Datasheet IGP03N120H2, IGW03N120H2 Datasheet (INFINEON)

IGP03N120H2
IGW03N120H2
HighSpeed 2-Technology
- SMPS
- Lamp Ballast
- ZVS-Converter
- optimised for soft-switching / resonant topologies
nd
2
generation HighSpeed-Technology
for 1200V applications offers:
- loss reduction in resonant circuits
- temperature stable behavior
- parallel switching capability
- tight parameter distribution
- E
optimized for IC =3A
Qualified according to JEDEC
off
2
for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type V
IC E
CE
Tj Marking Package
off
PG-TO-220-3-1
C
G
PG-TO-247-3-21
E
IGW03N120H2 1200V 3A 0.15mJ
150°C
G03H1202 PG-TO-247-3-21
IGP03N120H2 1200V 3A 0.15mJ 150°C G03H1202 PG-TO-220-3-1
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 1200 V
Triangular collector current
= 25°C, f = 140kHz
T
C
= 100°C, f = 140kHz
T
C
Pulsed collector current, tp limited by T
Turn off safe operating area
1200V, Tj 150°C
V
CE
I
jmax
I
C
Cpuls
-
Gate-emitter voltage VGE
Power dissipation
= 25°C
T
C
P
62.5 W
tot
Operating junction and storage temperature Tj , T
9.6
3.9
9.9
9.9
±20
-40...+150
stg
A
V
°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
2
J-STD-020 and JESD-022
Power Semiconductors
1 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at T
= 25 °C, unless otherwise specified
j
Parameter Symbol Conditions
Static Characteristic
Collector-emitter breakdown voltage V
Collector-emitter saturation voltage V
Gate-emitter threshold voltage V
Zero gate voltage collector current I
Gate-emitter leakage current I
Transconductance gfs VCE=20V, IC=3A - 2 - S
Dynamic Characteristic
Input capacitance C
Output capacitance C
Reverse transfer capacitance C
Gate charge Q
Internal emitter inductance
measured 5mm (0.197 in.) from case
R
2.0
thJC
K/W
R
PG-TO-220-3-1
thJA
PG-TO-247-3-21
62
40
Value
Unit
min. Typ. max.
(BR)CES
CE(sat)
GE(th)
CES
GES
- 205 -
iss
oss
rss
Gate
VGE=0V, IC=300μA
VGE = 15V, IC=3A
=25°C
T
j
=150°C
T
j
V
= 10V, IC=3A,
GE
T
=25°C
j
=90μA,VCE=VGE
I
C
VCE=1200V,VGE=0V
=25°C
T
j
=150°C
T
j
VCE=0V,VGE=20V - - 100 nA
=25V,
V
CE
V
- 24 -
=0V,
GE
f=1MHz
VCC=960V, IC=3A
V
=15V
GE
LE PG-TO-220-3-1
PG-TO-247-3-21
1200 - -
-
-
-
2.2
2.5
2.4
2.8
2.1 3 3.9
-
-
-
-
20
80
- 7 -
- 22 - nC
-
-
7
13
V
-
-
μA
pF
-
nH
-
Power Semiconductors
2 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter Symbol Conditions
min. typ. max.
IGBT Characteristic
Turn-on delay time t
Rise time tr - 5.2 -
Turn-off delay time t
Fall time tf - 29 -
Turn-on energy Eon - 0.14 -
Turn-off energy E
Total switching energy Ets
- 9.2 -
T
d(on)
- 281 -
d(off)
- 0.15 -
off
=25°C,
j
V
=800V,IC=3A,
CC
V
=15V/0V,
GE
=82Ω,
R
G
2)
L
=180nH,
σ
2)
=40pF
C
σ
Energy losses include “tail” and diode
3)
- 0.29 -
reverse recovery.
Switching Characteristic, Inductive Load, at T
=150 °C
j
Parameter Symbol Conditions
min. typ. max.
IGBT Characteristic
Turn-on delay time t
Rise time tr - 6.7 -
Turn-off delay time t
Fall time tf - 63 -
Turn-on energy Eon - 0.22 -
Turn-off energy E
Total switching energy Ets
- 9.4 -
T
d(on)
- 340 -
d(off)
- 0.26 -
off
=150°C
j
V
=800V,
CC
I
=3A,
C
V
=15V/0V,
GE
=82Ω,
R
G
2)
L
=180nH,
σ
2)
=40pF
C
σ
Energy losses include “tail” and diode
3)
- 0.48 -
reverse recovery.
Switching Energy ZVT, Inductive Load
Parameter Symbol Conditions
min. typ. max.
