
PD - 96199A
IRF1324PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
G
D
V
DSS
R
DS(on
max.
I
D (Silicon Limited)
I
S
D
(Package Limited)
typ.
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
TO-220AB
IRF1324PbF
GDS
Gate Drain Source
S
D
G
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
I
@ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
D
I
@ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
D
I
DM
PD @TC = 25°C
V
GS
dv/dt Peak Diode Recovery
T
J
T
STG
Pulsed Drain Current
Maximum Power Dissipation W
Linear Derating Factor W/°C
Gate-to-Source Voltage V
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
d
f
Max.
353
c
249
c
195
1412
300
2.0
± 20
0.46
-55 to + 175
300
Avalanche Characteristics
E
AS (Thermally limited)
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
g
e
See Fig. 14, 15, 22a, 22b
270
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case
Case-to-Sink, Flat Greased Surface 0.50 –––
Junction-to-Ambient
j
j
––– 0.50
––– 62
24V
1.2m
1.5m
353A
195A
V/ns
°C/W
:
:
c
A
°C
mJ
A
mJ
www.irf.com 1
09/24/09

IRF1324PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
V
∆
DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
R
G
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 180 ––– ––– S
Q
g
Q
gs
Q
gd
Q
sync
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
eff. (ER)
C
oss
eff. (TR)
C
oss
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
I
RRM
t
on
Drain-to-Source Breakdown Voltage 24 ––– ––– V
/∆T
Breakdown Voltage Temp. Coefficient ––– 22 ––– mV/°C
J
Static Drain-to-Source On-Resistance ––– 1.2 1.5
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Internal Gate Resistance ––– 2.3 –––
Total Gate Charge ––– 160 240
Gate-to-Source Charge ––– 84 –––
Gate-to-Drain ("Miller") Charge ––– 49 –––
Total Gate Charge Sync. (Qg - Qgd)
––– 76 –––
Turn-On Delay Time ––– 17 –––
Rise Time ––– 190 –––
Turn-Off Delay Time ––– 83 –––
Fall Time ––– 120 –––
Input Capacitance ––– 7590 –––
Output Capacitance ––– 3440 –––
Reverse Transfer Capacitance ––– 1960 –––
Effective Output Capacitance (Ener
y Related) ––– 4700 –––
Effective Output Capacitance (Time Related) ––– 4490 –––
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
d
––– –––
––– –––
353
1412
c
Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 46 –––
––– 71 –––
Reverse Recovery Charge ––– 160 –––
––– 430 –––
Reverse Recovery Current ––– 7.7 ––– A
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 0V, ID = 250µA
Reference to 25°C, I
= 10V, ID = 195A
V
mΩ
GS
= VGS, ID = 250µA
V
DS
= 24V, VGS = 0V
V
DS
V
= 24V, VGS = 0V, TJ = 125°C
DS
VGS = 20V
VGS = -20V
Ω
VDS = 10V, ID = 195A
= 195A
I
D
= 12V
V
DS
nC
VGS = 10V
I
= 195A, VDS =0V, VGS = 10V
D
V
DD
= 195A
I
D
ns
R
= 2.7Ω
G
VGS = 10V
V
GS
g
= 16V
g
= 0V
VDS = 24V
pF
ƒ = 1.0 MHz, See Fig. 5
= 0V, VDS = 0V to 19V i, See Fig. 11
V
GS
= 0V, VDS = 0V to 19V
V
GS
MOSFET symbol
showing the
A
integral reverse
p-n junction diode.
T
= 25°C, IS = 195A, VGS = 0V
J
TJ = 25°C VR = 20V,
ns
= 125°C IF = 195A
T
J
TJ = 25°C
nC
= 125°C
T
J
TJ = 25°C
Conditions
= 5.0mA
D
g
Conditions
h
Conditions
di/dt = 100A/µs
d
D
G
S
g
g
Notes:
Calcuted continuous current based on maximum allowable junction
temperature Bond wire current limit is 195A. Note that current
limitation arising from heating of the device leds may occur with
some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
RG = 25Ω, I
above this value .
I
≤ 195A, di/dt ≤ 450 A/µs, V
SD
, starting TJ = 25°C, L = 0.014mH
Jmax
= 195A, VGS =10V. Part not recommended for use
AS
DD
≤ V
(BR)DSS
, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
C
eff. (TR) is a fixed capacitance that gives the same charging time
oss
as C
C
C
R
while V
oss
eff. (ER) is a fixed capacitance that gives the same energy as
oss
while V
oss
is measured at TJ approximately 90°C
θ
is rising from 0 to 80% V
DS
is rising from 0 to 80% V
DS
DSS
DSS
.
.
2 www.irf.com

IRF1324PbF
10000
60µs PULSE WIDTH
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
1000
100
10
≤
Tj = 25°C
1
4.0V
TOP 15V
BOTTOM 4.0V
0.1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
)
A
(
t
100
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
10
1
TJ = 175°C
TJ = 25°C
V
= 15V
DS
≤
60µs PULSE WIDTH
0.1
2 3 4 5 6 7 8 9
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
VGS
10V
8.0V
6.0V
5.5V
5.0V
4.5V
10000
VGS
10V
8.0V
6.0V
5.5V
5.0V
4.5V
)
A
(
t
n
e
r
1000
r
u
C
e
c
r
u
o
S
o
t
-
100
n
i
a
r
D
,
D
I
60µs PULSE WIDTH
≤
Tj = 175°C
TOP 15V
BOTTOM 4.0V
4.0V
10
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
2.0
e
c
n
a
t
s
i
s
e
R
n
O
e
c
r
u
o
S
o
t
n
i
a
r
D
,
)
n
o
(
S
D
R
ID = 195A
V
= 10V
GS
1.5
)
d
e
z
i
l
a
m
r
o
N
(
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
100000
)
F
p
(
e
c
n
a
t
i
10000
c
a
p
a
C
,
C
1000
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
+ Cgd, C
gs
gd
+ C
ds
iss
C
rss
C
oss
C
iss
C
oss
C
rss
SHORTED
ds
gd
1 10 100
VDS, Drain-to-Source Voltage (V)
14.0
ID= 195A
12.0
)
V
(
e
g
10.0
a
t
l
o
V
e
8.0
c
r
u
o
S
-
6.0
o
t
e
t
a
4.0
G
,
S
G
V
2.0
VDS= 19V
VDS= 12V
0.0
0 50 100 150 200
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com 3