INFINEON ICE2A0565, ICE2A165, ICE2A265, ICE2A365, ICE2B0565 User Manual

...
Datasheet V4.5, Jan 2004
CoolSET™-F2
ICE2A0565/165/265/365 ICE2B0565/165/265/365 ICE2A0565Z ICE2A180Z/280Z
ICE2A765I/2B765I ICE2A765P2/ICE2B765P2
Off-Line SMPS Current Mode Controller with integrated 650V/800V CoolMOS™
Power Management & Supply
Never stop thinking.
CoolSET™-F2 Revision History: 2004-01-28 Datasheet V4.5
Previous Version: Page Subjects (major changes since last revision)
For questions on technology, delivery and prices please contact the Infineon Technologies Of fices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http:// www.infineon.com.
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.
Edition 2004-01-28 Published by Infineon Technologies AG,
St.-Martin-Strasse 53, D-81541 München
© Infineon Technologies AG 1999.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warr anted char­acteristics.
Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technolog ies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the ex press written approval of Infineon Technologies, if a failure of such components can reasona bly be expe cted to cause the f ailure of that life-support device or system, or to aff ect t he safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Off-Line SMPS Current Mode Controller with integrated 650V/800V
CoolSET™-F2
Product Highlights
• Best in class in DIP8, DIP7, TO220 packages
• No heatsink required for DIP8, DIP7
• Lowest standby power dissipation
• Enhanced protection functions all with
Auto Restart Mode
• Isolated drain package for TO220
• Increased creepage distance for TO220 packages
Features
• 650V/800V avalanche rugged CoolMOS™
• Only few external components required
• Input Vcc Undervoltage Lockout
• 67kHz/100kHz switching frequency
• Max duty cycle 72%
• Low Power Standby Mode to meet European Commission Requirements
• Thermal Shut Down with Auto Restart
• Overload and Open Loop Protection
• Overvoltage Protection during Auto Restart
• Adjustable Peak Current Limitation via external resistor
• Overall tolerance of Current Limiting < ±5%
• Internal Leading Edge Blanking
• User defined Soft Start Soft Switching for low EMI
Typical Application
R
VCC
Power
Management
Protection Unit
Start-up
PWM Controller
Current Mode
Precise Low Tolerance Peak Current Limitation
85 ... 270 VAC
SoftS
C
Soft Start
FB
Feedback
Low Power
StandBy
Soft-Start Control
PWM-Controller
CoolSET™-F2
Description
The second generation CoolSET™-F2 provides several special enhancements to satisfy the needs for low power standby and protection features. In standby mode frequency reduction is used to lower the power consumption and support a stable output voltage in this mode. The frequency reduction is limited to 20kHz/21.5 kHz to avoid audible noise. In case of failure modes like open loop, overvoltage or overload due to short circuit the device switches in Auto Restart Mode which is controlled by the internal protection unit. By means of the internal precise peak current limitation the dimension of the transformer and the secondary diode can be lower which leads to more cost efficiency.
Snubber
C
VCC
Drain
CoolMOS™
Isense
GND
R
Sense
P-DIP-7-1
P-TO220-6-46
Feedback
P-DIP-7-1
P-DIP-8-6
P-DIP-8-4, -6
P-TO220-6-47P-TO220-6-46
P-TO220-6-47
+
Converter
DC Output
-
Datasheet V4.5 3 Jan 2004
CoolSET™-F2
Ordering Codes
Type Ordering Code Package V
DSFOSCRDSon
1)
230VAC ±15%
ICE2A0565 Q67040-S4542 P-DIP-8-6 650V 100kHz 4.7 23W 13W ICE2A165 Q67040-S4426 P-DIP-8-6 650V 100kHz 3.0 31W 18W ICE2A265 Q67040-S4414 P-DIP-8-6 650V 100kHz 0.9 52W 32W ICE2A365 Q67040-S4415 P-DIP-8-6 650V 100kHz 0.45 67W 45W ICE2B0565 Q67040-S4540 P-DIP-8-6 650V 67kHz 4.7 23W 13W ICE2B165 Q67040-S4489 P-DIP-8-6 650V 67kHz 3.0 31W 18W ICE2B265 Q67040-S4478 P-DIP-8-6 650V 67kHz 0.9 52W 32W ICE2B365 Q67040-S4490 P-DIP-8-6 650V 67kHz 0.45 67W 45W ICE2A0565Z Q67040-S4541 P-DIP-7-1 650V 100kHz 4.7 23W 13W ICE2A180Z Q67040-S4546 P-DIP-7-1 800V 100kHz 3.0 29W 17W ICE2A280Z Q67040-84547 P-DIP-7-1 800V 100KHz 0.8 50W 31W
1)
typ @ T=25°C
2)
Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm²
2)
85-265 VAC
2)
Type Ordering Code Package VDSF
OSCRDSon
1)
230VAC ±15%
2)
85-265 VAC
2)
ICE2A765I Q67040-S4609 P-TO-220-6-46 650V 100kHz 0.45 240W 130W ICE2B765I Q67040-S4607 P-TO-220-6-46 650V 67kHz 0.45 240W 130W ICE2A765P2 Q67040-S4610 P-TO-220-6-47 650V 100kHz 0.45 240W 130W ICE2B765P2 Q67040-S4608 P-TO-220-6-47 650V 67kHz 0.45 240W 130W
1)
typ @ T=25°C
2)
Maximum practical continuous power in an open frame design at Ta=75°C, Tj=125°C and Rth=2.7K/W
Datasheet V4.5 4 Jan 2004
CoolSET™-F2
Table of Contents Page
1 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.1 Pin Configuration with P-DIP-8-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.2 Pin Configuration with P-DIP-7-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.3 Pin Configuration with P-TO220-6-46/47 . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2 Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.2 Improved Current Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.2.1 PWM-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.2.2 PWM-Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.3 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.4 Oscillator and Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.4.1 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.4.2 Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.5 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.5.1 Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.5.2 Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.6 PWM-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.7 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.8 Protection Unit (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.8.1 Overload / Open Loop with Normal Load . . . . . . . . . . . . . . . . . . . . . . . .14
3.8.2 Overvoltage due to Open Loop with No Load . . . . . . . . . . . . . . . . . . . . .15
3.8.3 Thermal Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.2 Thermal Impedance (ICE2X765I and ICE2X765P2) . . . . . . . . . . . . . . . . . .18
4.3 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.4.1 Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.4.2 Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.4.3 Control Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.4.4 Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.4.5 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.4.6 CoolMOS™ Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .24
6 Layout Recommendation for C
7 Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
18
Datasheet V4.5 5 Jan 2004
Pin Configuration and Functionality

