INFINEON ICE2A0565, ICE2A165, ICE2A265, ICE2A365, ICE2B0565 User Manual

...
现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!
Datasheet, V2.6, 25 Dec 2006
CoolSET™-F2
ICE2A0565/165/265/365 ICE2B0565/165/265/365
ICE2A0565G
ICE2A0565Z ICE2A180Z/280Z
ICE2A765I/2B765I ICE2A765P2/2B765P2 ICE2A380P2
Off-Line SMPS Current Mode Controller with integrated 650V/ 800V CoolMOS™
Power Management & Supply
Never stop thinking.
CoolSET™-F2
Revision History: 2006-12-25 Datasheet
Previous Version: 2.5.
Page Subjects (major changes since last revision)
4,17~22, 24~28, 30~31
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http:// www.infineon.com.
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.
Add ICE2A380P2
Edition 2006-12-25
Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München
© Infineon Technologies AG 1999.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted charac­teristics.
Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
P-TO220-6-46
P-TO220-6-47
Off-Line SMPS Current Mode Controller with integrated 650V/800V CoolMOS™
CoolSET™-F2
Product Highlights
• Best in class in DIP8, DIP7, TO220 and DSO16/12 packages
• No heat-sink required for DIP8, DIP7 and DSO16/12
• Increased creepage distance for TO220, DIP7 and DSO16/12
• Isolated drain for TO220 packages
• Lowest standby power dissipation
• Enhanced protection functions with Auto Restart Mode
• Pb-free lead plating for all packages; RoHS compliant
Features
650V/800V avalanche rugged CoolMOS™
Only few external components required
Input Vcc Undervoltage Lockout
67kHz/100kHz switching frequency
Max duty cycle 72%
Low Power Standby Mode to meet European Commission Requirements
Thermal Shut Down with Auto Restart
Overload and Open Loop Protection
Overvoltage Protection during Auto Restart
Adjustable Peak Current Limitation via external resistor
Overall tolerance of Current Limiting < ±5%
Internal Leading Edge Blanking
User defined Soft Start
Soft driving for low EMI
Description
The second generation CoolSET™-F2 provides several special enhancements to satisfy the needs for low power standby and protection features. In standby mode frequency reduction is used to lower the power consumption and support a stable output voltage in this mode. The frequency reduction is limited to 20kHz/21.5 kHz to avoid audible noise. In case of failure modes like open loop, overvoltage or overload due to short circuit the device switches in Auto Restart Mode which is controlled by the internal protection unit. By means of the internal precise peak current limitation, the dimension of the transformer and the secondary diode can be sized lower which leads to more cost effective for the overall system.
PG-DIP-7-1
P-DIP-7-1
PG-DIP-8-6
P-DIP-8-4, -6
PG-TO220-6-47PG-TO220-6-46
PG-DSO-16/12
Typical Application
+
85 ... 270 VAC
SoftS
C
Soft Start
FB
Feedback
Low Power
StandBy
Soft-Start Control
PWM-Controller
CoolSET™-F2
VCC
Power
Management
Protect ion Unit
R
Start -up
C
VCC
PWM Controller
Current Mode
Precise Low Tolerance
Peak Current Li mitati on
Snubber
Dra in
CoolMOS™
Isense
GND
R
Feedback
Sense
Converter
DC Output
-
Version 2.6 3 25 Dec 2006
Overview
CoolSET™-F2
Type Package V
DS
F
OSC
R
DSon
1)
230VAC ±15%
2)
85-265 VAC
ICE2A0565 PG-DIP-8-6 650V 100kHz 4.7 23W 13W
ICE2A165 PG-DIP-8-6 650V 100kHz 3.0 31W 18W
ICE2A265 PG-DIP-8-6 650V 100kHz 0.9 52W 32W
ICE2A365 PG-DIP-8-6 650V 100kHz 0.45 67W 45W
ICE2B0565 PG-DIP-8-6 650V 67kHz 4.7 23W 13W
ICE2B165 PG-DIP-8-6 650V 67kHz 3.0 31W 18W
ICE2B265 PG-DIP-8-6 650V 67kHz 0.9 52W 32W
ICE2B365 PG-DIP-8-6 650V 67kHz 0.45 67W 45W
ICE2A0565Z PG-DIP-7-1 650V 100kHz 4.7 23W 13W
ICE2A180Z PG-DIP-7-1 800V 100kHz 3.0 29W 17W
ICE2A280Z PG-DIP-7-1 800V 100KHz 0.8 50W 31W
1)
typ @ T=25°C
2)
Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm²
