Datasheet IRF3205ZPbF, IRF3205ZLPbF Datasheet

PD - 95129
Pulsed Drain C
c
Single Pulse Aval
d
Single Pulse Aval
d Value
h
Aval
c
R
g
AUTOMOTIVE MOSFET
IRF3205ZPbF
IRF3205ZSPbF
IRF3205ZLPbF
Features
l Advanced Process Technology l Ultra Low On-Resistance l 175°C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax
l Lead-Free
G
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on­resistance per silicon area. Additional features of this design are a 175°C junction operating tempera­ture, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
TO-220AB
IRF3205ZPbF
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C
ID @ TC = 100°C
I
@ TC = 25°C
D
I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
(Tested )
E
AS
I
AR
E
AR
T
J
T
STG
Continuous Drain Current, V
Continuous Drain Current, V
Continuous Drain Current, V
urrent
Power Dissipation W
Linear Derating Factor W/°C Gate-to-Source Voltage V
anche Energy
anche Energy Teste
anche Current
epetitive Avalanche Energy
Operating Junction and
Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
@ 10V (Silicon Limited)
GS
@ 10V
GS
@ 10V (Package Limited)
GS
i
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount)
i
i
j
www.irf.com 1
HEXFET® Power MOSFET
D
V
= 55V
R
S
D2Pak
IRF3205ZSPbF
Max.
110
78
75
440
170
1.1
± 20
180
250
See Fig.12a, 12b, 15, 16
-55 to + 175
300 (1.6mm from case )
y
in (1.1Nym)
10 lbf
––– 0.90 °C/W
0.50 –––
––– 62
––– 40
= 6.5m
DS(on)
ID = 75A
TO-262
IRF3205ZLPbF
A
mJ
A
mJ
3/18/04
IRF3205ZS/LPbF
/
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
gfs Forward Transconductance 71 ––– ––– S I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff.
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Drain-to-Source Breakdown Voltage 55 ––– ––– V
T
Breakdown Voltage Temp. Coefficient ––– 0.051 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 4.9 6.5
m
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Total Gate Charge ––– 76 110
Gate-to-Source Charge ––– 21 ––– nC
Gate-to-Drain ("Miller") Charge ––– 30 –––
Turn-On Delay Time ––– 18 –––
Rise Time ––– 95 –––
Turn-Off Delay Time ––– 45 ––– ns
Fall Time ––– 67 –––
Internal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 3450 –––
Output Capacitance ––– 550 –––
Reverse Transfer Capacitance ––– 310 ––– pF
Output Capacitance ––– 1940 –––
Output Capacitance ––– 430 –––
Effective Output Capacitance ––– 640 –––
Parameter Min. Typ. Max. Units
Continuous Source Current ––– ––– 75
(Body Diode) A Pulsed Source Current ––– ––– 440
(Body Diode) Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 28 42 ns
Reverse Recovery Charge ––– 25 38 nC
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
c
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, I
V
= 10V, ID = 66A
GS
= 1mA
D
e
VDS = VGS, ID = 250µA
V
= 25V, ID = 66A
DS
= 55V, VGS = 0V
V
DS
V
= 55V, VGS = 0V, TJ = 125°C
DS
V
= 20V
GS
V
= -20V
GS
= 66A
I
D
V
= 44V
DS
VGS = 10V
e
VDD = 28V
I
= 66A
D
R
= 6.8
G
VGS = 10V
e
and center of die contact VGS = 0V
V
= 25V
DS
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
V
= 0V, VDS = 44V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 0V to 44V
GS
f
Conditions
MOSFET symbol
showing the integral reverse
p-n junction diode.
= 25°C, IS = 66A, VGS = 0V
T
J
TJ = 25°C, IF = 66A, VDD = 25V di/dt = 100A/µs
e
e
2 www.irf.com
IRF3205ZS/LPbF
1000
V
TOP 15V
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
10V
7.0V
6.0V
5.5V
100
5.0V BOTTOM 4.5V
10
D
1
0.1 1 10 100
GS
8.0V
4.5V
20µs PULSE WIDTH Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000
) A
(
t n e
r
100
r u
C e
c
r u o S
­o
t
-
10
n
i a
r D
,
D
I
1
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
TJ = 25°C
V
DS
20µs PULSE WIDTH
= 25V
VGS, Gate-to-Source Voltage (V)
TJ = 175°C
1000
V
TOP 15V
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
10V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
100
D
10
0.1 1 10 100
GS
8.0V
4.5V
20µs PULSE WIDTH Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
120
) S
(
100
e c n a
t c
80
u d n o c s
60
n a
r T
d
r a
40
w
r o F , s
20
f G
0
0 20406080100
ID, Drain-to-Source Current (A)
TJ = 175°C
TJ = 25°C
V
= 10V
DS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
IRF3205ZS/LPbF
6000
5000
) F
4000
p
( e
c n a
t
3000
i c a p a
C
2000
, C
1000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
gs
gd
ds
Ciss
Coss
Crss
+ Cgd, C
+ C
iss
C
rss
C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
) A
( t n e
r
r u
C n
i a
r D e
s
r e v e
R ,
D S
I
100.0
10.0
TJ = 175°C
TJ = 25°C
1.0
0.1
0.2 0.6 1.0 1.4 1.8 2.2
VSD, Source-toDrain Voltage (V)
20
SHORTED
ds
gd
ID= 66A
) V
(
16
e g a
t
l o V
12
e c
r u o S
­o
8
t
­e
t a
G ,
S
4
G
V
0
0 20 40 60 80 100 120
VDS= 44V
VDS= 28V VDS= 11V
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
V
GS
= 0V
10000
) A
1000
( t n e
r
r u
C
100
e c
r u o S
­o
10
t
­n
i a
r D
,
1
D
I
Tc = 25°C Tj = 175°C Single Pulse
0.1 1 10 100 1000
V
OPERATION IN THIS AREA LIMITED BY RDS(on)
100µsec
1msec
10msec
, Drain-toSource Voltage (V)
DS
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Loading...
+ 8 hidden pages