1 Pin Configuration and Functionality

1.1 Pin Configuration with P-DIP-8-6

1.2 Pin Configuration with P-DIP-7-1

CoolSET™-F2
Pin Symbol Function
1 SoftS Soft-Start
2 FB Feedback
3 Isense Controller Current Sense Input,
4 Drain
5 Drain
6 N.C Not connected
7 VCC Controller Supply Voltage
8 GND Controller Ground
1)
at Tj = 110°C
2)
at Tj = 25°C
CoolMOS™ Source Output
650V1)/800V2) CoolMOS™ Drain
650V1)/800V2) CoolMOS™ Drain
Package P-DIP-8-6
Sof tS
1
2
GND
8
7
VCCFB
Pin Symbol Function
1 SoftS Soft-Start
2 FB Feedback
3 Isense Controller Current Sense Input,
4 N.C. Not connected
5 Drain
7 VCC Controller Supply Voltage
8 GND Controller Ground
1)
at Tj = 110°C
2)
at Tj = 25°C
CoolMOS™ Source Output
650V1)/800V2) CoolMOS™ Drain
Package P-DIP-7-1
Sof tS
1
2
GND
8
7
VCCFB
Is ens e
Dr ai n
Figure 1 Pin Configuration (top view)
Datasheet V4.5 6 Jan 2004
3
4
6
N.C
5
Dr ain
Isense
Figure 2 Pin Configuration (top view)
n.c.
3
4
5
Dr ai n

1.3 Pin Conuration with P-TO220-6-46/47

CoolSET™-F2
Pin Configuration and Functionality

1.4 Pin Functionality

Pin Symbol Function
1 Drain 3 Isense 4 GND Controller Ground
5 VCC Controller Supply Voltage 6 SoftS Soft-Start 7 FB Feedback
1)
at Tj = 110°C
650V1) CoolMOS™ Drain 650V1) CoolMOS™ Source
Package P-TO220-6-46/47
1
234567
SoftS (Soft Start & Auto Restart Control)
This pin combines the function of Soft Start in case of Start Up and Auto Restart Mode and the controlling of the Auto Restart Mode in case of an error detection.
FB (Feedback)
The information about the regulation is provided by the FB Pin to the internal Protection Unit and to t he internal PWM-Comparator to control the duty cycle.
Isense (Current Sense)
The Current Sense pin senses the voltage developed on the series resistor inserted in the source of the integrated CoolMOS™. When Isense reaches the internal threshold of the Current Limit Comparator, the Driver output is disabled. By this means the Over Current Detection is realized.
Furthermore the current information is provided for the PWM-Comparator to realize the Current Mode.
Drain (Drain of integrated CoolMOS™)
Pin Drain is the connection to the Drain of the internal CoolMOS
VCC (Power supply)
This pin is the positiv supply of the IC. The operating range is between 8.5V and 21V.
To provide overvoltage protection the driver gets disabled when the voltage becomes higher than 16.5V during Start Up Phase.
GND (Ground)
This pin is the ground of the primary side of the SMPS.
TM
.
Drain
Isense
GND
VCC
SoftS
FB
Figure 3 Pin Configuration (top view)
Datasheet V4.5 7 Jan 2004

2 Representative Blockdiagram

OUT
-
+
V
Converter
DC Output
Snubber
Drain
CoolMOS™
Gate
Driver
Q
Q S
Clock
Reset
R
PWM-Latch
G4
norm
-f
standby
f
Spike
SQ
Blanking
G3
PWM
Comparator
Q R
Error-Latch s 5
G2
Soft-Start
Soft Start
Comparator
0.72
Duty Cycle Max
max
Duty Cycle
Oscillator
6.5V
4.8V
5.3V
4.0V
Voltage
Reference
Internal Bias
Power Management
13.5V
Reset
Lockout
Power-Down
Line
C
Undervoltage
VCC
C
Power-Up
8.5V
G1
CoolSET™-F2
Representative Blockdiagram
Sense
R
Isense
D1
10k
220ns
Blanking
Leading Edge
csth
V
Comparator
Current-Limit
C5
0.3V
osc
f
norm
f
f
Optocoupler
ICE2Bxxxx
Compensation
Propagation-Delay
Current Limiting
ICE2Axxxx
x3.65
0.8V
Improved Current Mode
PWM OP
FB
U
standby
Standby Unit
67kHz
20kHz
100kHz
21.5kHz
norm
standby
f
f
Start-up
R
85 ... 270 VAC
VCC
C1
4.0V
16.5V
6.5V
C4
C3
>140°C
j
T
Thermal Shutdown
4.8V
5.3V
5.6V
Soft-Start
R
SoftS
FB
R
6.5V
T1
Soft-Start
C
Protection Unit
FB
GND
CoolSET™-F2
C2
Figure 4 Representative Blockdiagram
Datasheet V4.5 8 Jan 2004

3 Functional Description

3.1 Power Management

CoolSET™-F2
Functional Description

3.2 Improved Current Mode

Main Line (100V-380V)
R
Start-Up
Primary Winding
C
VCC
VCC
Power Management
SoftS
C
Soft-Start
Undervoltage
Lockout
8.5V
Pow er-D own
Reset
Power-Up
Reset
R
T1
13.5V
6.5V
Soft-S ta rt
Intern al
Bias
Voltage
Reference
RSQ
Q
Error-Latch
Soft-S ta rt C o m para to r
Error-D ete ction
6.5V
5.3V
4.8V
4.0V
PWM-Latch
Figure 5 Power Management
The Undervoltage Lockout monitors the external supply voltage V current consumption is max. 55µA. When the SMPS is plugged to the main line the current through R charges the external Capacitor C exceeds the on-threshold V circuit and the voltage reference are switched on. After that the internal bandgap generates a reference voltage V avoid uncontrolled ringing at switch-on a hysteresis is implemented which means that switch-off is only after active mode when Vcc falls below 8.5V.
In case of switch-on a Power Up Reset is done by reseting the internal error-latch in the protection unit.
When V internal reference is switched off and the Power Down reset let T1 discharging the soft-start capaci tor C at pin SoftS. Thus it is ensu re d th at at ev ery s wi tch- on the voltage ramp at pin SoftS starts at zero.
REF
falls below the off-threshold V
VCC
. In case the IC is inactive the
VCC
Start-up
. When V
VCC
=13.5V the internal bias
CCon
VCC
=6.5V to supply the internal circuits. To
=8.5V the
CCoff
Soft-Start
Soft-Start Com parator
FB
PW M-Latch
RSQ
Driver
PW M Com parator
Q
0.8V
PWM OP
x3.65
Isense
Improved Current Mode
Figure 6 Current Mode
Current Mode means that the duty cycle is controlled by the slope of the primary current. This is done by comparison the FB signal with the amplified current sense signal.
Amplified Current Signal
FB
0.8V
Driver
T
on
t
t
Figure 7 Pulse Width Modulation
In case the amplified current sense signal exceeds the FB signal the on-time T reseting the PWM-Latch (see Figure 7).
of the driver is finished by
on
Datasheet V4.5 9 Jan 2004
The primary current is sensed by the external series resistor R CoolMOS™. By means of Current Mode the regulation of the secondary voltage is insensitive on line variations. Line variation causes varition of the increasing current slope which controls the duty cycle. The external R the maximum source current of the integrated
inserted in the source of the integrated
Sense
allows an individual adjustment of
Sense
CoolMOS™.
Soft-Start Com parator
PWM Comparator
FB
PW M-Latch
OSC
0.3V C5
G a te Drive r
O scillato r
V
0.8V
10k
x3.65
T
2
R
1
V
1
C
20pF
1
PWM O P
Voltage Ramp
Figure 8 Improved Current Mode
To improve the Current Mode during light load conditions the amplified current ramp of the PWM-OP is superimposed on a voltage ramp, which is built by the switch T low pass filter composed of R Figure 9). Every time the oscillator shuts down for max. duty cycle limitation the switch T2 is closed by V When the oscillator triggers the Gate Driver T2 is opened so that the voltage ramp can start. In case of light load the amplified current ramp is to small to ensure a stable regulation. In that case the Voltage Ramp is a well defined signal for the comparison with the FB-signal. The duty cycle is then controlled by the slope of the Voltage Ramp. By means of the Compa rator C5, the Gate Driver is switched-off until the voltage ramp exceeds 0.3V. It allows the duty cycle to be reduced continously till 0% by decreasing V
, the voltage source V1 and the 1st order
2
below that threshold.
FB
and C1(see Figure 8,
1
OSC
.
CoolSET™-F2
Functional Description
V
OSC
max.
Duty Cycle
Voltage Ramp
0.8V FB
0.3V
Gate Driver
Figure 9 Light Load Conditions