Type Package V
DS
F
OSC
R
DSon
1)
230VAC ±15%
2)
85-265 VAC
ICE2A0565G PG-DSO-16/12 650V 100kHz 4.7Ω 23W 13W
1)
typ @ T=25°C
2)
Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm²
2)
2)
Type Package V
DS
F
OSC
R
DSon
1)
230VAC ±15%
2)
85-265 VAC
2)
ICE2A765I PG-TO-220-6-46 650V 100kHz 0.45 240W 130W
ICE2B765I PG-TO-220-6-46 650V 67kHz 0.45 240W 130W
ICE2A765P2 PG-TO-220-6-47 650V 100kHz 0.45 240W 130W
ICE2B765P2 PG-TO-220-6-47 650V 67kHz 0.45 240W 130W
ICE2A380P2 PG-TO-220-6-47 800V 100kHz 1.89 111W 60W
1)
typ @ T=25°C
2)
Maximum practical continuous power in an open frame design at Ta=75°C, Tj=125°C and R
thCA
=2.7K/W
Version 2.6 4 25 Dec 2006
CoolSET™-F2
Table of Contents Page
1 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.1 Pin Configuration with PG-DIP-8-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.2 Pin Configuration with PG-DIP-7-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.3 Pin Configuration with PG-TO220-6-46/7 . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4 Pin Configuration with PG-DSO-16/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.5 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2 Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.2 Improved Current Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.2.1 PWM-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2.2 PWM-Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.3 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.4 Oscillator and Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.4.1 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.4.2 Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5.1 Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5.2 Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.6 PWM-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.7 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.8 Protection Unit (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.8.1 Overload / Open Loop with Normal Load . . . . . . . . . . . . . . . . . . . . . . . .15
3.8.2 Overvoltage due to Open Loop with No Load . . . . . . . . . . . . . . . . . . . . .16
3.8.3 Thermal Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.2 Thermal Impedance (ICE2X765I and ICE2X765P2) . . . . . . . . . . . . . . . . . .20
4.3 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.4.1 Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.4.2 Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.4.3 Control Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.4.4 Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.4.5 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.4.6 CoolMOS™ Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6 Layout Recommendation for C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
18
7 Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Version 2.6 5 25 Dec 2006
Pin Configuration and Functionality
1 Pin Configuration and Functionality
CoolSET™-F2
1.1 Pin Configuration with PG-DIP-8-6
Pin Symbol Function
1 SoftS Soft-Start
2 FB Feedback
3 Isense Controller Current Sense Input,
CoolMOS™ Source Output
4Drain
5Drain
6 N.C Not connected
7 VCC Controller Supply Voltage
8 GND Controller Ground
1)
at Tj = 110°C
2)
at Tj = 25°C
1)
650V
/800V2) CoolMOS™ Drain
1)
650V
/800V2) CoolMOS™ Drain
1.2 Pin Configuration with PG-DIP-7-1
Pin Symbol Function
1 SoftS Soft-Start
2 FB Feedback
3 Isense Controller Current Sense Input,
CoolMOS™ Source Output
4 N.C. Not connected
5Drain
7 VCC Controller Supply Voltage
8 GND Controller Ground
1)
at Tj = 110°C
2)
at Tj = 25°C
1)
650V
/800V2) CoolMOS™ Drain
Package PG-DIP-8-6
Sof tS
1
2
Is ens e
Dr ain
Figure 1 Pin Configuration PG-DIP-8-6 (top view)
3
4
GND
8
7
VCCFB
6
N.C
5
Dr ain
Package PG-DIP-7-1
Sof tS
1
2
Is ens e
n.c.