IGBT Characteristic
Turn-off energy E
VCC=800V,
off
I
=3A,
C
=15V/0V,
V
GE
=82Ω,
R
G
2)
=4nF
C
r
=25°C
T
j
=150°C
T
j
-
-
Value
Unit
ns
mJ
Value
Unit
ns
mJ
Value
0.05
0.09
Unit
mJ
-
-
2)
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E
3)
Commutation diode from device IKP03N120H2
Power Semiconductors
3 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
I
12A
10A
8A
TC=80°C
6A
TC=110°C
4A
, COLLECTOR CURRENT
C
I
2A
0A
10Hz 100Hz 1kHz 10kHz 100kHz
I
c
f, SWITCHING FREQUENCY
c
10A
1A
0,1A
, COLLECTOR CURRENT
C
I
,01A
Figure 1. Collector current as a function of switching frequency
150°C, D = 0.5, VCE = 800V,
(T
j
= +15V/0V, RG = 82Ω)
V
GE
tp=1μs
1V 10V 100V 1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, T
= 25°C, Tj 150°C)
C
5μs
10μs
50μs
100μs
500μs
DC
60W
50W
40W
30W
20W
, POWER DISSIPATION
tot
P
10W
0W
25°C 50°C 75°C 100°C 125°C
12A
10A
8A
6A
4A
, COLLECTOR CURRENT
C
I
2A
0A
25°C 50°C 75°C 100°C 125°C 150°C
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of case temperature
150°C)
(T
j
Figure 4. Collector current as a function of case temperature
(VGE 15V, Tj 150°C)
Power Semiconductors
4 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
10A
8A
VGE=15V
6A
4A
, COLLECTOR CURRENT
C
2A
I
0A
0V 1V 2V 3V 4V 5V
12V 10V 8V 6V
10A
9A
8A
7A
6A
5A
4A
3A
, COLLECTOR CURRENT
C
2A
I
1A
0A
VGE=15V
12V 10V 8V 6V
0V 1V 2V 3V 4V 5V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
= 25°C)
(T
j
Figure 6. Typical output characteristics
(Tj = 150°C)
12A
10A
8A
6A
4A
, COLLECTOR CURRENT
C
I
2A
Tj=+150°C
Tj=+25°C
3V
2V
1V
, COLLECTOR-EMITTER SATURATION VOLTAGE
0A
3V 5V 7V 9V
0V
-50°C 0°C 50°C 100°C 150°C
CE(sat)
V
VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(V
= 20V)
CE
Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
(V
= 15V)
GE
IC=6A
IC=3A
IC=1.5A
Power Semiconductors
5 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
1000ns
t
d(off )
100ns
10ns
t
t
d(on)
f
t, SWITCHING TIMES
t
r
1ns
0A 2A 4A
1000ns
t
d(off)
100ns
t
f
t
10ns
d(on)
t, SWITCHING TIMES
t
r
1ns
0Ω 50Ω 100Ω 150Ω
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a function of collector current
(inductive load, T
= 800V, VGE = +15V/0V, RG = 82Ω,
V
CE
= 150°C,
j
dynamic test circuit in Fig.E)
Figure 10. Typical switching times as a function of gate resistor
(inductive load, T V
= 800V, VGE = +15V/0V, IC = 3A,
CE
dynamic test circuit in Fig.E)
= 150°C,
j
1000ns
100ns
10ns
t
t
t
f
d(on)
d(of f)
5V
4V
3V
2V
t, SWITCHING TIMES
t
r
1ns
25°C 50°C 75°C 100°C 125°C 150°C
1V
, GATE-EMITTER THRESHOLD VOLTAGE
GE(th)
0V
V
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a function of junction temperature
(inductive load, V
= +15V/0V, IC = 3A, RG = 82Ω,
V
GE
= 800V,
CE
Figure 12. Gate-emitter threshold voltage as a function of junction temperature
(I
= 0.09mA)
C
dynamic test circuit in Fig.E)
max.
typ.
min.
Power Semiconductors
6 Rev. 2.5 Sept. 07
1
1
1
IGP03N120H2
IGW03N120H2
1.0mJ
) Eon and Ets include losses
due to diode recovery.
1
E
ts
0.7mJ
) Eon and Ets include losses
due to diode recovery.
0.6mJ
0.5mJ
E
0.5mJ
off
0.4mJ
1
E
on
E, SWITCHING ENERGY LOSSES
0.0mJ 0A 2A 4A
0.3mJ
E, SWITCHING ENERGY LOSSES
0.2mJ
E
off
1
E
on
0Ω 50Ω 100Ω 150Ω 200Ω 250Ω
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses as a function of collector current
(inductive load, T
= 800V, VGE = +15V/0V, RG = 82Ω,
V
CE
= 150°C,
j
dynamic test circuit in Fig.E )
Figure 14. Typical switching energy losses as a function of gate resistor
(inductive load, T V
= 800V, VGE = +15V/0V, IC = 3A,
CE
= 150°C,
j
dynamic test circuit in Fig.E )
1
E
ts
0.5mJ
) Eon and Ets include losses
due to diode recovery.