3.2.1 PWM-OP

The input of the PWM-OP is applied over the internal leading edge blanking to the external sense resistor
connected to pin ISense. R
R
Sense
source current into a sense voltage. The sense voltage is amplified with a gain of 3.65 by PWM OP. The output of the PWM-OP is connected to the voltage source V1. The voltage ramp with the superimposed amplified current singal is fed into the positive inputs of the PWM­Comparator, C5 and the Soft-Start-Comparator.
Sense

3.2.2 PWM-Comparator

The PWM-Comparator compares the sensed current signal of the integrated C oolMOS signal V external optocoupler or external transistor in combination with the internal pullup resistor R provides the load information of the feedback circuitry. When the amplified current signal of the integrated CoolMOS™ exceeds the signal V
(see Figure 10). VFB is created by an
FB
Comparator switches off the Gate Driver.
TM
with the feedback
FB
t
t
t
converts the
and
FB
the PWM-
Datasheet V4.5 10 Jan 2004
6.5V
R
FB
FB
Soft-Start Com parator
PW M-Latch
PW M Com parator
0.8V
Optocoupler
PWM OP
Ise n s e
x3.65
Improved Current Mode
Figure 10 PWM Controlling

3.3 Soft-Start

V
So ftS
5.6V
5.3V
T
So ft-Start
G a te Drive r
t
t
Figure 11 Soft-Start Phase
The Soft-Start is realized by the internal pullup resistor
and the external Capacitor C
R
Soft-Start
Figure 2). The Soft-Start voltage V charging the external capacitor C
is generated by
SoftS
Soft-Start
(see
Soft-Start
by the internal
CoolSET™-F2
Functional Description
pullup resistor R compares the voltage at pin SoftS at the negative input with the ramp signal of the PWM-OP at the positive input. When Soft-Start voltage V Feedback voltage V the pulse width by reseting the PWM-Latch (see Figure
11). In addition to Start-Up, Soft-Start is also activated at each restart attempt during Auto Restart. By means of the above mentioned C defined by the user. The Soft-Start is finished when
exceeds 5.3V. At that time the Protection Unit is
V
SoftS
activated by Comparator C4 and senses the FB by Comparator C3 wether the voltage is below 4.8V which means that the voltage on the secondary side of the SMPS is settled. The internal Zener Diode at SoftS with breaktrough voltage of 5.6V is to prevent the internal circuit from saturation (see Figure 12).
6.5V
5.6V
So ftS
6.5V
5.3V
4.8V
R
FB
FB
Figure 12 Activation of Protection Unit
The Start-Up time T voltage V Start Phase T
C
Soft Start
By means of Soft-Start there is an effective minimization of current and voltage stresses on the integrated CoolMOS™, the clamp circuit and the output overshoot and prevents saturation of the transformer during Start-Up.
is settled must be shorter than the Soft-
OUT
Soft-Start
. The Soft-Start-Comparator
Soft-Start
the Soft-Start-Comparator limits
FB
SoftS
the Soft-Start can be
Soft-Start
Power-Up Reset
R
Sof t-S ta rt
C4
Erro r-L atc h
G2
C3
Clock
PWM-Latch
within the converter output
Start-Up
(see Figure 13).
T
Soft Start
------------------------------------- -=
R
Soft Start
1.69×
is less than
RSQ
Q
RSQ
Gate Driver
Q
Datasheet V4.5 11 Jan 2004
CoolSET™-F2
Functional Description
V
SoftS
5.3V
T
So ft-S tart
V
FB
t
4.8V
V
OUT
V
OUT
T
Start-Up
t
t
Figure 13 Start Up Phase

3.4 Oscillator and Frequency Reduction

3.4.1 Oscillator

The oscillator generates a frequency f 100kHz. A resistor, a capacitor and a current source and current sink which determine the frequency are integrated. The charging and discharging current of the implemented oscillator capacitor are internally trimmed, in order to achieve a very accurate switching frequency. The ratio of controlled charge to discharge current is adjusted to reach a max. duty cycle limitation of D
=0.72.
max
switch
= 67kHz/

3.4.2 Frequency Reduction

The frequency of the oscillator is depending on the voltage at pin FB. The dependence is shown in Figure
14. This feature allows a power supply to operate at
lower frequency at light loads thus lowering the switching losses while maintaining good cross regulation performance and low output ripple. In case of low power the power consumption of the whole SMPS can now be reduced very effective. The minimal reachable frequency is limited to 20kHz/21.5 kHz to avoid audible noise in any case.
kHz
100
65
OSC
f
21.5
1.0
1.1 1. 2 1.3 1.4 1. 5 1.6 1.7 1.8 1. 9 2.0
f
norm
f
standby
21.5kHz
67kHz
20kHz
ICE2BxxxxICE2Axxxx
100kHz
V
FB
V
Figure 14 Frequency Dependence

3.5 Current Limiting

There is a cycle by cycle current limiting realised by the Current-Limit Comparator to provide an overcurrent detection. The source current of the integrated CoolMOS R transformed to a sense voltage V voltage V V off the gate drive. To prevent the Current Limiting from distortions caused by leading edge spikes a Leading Edge Blanking is integrated at the Current Sense. Furthermore a Propagation Delay Compensation is added to support the immedeate shut down of the CoolMOS™ in case of overcurrent.
TM
is sensed via an external sense resistor
. By means of R
Sense
exceeds the internal threshold voltage
Sense
the Current-Limit-Comparator immediately turns
csth
the source current is
Sense
. When the
Sense

3.5.1 Leading Edge Blanking

V
Sense
V
csth
t
= 220ns
LEB
t
Figure 15 Leading Edge Blanking
Each time when CoolMOS™ is switched on a leading spike is generated due to the primary-side capacitances and secondary-side rectifier reverse recovery time. To avoid a premature termination of the switching pulse this spike is blanked out with a time constant of t
= 220ns. During that time the output of
LEB
Datasheet V4.5 12 Jan 2004
the Current-Limit Comparator cannot switch off the gate drive.