Figure 2 Pin Configuration PG-DIP-7-1 (top view)
3
4
GND
8
7
VCCFB
5
Dr ain
Version 2.6 6 25 Dec 2006
CoolSET™-F2
Pin Configuration and Functionality
1.3 Pin Configuration with PG-TO220-6-46/ 7
Pin Symbol Function
1Drain
1)
650V
CoolMOS™ Drain
3 Isense Controller Current Sense Input,
CoolMOS™ Source Output
4 GND Controller Ground
5 VCC Controller Supply Voltage
6 SoftS Soft-Start
7 FB Feedback
1)
at Tj = 110°C
Package PG-TO220-6-46/47
1.4 Pin Configuration with PG-DSO-16/12
Pin Symbol Function
1 N.C. Not Connected
2 SoftS Soft-Start
3 FB Feedback
4 Isense Controller Current Sense Input,
CoolMOS™ Source Output
5Drain
6Drain
7Drain
8Drain
9 N.C. Not Connected
10 N.C. Not Connected
11 VCC Controller Supply Voltage
12 GND Controller Ground
1)
at Tj = 110°C
1)
650V
CoolMOS™ Drain
1)
CoolMOS™ Drain
650V
1)
CoolMOS™ Drain
650V
1)
650V
CoolMOS™ Drain
1
234567
Drain
Isense
GND
VCC
SoftS
FB
Figure 3 Pin Configuration PG-TO220-6-46/47
(top view)
Package PG-DSO-16/12
N.C
Soft S
FB
Isense
Drain
Drain
1
2
3
4
5
6
12
11
10
Figure 4 Pin Configuration PG-DSO-16/12 (top
view)
GND
VCC
N.C
N.C.
9
Drain
8
Drain
7
Version 2.6 7 25 Dec 2006
1.5 Pin Functionality
SoftS (Soft Start & Auto Restart Control)
This pin combines the function of Soft Start in case of Start Up and Auto Restart Mode and the controlling of the Auto Restart Mode in case of an error detection.
FB (Feedback)
The information about the regulation is provided by the FB Pin to the internal Protection Unit and to the internal PWM-Comparator to control the duty cycle.
Isense (Current Sense)
The Current Sense pin senses the voltage developed on the series resistor inserted in the source of the integrated CoolMOS™. When Isense reaches the internal threshold of the Current Limit Comparator, the Driver output is disabled. By this means the Over Current Detection is realized.
Furthermore the current information is provided for the PWM-Comparator to realize the Current Mode.
CoolSET™-F2
Pin Configuration and Functionality
Drain (Drain of integrated CoolMOS™)
Pin Drain is the connection to the Drain of the internal CoolMOS
VCC (Power supply)
This pin is the positive supply of the IC. The operating range is between 8.5V and 21V.
To provide overvoltage protection the driver gets disabled when the voltage becomes higher than 16.5V during Start Up Phase.
GND (Ground)
This pin is the ground of the primary side of the SMPS.
TM
.
Version 2.6 8 25 Dec 2006
2 Representative Blockdiagram
OUT
-
+
V
Converter
DC Output
CoolSET™-F2
Representative Blockdiagram
Sense
R
Isense
Optocoupler
PWM
R
Comparator
Error-Latch
0.3V
D1
10k
220ns
Blanking
Leading Edge
csth
V
67kHz
100kHz
f
norm
20kHz
21.5kHz
standby
f
ICE2Bxxxx
Propagation-Delay
Compensation
Current Limiting
Comparator
Current-Limit
ICE2Axxxx
C5
osc
f
x3.65
0.8V
FB
U
norm
standby
f
f
Standby Unit
Improved Current Mode
PWM OP
Snubber
Drain
CoolMOS™
Gate
Driver
Q
Q
S
Soft-Start
Soft Start
PWM-Latch
Comparator
R
SQ
Spike
G4
Q
s 5
Blanking
G3
G2
0.72
Duty Cycle Max
norm
-f
max
Clock
Duty Cycle
Voltage
4.8V
4.0V
Reference
standby
f
Reset
Power-Up
G1
Oscillator
6.5V
5.3V
Internal Bias
Power Management
13.5V
Reset
Lockout
Power-Down
Undervoltage
Line
VCC
C
C
8.5V
16.5V
4.0V
6.5V
C2
Soft-Start
R
SoftS
5.6V
C4
C3
4.8V
5.3V
FB
R
6.5V
T1
Soft-Start
C
FB
>140°C
j
T
Thermal Shutdown
Protection Unit
GND
CoolSET™-F2
Start-up
R
85 ... 270 VAC
C1
VCC
Figure 5 Representative Blockdiagram
Version 2.6 9 25 Dec 2006
CoolSET™-F2
Functional Description
3 Functional Description
3.1 Power Management
Main Line (100V-380V)
R
Start-Up
Primary Winding
C
VCC
VCC
Power Management
SoftS
C
Soft-Start
Undervoltage
Lockout
8.5V
Power-Down
Reset
Power-Up
Reset
R
T1
13.5V
6.5V
Soft-Start
Internal
Bias
Voltage
Reference
RSQ
Q
Error-Latch
Soft-Start Comparator
Error-Detection
6.5V
5.3V
4.8V
4.0V
PWM-Latch
3.2 Improved Current Mode
Soft-Start Comparator
FB
PWM-Latch
RSQ
Driver
PWM Comparator
Q
0.8V
PWM OP
x3.65
Isense
Improved Current Mode
Figure 7 Current Mode
Current Mode means that the duty cycle is controlled by the slope of the primary current. This is done by comparison the FB signal with the amplified current sense signal.