0.4mJ
0.3mJ
0.2mJ
E, SWITCHING ENERGY LOSSES
0.1mJ
25°C 80°C 125°C 150°C
, JUNCTION TEMPERATURE
T
j
Figure 15. Typical switching energy losses as a function of junction temperature
(inductive load, V V
= +15V/0V, IC = 3A, RG = 82Ω,
GE
= 800V,
CE
dynamic test circuit in Fig.E )
1
E
ts
E
off
1
E
on
0.16mJ
0.12mJ
0.08mJ
0.04mJ
0.00mJ
, TURN OFF SWITCHING ENERGY LOSS
off
E
IC=1A, TJ=150°C
0V/us 1000V/us 2000V/us 3000V/us
dv/dt, VOLTAGE
I
=3A, TJ=150°C
C
=1A, TJ=25°C
I
C
=3A, TJ=25°C
I
C
SLOPE
Figure 16. Typical turn off switching energy loss for soft switching
(dynamic test circuit in Fig. E)
Power Semiconductors
7 Rev. 2.5 Sept. 07
τ
τ
IGP03N120H2
IGW03N120H2
20V
D=0.5
0
10
K/W
0.2
0.1
0.05
-1
10
K/W
0.02
0.01
, GATE-EMITTER VOLTAGE
GE
-2
10
V
K/W
R ,(K/W)
τ
, (s)
1.082517 0.000795
0.328671 0.000179
0.588811 0.004631
R
1
R
2
15V
UCE=240V
10V
UCE=960V
5V
, GATE-EMITTER VOLTAGE
GE
V
single pulse
1µs 10µs 100µs 1ms 10ms 100ms
=
/
=
R
C
1
1
1
/
R
C
2
2
2
0V
0nC 10nC 20nC 30nC
QGE, GATE CHARGE QGE, GATE CHARGE
Figure 17. Typical gate charge
(I
= 3A)
C
1nF
100pF
C
iss
C
oss
Figure 17. Typical gate charge
(IC = 3A)
1000V
800V
600V
400V
C, CAPACITANCE
200V
10pF
C
rss
0V 10V 20V 30V
, COLLECTOR-EMITTER VOLTAGE
CE
V
0V
0.0 0.2 0.4 0.6 0. 8 1.0 1.2
VCE, COLLECTOR-EMITTER VOLTAGE tp, PULSE WIDTH
Figure 18. Typical capacitance as a function of collector-emitter voltage
(V
= 0V, f = 1MHz)
GE
Figure 20. Typical turn off behavior, hard switching
=15/0V, RG=82, Tj = 150°C,
(V
GE
Dynamic test circuit in Figure E)
3A
2A
1A
COLLECTOR CURRENT
CE
I
0A
Power Semiconductors
8 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
800V
600V
400V
200V
, GATE-EMITTER VOLTAGE
GE
V
0V
0.0 0.4 0.8 1.2 1.6 2.0 2. 4 2. 8
3A
2A
1A
COLLECTOR CURRENT
CE
0A
I
tp, PULSE WIDTH
Figure 21. Typical turn off behavior, soft switching
=15/0V, RG=82, Tj = 150°C,
(V
GE
Dynamic test circuit in Figure E)
Power Semiconductors
9 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
PG-TO220-3-1
Power Semiconductors
10 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
PG-TO247-3-21
Power Semiconductors
11 Rev. 2.5 Sept. 07
v
j
τ
τ
τ
C
IGP03N120H2
IGW03N120H2
Figure A. Definition of switching times
i,
+
di /dt
F
I
F
I
rrm
Figure C. Definition of diodes switching characteristics
p(t)
1
rrrr
1
T(t)
12 n
t=t t
rr S F
Q=Q Q
rr S F
t
S
Q
S
2 2
t
rr
Q
90% I
+
t
F
rrm
t
V
R
10% I
F
di /dt
rr
rrm
n
n
rr
T
Figure B. Definition of switching losses
Figure D. Thermal equivalent circuit
V
DC
½ L
öö
DUT
(Diode)
R
G
σ
L
DUT
(IGBT)
½ L
σ
Figure E. Dynamic test circuit
Leakage inductance L Stray capacitor C Relief capacitor C
= 180nH,
σ
= 40pF,
σ
= 4nF (only for
r
ZVT switching)
C
C
σ
r
Power Semiconductors
12 Rev. 2.5 Sept. 07
IGP03N120H2
IGW03N120H2
Edition 2006-01
Published by Infineon Technologies AG 81726 München, Germany
© Infineon Technologies AG 9/21/07. All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
13 Rev. 2.5 Sept. 07
Loading...