3.5.2 Propagation Delay Compensation

In case of overcurrent detection by I of CoolMOS™ is delayed due to the propagation delay of the circuit. This delay causes an overshoot of the peak current I the peak current (see Figure 16).
which depends on the ratio of dI/dt of
peak
.
the shut down
Limit
Signal2Signal1
I
peak2
I
peak1
I
Limit
I
Sense
I
Overs hoot2
t
Propagation Delay
I
Overshoot1
t
Figure 16 Current Limiting
The overshoot of Signal2 is bigger than of Signal1 due to the steeper rising waveform.
A propagation delay compensation is integrated to bound the overshoot dependent on dI/dt of the rising primary current. That means the propagation delay time between exceeding the current sense threshold
and the switch off of CoolMOS™ is compensated
V
csth
over temperature within a range of at least.
0 R
≤≤
So current limiting is n ow capable in a very accura te way (see Figure 18).
V
V
OSC
Sense
V
Sense
csth
dI
peak
------------
×
dt
max. Duty Cycle
dV
Sense
---------------
dt
off time
t
Propagation Del ay
t
Signal1 Signal 2
Figure 17 Dynamic Voltage Threshold V
csth
CoolSET™-F2
Functional Description
The propagation delay compensation is done by means of a dynamic threshold voltage V
17). In case of a steeper slope the switch off of the driver is earlier to compensate the delay.
E.g. I
= 0.5A with R
peak
delay compensation the current sense threshold is set to a static voltage level V dI/dt = 0.4A/µs, that means dV propagation delay time of i.e. t leads then to a I propagation delay compensation the overshoot is only about 2% (see Figure 18).
V
1.3
1.25
1.2
1.15
1.1
Sense
V
1.05
1
0.95
0.9
peak
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
= 2 . Without propagation
Sense
=1V. A current ramp of
csth
Sense
overshoot of 12%. By means of
dV
dt
without compensation
Sense
with compensation
Figure 18 Overcurrent Shutdown

3.6 PWM-Latch

The oscillator clock output applies a set pulse to the PWM-Latch when initiating CoolMOS™ conduction. After setting the PWM-Latch can be reset by the PWM­OP, the Soft-Start-Comparator, the Current-Limit­Comparator, Comparator C3 or the Error-Latch of the Protection Unit. In case of reseting the driver is shut down immediately.

3.7 Driver

The driver-stage drives the gate of the CoolMOS™ and is optimized to minimize EMI and to provide high circuit efficiency. This is done by reducing the switch on slope when reaching the CoolMOS™ threshold. This is achieved by a slope control of the rising edge at the driver’s output (see Figure 19).
Thus the leading switch on spike is minimized. When CoolMOS™ is switched off, the falling shape of the driver is slowed down when reaching 2V to prevent an overshoot below ground. Furthermore the driver circuit is designed to eliminate cross conduction of the output stage. At voltages below the undervoltage lockout threshold V
the gate drive is active low.
VCCoff
(see Figure
csth
/dt = 0.8V/µs, and a
Propagation Delay
=180ns
V/us
Datasheet V4.5 13 Jan 2004
CoolSET™-F2
Functional Description
ca. t = 130ns
V
Gate
5V
t
Figure 19 Gate Rising Slope

3.8 Protection Unit (Auto Restart Mode)

An overload, open loop and overvoltage detection is integrated within the Protection Unit. These three failure modes are latched by an Error-Latch. Ad ditiona l thermal shutdown is latched by the Error-Latch. In case of those failure modes the Error-Latch is set after a blanking time of 5µs and the CoolMOS™ is shut down. That blanking prevents the Error-Latch f rom distor tions caused by spikes during operation mode.

3.8.1 Overload / Open L oop with Normal Load

Figure 20 shows the Auto Restart Mode in case of overload or open loop with normal load. The detection of open loop or overload is provided by the Comparator C3, C4 and the AND-gate G2 (see Figure 21). The detection is activated by C4 when the voltage at pin SoftS exceeds 5.3V. Till this time the IC operates in the Soft-Start Phase. After this phase the comparator C3 can set the Error-Latch in case of open loop or ove rload which leads the feedback voltage V threshold of 4.8V. After latching VCC decreases till
8.5V and inactivates the IC. At this time the external
Soft-Start capacitor is discharged by the internal transistor T1 due to Power Down Reset. When the IC is inactive V the Capacitor C R
Start-Up
Reset and the external Soft-Start capacitor C charged by the internal pullup resistor R the Soft-Start Phase which ends when the voltage at pin SoftS exceeds 5.3V the detection of overload and open loop by C3 and G2 is inactive. In this way the Start Up Phase is not detected as an overload.
increases till V
VCC
by means of the Start-Up Resistor
VCC
. Then the Error-Latch is reset by Power Up
CCon
to exceed the
FB
= 13.5V by charging
is
Soft-Start
. During
Soft-Start
Overload / Open Loop wi th Normal Load
5µs Blanking
FB
4.8V
Soft S
5.3V
Dri ver
VCC
13.5V
8.5V
Fail ure
Dete cti on
Soft-St art Phase
T
Burst1
Figure 20 Auto Restart Mode
So ftS
FB
C
6.5V
Soft-S ta rt
R
Soft-S ta rt
T1
R
FB
6.5V
Power Up Reset
C4
5.3V
4.8V C3
T
Restar t
t
t
t
t
Error-L a tch
G2
Figure 21 FB-Detection
Datasheet V4.5 14 Jan 2004
But the Soft-Start Phase must be finished within the Start Up Phase to force the voltage at pin FB below the failure detection threshold of 4.8V.

3.8.2 Overvoltage due to Open Loop with No Load

Open loop & no load condition
5µs Blanking
FB
4.8V Failure
Detection
CoolSET™-F2
Functional Description
normal operation mode is prevented from overvoltage detection due to varying of VCC concerning the regulation of the converter output. When the voltage
is above 4.0V the overvoltage detection by C1 is
V
SoftS
deactivated.
VCC
So ftS
6.5V
16.5V
R
Soft-Start
4.0V
C1
C2
G1
Error L a tch
So ftS
5.3V
4.0V
Driver
VCC
16.5V
13.5V
8.5V
Soft- S ta rt P h a s e
Overvoltage
Detection Phase
Overvoltage D etection
T
Burst2
T
t
t
Restart
t
t
Figure 22 Auto Restart Mode
Figure 22 shows the Auto Restart Mode for open loop and no load condition. In case of this failure mode the converter output voltage increases and also VCC. An additional protection by the comparators C1, C2 and the AND-gate G1 is implemented to consider this failure mode (see Figure 23).The overvoltage detection is provided by Comparator C1 only in the first time during the Soft-Start Phase till the Soft-Start voltage exceeds the threshold of the Comparator C2 at 4.0V and the voltage at pin FB is above 4.8V. When VCC exceeds 16.5V during the overvoltage detect ion pha se C1 can set the Error-Latch and the Burst Phase during Auto Restart Mode is finished earlier. In that case
is shorter than T
T
Burst2
. By means of C2 the
Soft-Start
C
So ft-S tart
T1
Power Up Reset
Figure 23 Overvoltage Detection

