
75
A
mJ
A
mJ
Thermal Resistance
Parameter Typ. Max. Units
R
JC
θ
R
CS
θ
R
JA
θ
R
JA
θ
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount)
i
i
j
––– 0.90 °C/W
0.50 –––
––– 62
––– 40
www.irf.com 1
07/23/10

IRF3205ZS/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
gfs Forward Transconductance 71 ––– ––– S
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
eff.
C
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Drain-to-Source Breakdown Voltage 55 ––– ––– V
∆T
Breakdown Voltage Temp. Coefficient ––– 0.051 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 4.9 6.5
mΩ
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Total Gate Charge ––– 76 110
Gate-to-Source Charge ––– 21 ––– nC
Gate-to-Drain ("Miller") Charge ––– 30 –––
Turn-On Delay Time ––– 18 –––
Rise Time –––95–––
Turn-Off Delay Time ––– 45 ––– ns
Fall Time –––67–––
Internal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 3450 –––
Output Capacitance ––– 550 –––
Reverse Transfer Capacitance ––– 310 ––– pF
Output Capacitance ––– 1940 –––
Output Capacitance ––– 430 –––
Effective Output Capacitance ––– 640 –––
Parameter Min. Typ. Max. Units
Continuous Source Current ––– ––– 75
(Body Diode) A
Pulsed Source Current ––– ––– 440
(Body Diode)
Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 28 42 ns
Reverse Recovery Charge ––– 25 38 nC
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
c
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, I
= 10V, ID = 66A
V
GS
= 1mA
D
e
VDS = VGS, ID = 250µA
V
= 25V, ID = 66A
DS
V
= 55V, VGS = 0V
DS
= 55V, VGS = 0V, TJ = 125°C
V
DS
= 20V
V
GS
= -20V
V
GS
I
= 66A
D
= 44V
V
DS
VGS = 10V
e
VDD = 28V
= 66A
I
D
= 6.8 Ω
R
G
VGS = 10V
e
and center of die contact
VGS = 0V
= 25V
V
DS
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
= 0V, VDS = 44V, ƒ = 1.0MHz
V
GS
= 0V, VDS = 0V to 44V
V
GS
f
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
= 25°C, IS = 66A, VGS = 0V
J
TJ = 25°C, IF = 66A, VDD = 25V
s
di/dt = 100A/
e
e
2 www.irf.com

IRF3205ZS/LPbF
1000
V
TOP 15V
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
I
10V
7.0V
6.0V
5.5V
100
5.0V
BOTTOM 4.5V
10
D
1
0.1 1 10 100
GS
8.0V
4.5V
20µs PULSE WIDTH
Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000
)
A
(
t
n
e
r
100
r
u
C
e
c
r
u
o
S
o
t
-
10
n
i
a
r
D
,
D
I
1
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
TJ = 25°C
V
DS
20µs PULSE WIDTH
= 25V
VGS, Gate-to-Source Voltage (V)
TJ = 175°C
1000
V
TOP 15V
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
I
10V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
D
10
0.1 1 10 100
GS
8.0V
4.5V
20µs PULSE WIDTH
Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
120
)
S
(
100
e
c
n
a
t
c
80
u
d
n
o
c
s
60
n
a
r
T
d
r
a
40
w
r
o
F
,
s
20
f
G
0
0 20406080100
ID, Drain-to-Source Current (A)
TJ = 175°C
V
= 10V
DS
20µs PULSE WIDTH
TJ = 25°C
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3

IRF3205ZS/LPbF
6000
5000
)
F
4000
p
(
e
c
n
a
t
3000
i
c
a
p
a
C
2000
,
C
1000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
gs
gd
ds
Ciss
Coss
Crss
+ Cgd, C
+ C
iss
C
rss
C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
)
A
(
t
n
e
r
r
u
C
n
i
a
r
D
e
s
r
e
v
e
R
,
D
S
I
100.0
10.0
TJ = 175°C
TJ = 25°C
1.0
0.1
0.2 0.6 1.0 1.4 1.8 2.2
VSD, Source-toDrain Voltage (V)
20
SHORTED
ds
gd
ID= 66A
)
V
(
16
e
g
a
t
l
o
V
12
e
c
r
u
o
S
o
8
t
e
t
a
G
,
S
4
G
V
0
0 20 40 60 80 100 120
VDS= 44V
VDS= 28V
VDS= 11V
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
V
GS
= 0V
10000
)
A
1000
(
t
n
e
r
r
u
C
100
e
c
r
u
o
S
-
10
o
t
n
i
a
r
D
,
1
D
I
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1 10 100 1000
V
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
1msec
10msec
, Drain-toSource Voltage (V)
DS
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com