Amplified Current Signal
FB
Figure 6 Power Management
The Undervoltage Lockout monitors the external supply voltage V
. In case the IC is inactive the
VCC
current consumption is max. 55µA. When the SMPS is plugged to the main line the current through R charges the external Capacitor C exceeds the on-threshold V
=13.5V the internal bias
CCon
. When V
VCC
Start-up
VCC
0.8V
Driver
t
circuit and the voltage reference are switched on. After that the internal bandgap generates a reference voltage V
=6.5V to supply the internal circuits. To
REF
T
on
avoid uncontrolled ringing at switch-on a hysteresis is implemented which means that switch-off is only after active mode when Vcc falls below 8.5V.
In case of switch-on a Power Up Reset is done by resetting the internal error-latch in the protection unit.
When V
falls below the off-threshold V
VCC
=8.5V the
CCoff
internal reference is switched off and the Power Down reset let T1 discharging the soft-start capacitor C
Soft-Start
at pin SoftS. Thus it is ensured that at every switch-on the voltage ramp at pin SoftS starts at zero.
Figure 8 Pulse Width Modulation
In case the amplified current sense signal exceeds the FB signal the on-time T
of the driver is finished by
on
resetting the PWM-Latch (see Figure 8). The primary current is sensed by the external series
resistor R
inserted in the source of the integrated
Sense
t
CoolMOS™. By means of Current Mode regulation, the
Version 2.6 10 25 Dec 2006
secondary output voltage is insensitive on line variations. Line variation changes the current waveform slope which controls the duty cycle.
The external R
allows an individual adjustment of
Sense
the maximum source current of the integrated CoolMOS™.
Soft-Start Comparator
V
CoolSET™-F2
Functional Description
OSC
max .
Dut y Cy cle
PWM Comparator
FB
PWM-Latch
Oscillator
0.3V C5
V
OSC
Gate Driver
0.8V
10k
x3.65
T
2
C
1
R
1
20pF
V
1
PWM OP
Voltage Ramp
Figure 9 Improved Current Mode
To improve the Current Mode during light load conditions the amplified current ramp of the PWM-OP is superimposed on a voltage ramp, which is built by the switch T low pass filter composed of R Figure 10). Every time the oscillator shuts down for max. duty cycle limitation the switch T2 is closed by V
. When the oscillator triggers the Gate Driver T2 is
OSC
opened so that the voltage ramp can start. In case of light load the amplified current ramp is to
small to ensure a stable regulation. In that case the Voltage Ramp is a well defined signal for the comparison with the FB-signal. The duty cycle is then controlled by the slope of the Voltage Ramp.
By means of the Comparator C5, the Gate Driver is switched-off until the voltage ramp exceeds 0.3V. It allows the duty cycle to be reduced continuously till 0% by decreasing V
, the voltage source V1 and the 1st order
2
below that threshold.