3.8.3 Thermal Shut Down

Thermal Shut Down is latched by the Error-Latch when junction temperature T exceeding an internal threshold of 140°C. In that case the IC switches in Auto Restart Mode.
Note: All the values which are mentioned in the
functional description are typical. Please refer to Electrical Characteristics for min/max limit values.
of the pwm controller is
j
Datasheet V4.5 15 Jan 2004
CoolSET™-F2
Electrical Characteristics

4 Electrical Characteristics

4.1 Absolute Maximum Ratings

Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction
of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin (VCC) is discharged before assembling the application circuit.
Parameter Symbol Limit Values Unit Remarks
min. max.
Drain Source Voltage ICE2A0565/165/265/365/765I/765P2 ICE2B0565/165/265/365/765I/765P2 ICE2A0565Z
Drain Source Voltage ICE2A180Z/280Z
Avalanche energy, repetitive t max. T
AR
=150°C
j
limited by
1)
ICE2A0565 E ICE2A165 E ICE2A265 E ICE2A365 E ICE2B0565 E ICE2B165 E ICE2B265 E ICE2B365 E ICE2A0565Z E ICE2A180Z E ICE2A280Z E ICE2A765I E ICE2B765I E ICE2A765P2 E ICE2B765P2 E
1)
Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR* f
V
DS
V
DS
AR1
AR2
AR3
AR4
AR5
AR6
AR7
AR8
AR9
AR10
AR11
AR12
AR13
AR14
AR15
- 650 V Tj = 110°C
- 800 V Tj = 25°C
- 0.01 mJ
- 0.07 mJ
- 0.40 mJ
- 0.50 mJ
- 0.01 mJ
- 0.07 mJ
- 0.40 mJ
- 0.50 mJ
- 0.01 mJ
- 0.07 mJ
- 0.40 mJ
- 0.50 mJ
- 0.50 mJ
- 0.50 mJ
- 0.50 mJ
6
Datasheet V4.5 16 Jan 2004
CoolSET™-F2
Electrical Characteristics
Parameter Symbol Limit Values Unit Remarks
min. max.
Avalanche current, repetitive tAR limited by max. T
=150°C
j
VCC Supply Voltage V
FB Voltage V SoftS Voltage V I
Sense
Junction Temperature T Storage Temperature T Thermal Resistance
Junction-Ambient ESD Robustness1)
1)
Equivalent to discharging a 100pF capacitor through a 1.5 kΩ series resistor
2)
1kV at pin drain of ICE2x0565, ICE2A0565Z
ICE2A0565 I ICE2A165 I ICE2A265 I ICE2A365 I ICE2B0565 I ICE2B165 I ICE2B265 I ICE2B365 I ICE2A0565Z I ICE2A180Z I ICE2A280Z I ICE2A765I I ICE2B765I I ICE2A765P2 I ICE2B765P2 I
AR1
AR2
AR3
AR4
AR5
AR6
AR7
AR8
AR9
AR10
AR11
AR12
AR13
AR14
AR15
I
Sense
R R V
CC
FB
SoftS
j
S
thJA1
thJA2
ESD
- 0.5 A
- 1 A
- 2 A
- 3 A
- 0.5 A
- 1 A
- 2 A
- 3 A
- 0.5 A
- 1 A
- 2 A
- 7 A
- 7 A
- 7 A
- 7 A
-0.3 22 V
-0.3 6.5 V
-0.3 6.5 V
-0.3 3 V
-40 150 °C Cont roller & CoolMOS™
-50 150 °C
- 90 K/W P-DIP-8-6
- 96 K/W P-DIP-7-1
- 2
2)
kV Human Body Model
Datasheet V4.5 17 Jan 2004
CoolSET™-F2
Electrical Characteristics

4.2 Thermal Impedance (ICE2X765I and ICE2X765P2)

Parameter Symbol Limit Values Unit Remarks
min. max.
Thermal Resistance Junction-Ambient
Junction-Case ICE2A765I

4.3 Operating Range

Note: Within the operating range the IC operates as described in the functional description.
Parameter Symbol Limit Values Unit Remarks
VCC Supply Voltage V
Junction Temperature of Controller
Junction Temperature of CoolMOS™
ICE2A765I ICE2B765I ICE2A765P2 ICE2B765P2
ICE2B765I ICE2A765P2 ICE2B765P2
CC
T
JCon
T
JCoolMOS
R
thJA3
R
thJC
- 74 K/W Free standing with no heat­sink
- 2.5 K/W
min. max.
V
CCoff
21 V
-25 130 ° C Limited due to thermal shut down of controller
-25 150 ° C
Datasheet V4.5 18 Jan 2004
CoolSET™-F2
Electrical Characteristics

4.4 Characteristics

Note: The electrical characteristics involve the spread of values given within the specified supply voltage and
junction temperature range T are related to 25°C. If not otherwise stated, a supply voltage of V

4.4.1 Supply Section

Parameter Symbol Limit Values Unit Test Condition
Start Up Current I Supply Current with Inactive
Gate Supply Current
with Active Gate
Supply Current with Activ Gate
VCC Turn-On Threshold VCC Turn-Off Threshold VCC Turn-On/Off Hysteresis
ICE2A0565 I
ICE2A165 I
ICE2A265 I
ICE2A365 I
ICE2B0565 I
ICE2B165 I
ICE2B265 I
ICE2B365 I
ICE2A0565Z I
ICE2A180Z I
ICE2A280Z I
ICE2A765I I
ICE2B765I I
ICE2A765P2 I
ICE2B765P2 I
from – 25 °C to 125 °C.Typical values represent the median values, which
J
= 15 V is assumed.
CC
min. typ. max.
VCC1
I
VCC2
VCC3
VCC4
VCC5
VCC6
VCC7
VCC8
VCC9
VCC10
VCC11
VCC12
VCC13
VCC14
VCC15
VCC16
VCC17
VCCon VCCoff VCCHY
- 27 55 µA VCC=V
- 5.0 6.6 mA V
IFB = 0
- 5.3 6.7 mA V
- 6.5 7.8 mA V
IFB = 0
IFB = 0
- 6.7 8.0 mA V IFB = 0
- 8.5 9.8 mA V
- 5.2 6.7 mA V
IFB = 0
IFB = 0
- 5.5 7.0 mA V IFB = 0
- 6.1 7.3 mA V IFB = 0
- 7.1 8.3 mA V
- 5.3 6.7 mA V
IFB = 0
IFB = 0
- 6.5 7.8 mA V IFB = 0
- 7.7 9.0 mA V
- 8.5 9.8 mA V
IFB = 0
IFB = 0
- 7.1 8.3 mA V IFB = 0
- 8.5 9.8 mA V
- 7.1 8.3 mA V
13
-
4.5
13.5
8.5 5
14
-
5.5
V V V
IFB = 0
IFB = 0
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
SoftS
CCon
= 0
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
-0.1V
Datasheet V4.5 19 Jan 2004
CoolSET™-F2
Electrical Characteristics

4.4.2 Internal Voltage Reference

Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Trimmed Reference Voltage V
REF

4.4.3 Control Section

Parameter Symbol Limit Values Unit Test Condition
Oscillator Frequency ICE2A0565/165/265/365/765I/765P2 ICE2A0565Z/180Z/280Z
Oscillator Frequency ICE2B0565/165/265/365/765I/765P2
Reduced Osc. Frequency ICE2A0565/165/265/365/765I/765P2 ICE2A0565Z/180Z/280Z
Reduced Osc. Frequency ICE2B0565/165/265/365/765I/765P2
Frequency Ratio f ICE2A0565/165/265/365/765I/765P2 ICE2A0565Z/180Z/280Z
Frequency Ratio f ICE2B0565/165/265/365/765I/765P2
Max Duty Cycle D Min Duty Cycle D PWM-OP Gain A VFB Operating Range Min Level V VFB Operating Range Max level V Feedback Resistance R Soft-Start Resistance R
osc1/fosc2
osc3/fosc4
6.37 6.50 6.63 V measured at pin FB
min. typ. max.
f
OSC1
f
OSC3
f
OSC2
f
OSC4
93 100 107 kHz VFB = 4V
62 67 72 kHz VFB = 4V
- 21.5 - kHz VFB = 1V
- 20 - kHz VFB = 1V
4.5 4.65 4.9
3.18 3.35 3.53
max
min
V
FBmin
FBmax
FB
Soft-Start
0.67 0.72 0.77 0 - - VFB < 0.3V
3.45 3.65 3.85
0.3 - - V
- - 4.6 V
3.0 3.7 4.9 k 42 50 62 k
Datasheet V4.5 20 Jan 2004
CoolSET™-F2
Electrical Characteristics

4.4.4 Protection Unit

Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Over Load & Open Loop Detection Limit
Activation Limit of Overload & Open Loop Detection
Deactivation Limit of Overvoltage Detection
Overvoltage Detection Limit V
Latched Thermal Shutdown T Spike Blanking t
1)
The parameter is not subjec t to pr o duction test - varified by design/characterization

4.4.5 Current Limiting

Parameter Symbol Limit Valu es Unit Test Condition
Peak Current Limitation (incl. Propagation Delay Time)
Leading Edge Blanking t
V
V
V
FB2
SoftS1
SoftS2
VCC1
jSD
Spike
V
LEB
csth
4.65 4.8 4.95 V V
SoftS
> 5.5V
5.15 5.3 5.46 V VFB > 5V
3.88 4.0 4.12 V VFB > 5V
VCC > 17.5V
16 16.5 17.2 V V
130 140 150 °C
< 3.8V
SoftS
VFB > 5V
1)
- 5 - µs
min. typ. max.
0.95 1.0 1.05 V dV
sense
- 220 - ns
/ dt = 0.6V/µs
Datasheet V4.5 21 Jan 2004
CoolSET™-F2
Electrical Characteristics

4.4.6 CoolMOS™ Section

Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Drain Source Breakdown Voltage ICE2A0565/165/265/365/765I/765P2 ICE2B0565/165/265/365/765I/765P2 ICE2A0565Z
Drain Source Breakdown Voltage ICE2A180Z/280Z
Drain Source On-Resistance
ICE2A0565 R
ICE2A165 R
ICE2A265 R
ICE2A365 R
ICE2B0565 R
ICE2B165 R
ICE2B265 R
ICE2B365 R
ICE2A0565Z R
ICE2A180Z R
ICE2A280Z R
ICE2A765I R
ICE2B765I R
ICE2A765P2 R
ICE2B765P2 R
V
(BR)DSS
V
(BR)DSS
DSon1
DSon2
DSon3
DSon4
DSon5
DSon6
DSon7
DSon8
DSon9
DSon10
DSon11
DSon12
DSon13
DSon14
DSon15
600 650--
800 870--
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4.7
10.0 3
6.6
0.9
1.9
0.45
0.95
4.7
10.0 3
6.6
0.9
1.9
0.45
0.95
4.7
10.0 3
6.6
0.8
1.7
0.45
0.95
0.45
0.95
0.45
0.95
0.45
0.95
-
-
-
-
5.5
12.5ΩΩ
3.3
7.3
1.08
2.28ΩΩ
0.54
1.14ΩΩ
5.5
12.5ΩΩ
3.3
7.3
1.08
2.28ΩΩ
0.54
1.14ΩΩ
5.5
12.5ΩΩ
3.3
7.3
1.06
2.04ΩΩ
0.54
1.14ΩΩ
0.54
1.14ΩΩ
0.54
1.14ΩΩ
0.54
1.14ΩΩ
V V
V V
Ω Ω
Tj=25°C Tj=110°C
Tj=25°C Tj=110°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Ω Ω
Ω Ω
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Tj=25°C Tj=125°C
Datasheet V4.5 22 Jan 2004
CoolSET™-F2
Electrical Characteristics
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Effective output capacitance, energy related
Zero Gate Voltage Drain Current I Rise Time t Fall Time t
1)
Measured in a Typical Flyback Converter Application
ICE2A0565 C ICE2A165 C ICE2A265 C ICE2A365 C ICE2B0565 C ICE2B165 C ICE2B265 C ICE2B365 C ICE2A0565Z C ICE2A180Z C ICE2A280Z C ICE2A765I C ICE2B765I C ICE2A765P2 C ICE2B765P2 C
o(er)1
o(er)2
o(er)3
o(er)4
o(er)5
o(er)6
o(er)7
o(er)8
o(er)9
o(er)10
o(er)11
o(er)12
o(er)13
o(er)14
o(er)15
DSS
rise
fall
- 4.751 - pF VDS =0V to 480V
- 7 - pF VDS =0V to 480V
- 21 - pF VDS =0V to 480V
- 30 - pF VDS =0V to 480V
- 4.751 - pF VDS =0V to 480V
- 7 - pF VDS =0V to 480V
- 21 - pF VDS =0V to 480V
- 30 - pF VDS =0V to 480V
- 4.751 - pF VDS =0V to 480V
- 7 - pF VDS =0V to 480V
- 22 - pF VDS =0V to 480V
- 30 - pF VDS =0V to 480V
- 30 - pF VDS =0V to 480V
- 30 - pF VDS =0V to 480V
- 30 - pF VDS =0V to 480V
- 0.5 - µA V
- 30
- 30
1)
1)
- ns
- ns
VCC
=0V
Datasheet V4.5 23 Jan 2004
Typical Performance Charac t er is ti cs