FB
and C1(see Figure 9,
1
Voltage Ramp
0.8V
FB
0.3V
Gate Driver
t
t
t
Figure 10 Light Load Conditions
3.2.1 PWM-OP
The input of the PWM-OP is applied over the internal leading edge blanking to the external sense resistor R
connected to pin Isense. R
Sense
converts the
Sense
source current into a sense voltage. The sense voltage is amplified with a gain of 3.65 by PWM OP. The output of the PWM-OP is connected to the voltage source V1. The voltage ramp with the superimposed amplified current signal is fed into the positive inputs of the PWM­Comparator, C5 and the Soft-Start-Comparator.
3.2.2 PWM-Comparator
The PWM-Comparator compares the sensed current signal of the integrated CoolMOS signal V
(see Figure 11). VFB is created by an
FB
external optocoupler or external transistor in combination with the internal pull-up resistor R provides the load information of the feedback circuitry. When the amplified current signal of the integrated CoolMOS™ exceeds the signal V Comparator switches off the Gate Driver.
TM
with the feedback
FB
the PWM-
FB
and
Version 2.6 11 25 Dec 2006
CoolSET™-F2
Functional Description
R
FB
FB
Optocoupler
6.5V
Soft-Start Comparator
PWM-Latch
PWM Comparator
0.8V
PWM OP
Isense
x3.65
Improved Current Mode
pull-up resistor R
. The Soft-Start-Comparator
Soft-Start
compares the voltage at pin SoftS at the negative input with the ramp signal of the PWM-OP at the positive input. When Soft-Start voltage V Feedback voltage V
the Soft-Start-Comparator limits
FB
is less than
SoftS
the pulse width by resetting the PWM-Latch (see Figure 12). In addition to Start-Up, Soft-Start is also activated at each restart attempt during Auto Restart. By means of the above mentioned C
Soft-Start
the Soft­Start can be defined by the user. The Soft-Start is finished when V
exceeds 5.3V. At that time the
SoftS
Protection Unit is activated by Comparator C4 and senses the FB by Comparator C3 wether the voltage is below 4.8V which means that the voltage on the secondary side of the SMPS is settled. The internal Zener Diode at SoftS has a clamp voltage of 5.6V to prevent the internal circuit from saturation (see Figure
13).
6.5V
5.6V
R
SoftS
Power-Up Reset
Soft-Start
Error-Latch
RSQ
Figure 11 PWM Controlling
3.3 Soft-Start
V
SoftS
5.6V
5.3V
T
Soft-Start
Gate Driver
6.5V
5.3V
4.8V
R
FB
C4
C3
G2
Q
RSQ
Gate Driver
FB
Clock
Q
PWM-Latch
Figure 13 Activation of Protection Unit
The Start-Up time T voltage V Start Phase T
is settled must be shorter than the Soft-
OUT
Soft-Start
T
C
t
Soft Start
-------------------------------------=
R
Soft Start
within the converter output
Start-Up
(see Figure 14).
Soft Start
1.69×
By means of Soft-Start there is an effective minimization of current and voltage stresses on the integrated CoolMOS™, the clamp circuit and the output overshoot and prevents saturation of the transformer during Start-Up.
t
Figure 12 Soft-Start Phase
The Soft-Start is realized by the internal pull-up resistor R Figure 5). The Soft-Start voltage V charging the external capacitor C
and the external Capacitor C
Soft-Start
Soft-Start
is generated by
SoftS
by the internal
Soft-Start
(see
Version 2.6 12 25 Dec 2006
CoolSET™-F2
Functional Description
V
SoftS
5.3V
T
Soft-Start
V
FB
t
4.8V
V
OUT
V
OUT
T
Start-Up
t
t
Figure 14 Start Up Phase
3.4 Oscillator and Frequency Reduction
3.4.1 Oscillator
The oscillator generates a frequency f 100kHz. A resistor, a capacitor and a current source and current sink which determine the frequency are integrated. The charging and discharging current of the implemented oscillator capacitor are internally trimmed, in order to achieve a very accurate switching frequency. The ratio of controlled charge to discharge current is adjusted to reach a max. duty cycle limitation of D
=0.72.