5 Typical Performance Characteristics

CoolSET™-F2
40
38
36
[µA]
34
VCC1
32
30
28
26
Start Up Current I
24
22
-25-15-5 5 152535455565758595105115125
Figure 24 Start Up Current I
5,9
5,7
5,5
[mA]
VCC2
5,3
5,1
4,9
Supply Current I
4,7
4,5
-25-15-5 5 152535455565758595105115125
Figure 25 Static Supply Current I
8,8
8,4
8,0
7,6
[mA]
7,2
VCCi
6,8
6,4
6,0
5,6
5,2
4,8
Supply Current I
4,4
4,0
-25-15-5 5 152535455565758595105115125
Figure 26 Supply Current I
Junction Temperature [°C]
vs. T
VCC1
Junction Temperature [°C]
VCC2
ICE2A365
ICE2A165
ICE2A0565
/Z
Junction Temperature [°C]
vs. T
VCCI
j
vs. T
j
j
ICE2A265
7,1
6,9
6,7
6,5
[mA]
6,3
VCCi
6,1
5,9
5,7
PI-001-190101
5,5
5,3
5,1
Supply Current I
4,9
4,7
4,5
-25-15-5 5 152535455565758595105115125
Figure 27 Supply Current I
8,5
8,3
8,1
7,9
7,7
[mA]
7,5
7,3
VCCi
7,1
6,9
PI-003-190101
6,7
6,5
6,3
6,1
Supply Current I
5,9
5,7
5,5
-25-15-5 5 152535455565758595105115125
Figure 28 Supply Current I
9,0
8,8
8,6
8,4
8,2
[mA]
8,0
VCCi
7,8
7,6
7,4
PI-002-190101
7,2
7,0
6,8
Supply Current I
6,6
6,4
6,2
-25-15-5 5 152535455565758595105115125
Figure 29 Supply Current I
ICE2B365
ICE2B265
ICE2B165
ICE2B0565
Junction Temperature [°C]
vs. T
VCCI
ICE2A180Z
Junction Temperature [°C]
vs. T
VCCI
ICE2A765P2
ICE2B765P2
Junction Temperature [°C]
vs. T
VCCI
PI-002-190101
j
ICE2A280Z
PI-002-190101
j
PI-002-190101
j
Datasheet V4.5 24 Jan 2004
CoolSET™-F2
Typical Performance Charac t er is ti cs
13,58
13,56
[V]
13,54
CCon
13,52
13,50
13,48
13,46
13,44
VCC Turn-On Threshold V
13,42
-25-15-5 5 152535455565758595105115125
Figure 30 VCC Turn-On Threshold V
8,67
8,64
[V]
8,61
VCCoff
8,58
8,55
8,52
8,49
8,46
8,43
VCC Turn-Off Threshold V
8,40
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Figure 31 VCC Turn-Off Threshold V
5,10
[V]
5,07
CCHY
5,04
5,01
4,98
4,95
4,92
4,89
4,86
4,83
VCC Turn-On/Off Hysteresis V
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
VCCon
Junction Temperature [°C]
VCCoff
Junction Temperature [°C]
Figure 32 VCC Turn-On/Off HysteresisV
vs. T
vs. T
VCCHY
j
j
vs. T
6,510
[V]
6,505
REF
6,500
6,495
6,490
PI-004-190101
6,485
6,480
6,475
Trimmed Reference Voltage V
6,470
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Figure 33 Trimmed Reference V
102,0
101,5
101,0
[kHz]
100,5
OSC1
100,0
99,5
PI-005-190101
99,0
98,5
98,0
97,5
Oscillator Frequency f
97,0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Figure 34 Oscillator Frequency f
70,0
69,5
69,0
[kHz]
68,5
68,0
OSC3
67,5
67,0
PI-006-190101
66,5
66,0
65,5
65,0
64,5
Oscillator Frequency f
64,0
-25-15-5 5 152535455565758595105115125
Figure 35 Oscillator Frequency f
j
Junction Temperature [°C]
ICE2A0565 ICE2A165 ICE2A265 ICE2A365 ICE2A180Z ICE2A280Z ICE2A765P2
ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2B765P2
REF
/Z
OSC1
OSC3
vs. T
vs. T
vs. T
PI-007-190101
j
PI-008-190101
j
PI-008a-190101
j
Datasheet V4.5 25 Jan 2004
CoolSET™-F2
Typical Performance Charac t er is ti cs
22,0
21,8
[kHz]
21,6
OSC2
21,4
21,2
21,0
20,8
20,6
20,4
20,2
Reduced Osc. Frequency f
20,0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
ICE2A0565 ICE2A165 ICE2A265 ICE2A365 ICE2A180Z ICE2A280Z ICE2A765P2
/Z
Figure 36 Reduced Osc. Frequency f
21,0
20,8
[kHz]
20,6
OSC4
20,4
20,2
20,0
19,8
19,6
19,4
19,2
Reduced Osc. Frequency f
19,0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2B765P2
Junction Temperature [°C]
Figure 37 Reduced Osc. Frequency f
4,75
4,73
4,71
OSC2
/f
4,69
OSC1
4,67
4,65
4,63
4,61
4,59
Frequency Ratio f
4,57
4,55
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Figure 38 Frequency Ratio f
ICE2A0565 ICE2A165 ICE2A265 ICE2A365 ICE2A180Z ICE2A280Z ICE2A765P2
OSC1
/Z
/ f
OSC2
OSC2
OSC4
vs. T
vs. T
vs. T
3,45
3,43
3,41
OSC4
/f
3,39
OSC3
3,37
3,35
PI-009-190101
3,33
3,31
3,29
Frequency Ratio f
3,27
3,25
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Figure 39 Frequency Ratio f
j
0,730
0,728
0,726
0,724
0,722
0,720
PI-009a-190101
0,718
0,716
Max. Duty Cycle
0,714
0,712
0,710
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Figure 40 Max. Duty Cycle vs. T
j
3,70
3,69
3,68
3,67
V
3,66
3,65
PI-010-190101
3,64
3,63
PWM-OP Gain A
3,62
3,61
3,60
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
j
Figure 41 PWM-OP Gain AV vs. T
Junction Temperature [°C]
Junction Temperature [°C]
Junction Temperature [°C]
ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2B765P2
OSC3
PI-010a-190101
/ f
vs. T
OSC4
j
PI-011-190101
j
PI-012-190101
j
Datasheet V4.5 26 Jan 2004
CoolSET™-F2
Typical Performance Charac t er is ti cs
4,00
3,95
3,90
[kOhm]
3,85
FB
3,80
3,75
3,70
3,65
3,60
3,55
Feedback Resistance R
3,50
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Figure 42 Feedback Resistance RFB vs. T
58
56
[kOhm]
54
52
Soft-Start
50
48
46
44
42
40
Soft-Start Resistance R
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Figure 43 Soft-Start Resistance R
4,810
4,805
[V]
4,800
FB2
4,795
4,790
Detection Limit V
4,785
4,780
-25-15-5 5 152535455565758595105115125
Figure 44 Detection Limit V
Junction Temperature [°C]
Soft-Start
Junction Temperature [°C]
vs. T
FB2
j
j
vs. T
5,320
5,315
5,310
[V]
5,305
5,300
Soft-Start1
5,295
PI-013-190101
5,290
5,285
5,280
Detection Limit V
5,275
5,270
-25-15-5 5 152535455565758595105115125
Figure 45 Detection Limit V
4,05
4,04
4,03
[V]
4,02
4,01
Soft-Start2
4,00
PI-014-190101
3,99
3,98
3,97
Detection Limit V
3,96
3,95
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
j
Figure 46 Detection Limit V
16,80
16,75
[V]
16,70
VCC1
16,65
16,60
16,55
16,50
PI-015-190101
16,45
16,40
16,35
16,30
16,25
16,20
Overvoltage Detection Limit V
-25-15-5 5 152535455565758595105115125
Figure 47 Overvoltage Detection Limit V
Junction Temperature [°C]
Soft-Start1
Junction Temperature [°C]
Soft-Start2
Junction Temperature [°C]
vs. T
vs. T
j
j
VCC1
vs. T
PI-016-190101
PI-017-190101
PI-018-190101
j
Datasheet V4.5 27 Jan 2004
CoolSET™-F2
Typical Performance Charac t er is ti cs
1,010
1,008
[V]
1,006
csth
1,004
1,002
1,000
0,998
0,996
0,994
0,992
Peak Current Limitation V
0,990
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Figure 48 Peak Current Limitation V
280
270
[ns]
260
LEB
250
240
230
220
210
200
190
Leading Edge Blanking t
180
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Figure 49 Leading Edge Blanking V
1,0
0,9
0,8
[Ohm]
0,7
dson
0,6
0,5
0,4
On-Resistance R
0,3
0,2
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Junction Temperature [°C]
ICE2A365 ICE2B365
Junction Temperature [°C]
csth
VCC1
vs. T
Figure 50 Drain Source On-Resistance R
vs. T
DSon
j
j
vs. T
2,2
2,0
1,8
[Ohm]
1,6
dson
1,4
1,2
PI-019-190101
1,0
0,8
On-Resistance R
0,6
0,4
-25-15-5 5 152535455565758595105115125
ICE2A265 ICE2B265
Junction Temperature [°C]
Figure 51 Drain Source On-Resistance R
9,5
8,5
7,5
[Ohm]
6,5
dson
5,5
PI-020-190101
4,5
3,5
On-Resistance R
2,5
1,5
-25-15-5 5 152535455565758595105115125
ICE2A0565
/Z
ICE2B0565
Junction Temperature [°C]
Figure 52 Drain Source On-Resistance R
1,0
0,9
0,8
[Ohm]
0,7
dson
0,6
PI-022-190101
0,5
0,4
On-Resistance R
0,3
0,2
-25-15-5 5 152535455565758595105115125
Figure 53 Drain Source On-Resistance R
j
ICE2A765P2 ICE2B765P2
Junction Temperature [°C]
ICE2A280Z
ICE2A165 ICE2B165 ICE2A180Z
DSon
DSon
DSon
vs. T
vs. T
vs. T
PI-022-190101
j
PI-022-190101
j
PI-022-190101
j
Datasheet V4.5 28 Jan 2004
720
700
[V]
680
(BR)DSS
660
640
620
600
580
Breakdown Voltage V
560
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Figure 54 Breakdown Voltage V
940
[V]
920
900
(BR)DSS
880
860
840
820
800
Breakdown Voltage V
780
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Figure 55 Breakdown Voltage V
ICE2A0565 ICE2A165 ICE2A265 ICE2A365 ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2A765P2 ICE2B765P2
ICE2A180Z ICE2A280Z
/Z
BR(DSS)
BR(DSS)
vs. T
vs. T
CoolSET™-F2
Typical Performance Charac t er is ti cs
PI-025-190101
j
PI-025-190101
j
Datasheet V4.5 29 Jan 2004
CoolSET™-F2
Layout Recommendation for C
6 Layout Recommendation for C
Note: Only for ICE2A765I/P2 and ICE2B765I/P2
18
Soft Start Capacitor Layout Recommendation in Detail
Detail X
Figure 56B Detail X, Soft Start Capacitor C18 Layout
Recommendation
Place Soft Start capacitor C18 in the same way as
shown in Detail X (blue mark).
18
Figure 56A Layout of Board EVALSF2_ICE2B765P2
To improve the startup behavior of the IC during
startup or auto restart mode, place the soft start
capacitor C
as close as possible to the soft start PIN 6 and
GND PIN 4. More details see Detail X in Figure
56B.
Figure 56 Layout Recommendation for ICE2A765I/P2 and ICE2B765I/P2
Datasheet V4.5 30 Jan 2004
(red section Detail X in Figure 56A)
18

7 Outline Dimension

P-DIP-8-6 (Plastic Dual In-line Package)
Figure 57 P-DIP-8-6 (Plastic Dual In-line Package)
CoolSET™-F2
Outline Dimension
P-DIP-7-1 (Plastic Dual In-line Package)
1.7 MAX.
4.37 MAX.
0.38 MIN.
2.54
±0.1
0.46
Index Marking
1)
Does not include plastic or metal protrusion of 0.25 max. per side
7
1
9.52
±0.25
0.35
7x
3.25 MIN.
5
4
1)
Figure 58 P-DIP-7-1 (Plastic Dual In-line Package)
Datasheet V4.5 31 Jan 2004
7.87
8.9
±0.38
±1
+0.1
0.25
1)
±0.25
6.35
Dimensions in mm
CoolSET™-F2
Outline Dimension
P-TO220-6-46 Isodrain Package
±0.3
±0.3
10.2
12.1
0...0.15
Figure 59 P-TO220-6-46 (Isodrain Package)
P-TO220-6-47 Isodrain Package
±0.3
±0.3
15.6
17.5
0...0.15
8
4 x 1.27
13
1.274 x
7.62
9.9
9.5
7.62
9.9
7.5
6.6
7.5
6.6
±0.2 ±0.2
A
1.3
+0.1
-0.02
4.4
B
(0.8)
0.05
1)
±0.3
8.6
0.25 AMB
±0.1
6 x 0.6
1) Shear and punch direction no burrs this surface Back side, heatsink contour
All metal surfaces tin plated, except area of cut.
A
±0.2
2.8
-0.15
3.7
±0.3
1.3
5.3
0.05
+0.1
-0.02
B
2.4
±0.3
±0.3
8.4
4.4
1)
8.6
6 x 0.6
0.25 AMB
±0.1
5.3
2.4
±0.3
8.4
±0.3
±0.2
9.2
±0.2
9.2
0.5
0.5
±0.1
±0.1
1) Shear and punch direction no burrs this surface Back side, heatsink contour All metal surfaces tin plated, except area of cut.
Figure 60 P-TO220-6-47 (Isodrain Package)
Dimensions in mm
Datasheet V4.5 32 Jan 2004
Total Quality Management
Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen.
Dazu gehört eine bestimmte Geisteshaltung unserer Mitarbeiter. Total Quality im Denken und Handeln gegenüber Kollegen, Lieferanten und Ihnen, unserem Kunden. Unsere Leitlinie ist jede Aufgabe mit „Null Fehlern“ zu lösen – in offener Sichtweise auch über den eigenen Arbeitsplatz hinaus – und uns ständig zu verbessern.
Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen.
Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen.
Wir werden Sie überzeugen.
Quality takes on an allencompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you.
Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Ou r gui del ine i s “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve.
Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge.
Give us the chance to prove the best of performance through the best of quality – you will be convinced.
http://www.infineon.com
Published by Infineon Technologies AG
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.
Loading...