max
= 67kHz/
switch
kHz
100
65
OSC
f
21.5
1.0
1.1 1.2 1 .3 1. 4 1.5 1. 6 1.7 1.8 1. 9 2.0
f
norm
21.5kHz
f
standby
67kHz
20kHz
ICE2 Bxx x xICE2Axxxx
100kHz
V
FB
V
Figure 15 Frequency Dependence
3.5 Current Limiting
There is a cycle by cycle current limiting realized by the Current-Limit Comparator to provide an overcurrent detection. The source current of the integrated CoolMOS R
Sense
transformed to a sense voltage V voltage V V
csth
TM
is sensed via an external sense resistor
. By means of R
exceeds the internal threshold voltage
Sense
the source current is
Sense
. When the
Sense
the Current-Limit-Comparator immediately turns off the gate drive. To prevent the Current Limiting from distortions caused by leading edge spikes a Leading Edge Blanking is integrated at the Current Sense. Furthermore a Propagation Delay Compensation is added to support the immediate shut down of the CoolMOS™ in case of overcurrent.
3.5.1 Leading Edge Blanking
V
Sense
V
csth
t
= 220ns
LEB
3.4.2 Frequency Reduction
The frequency of the oscillator is depending on the voltage at pin FB. The dependence is shown in Figure
15. This feature allows a power supply to operate at lower frequency at light loads thus lowering the switching losses while maintaining good cross regulation performance and low output ripple. In case of low power the power consumption of the whole SMPS can now be reduced very effective. The minimal reachable frequency is limited to 20kHz/21.5 kHz to avoid audible noise in any case.
Figure 16 Leading Edge Blanking
Each time when CoolMOS™ is switched on a leading spike is generated due to the primary-side capacitances and secondary-side rectifier reverse recovery time. To avoid a premature termination of the switching pulse this spike is blanked out with a time constant of t
= 220ns. During that time the output of
LEB
t
Version 2.6 13 25 Dec 2006
CoolSET™-F2
e
-
Functional Description
the Current-Limit Comparator cannot switch off the gate drive.
3.5.2 Propagation Delay Compensation
In case of overcurrent detection by I of CoolMOS™ is delayed due to the propagation delay of the circuit. This delay causes an overshoot of the peak current I
which depends on the ratio of dI/dt of
peak
the peak current (see Figure 17). .
the shut down
Limit
Signal2Signal1
I
peak2
I
peak1
I
Limit
I
Sense
I
Overshoot2
t
Propagation Del ay
I
Overshoot1
t
Figure 17 Current Limiting
The overshoot of Signal2 is bigger than of Signal1 due to the steeper rising waveform.
A propagation delay compensation is integrated to bound the overshoot dependent on dI/dt of the rising primary current. That means the propagation delay time between exceeding the current sense threshold V
and the switch off of CoolMOS™ is compensated
csth
over temperature within a range of at least.
dI
peak
Sense
------------×
dt
max. Duty Cycle
R
≤≤
V
OSC
dV
Sens
--------------
dt
The propagation delay compensation is done by means of a dynamic threshold voltage V
(see Figure
csth
18). In case of a steeper slope the switch off of the driver is earlier to compensate the delay.
E.g. I
= 0.5A with R
peak
= 2. Without propagation
Sense
delay compensation the current sense threshold is set to a static voltage level V dI/dt = 0.4A/µs, that means dV propagation delay time of i.e. t leads then to a I
overshoot of 14.4%. By means of
peak
=1V. A current ramp of
csth
/dt = 0.8V/µs, and a
Sense
Propagation Delay
=180ns
propagation delay compensation the overshoot is only about 2% (see Figure 19).
dV
Sense
without compensation
V/u s
with compensation
V
1.3
1.25
1.2
1.15
1.1
Sense
V
1.05
1
0.95
0.9 0 0. 2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
dt
Figure 19 Overcurrent Shutdown
3.6 PWM-Latch
The oscillator clock output applies a set pulse to the PWM-Latch when initiating CoolMOS™ conduction. After setting the PWM-Latch can be reset by the PWM­OP, the Soft-Start-Comparator, the Current-Limit­Comparator, Comparator C3 or the Error-Latch of the Protection Unit. In case of resetting the driver is shut down immediately.
3.7 Driver
off ti me
V
Sense
V
csth
Propagation Delay
Signal1 Signal2
Figure 18 Dynamic Voltage Threshold V
csth
The driver-stage drives the gate of the CoolMOS™ and is optimized to minimize EMI and to provide high circuit
t
efficiency. This is done by reducing the switch on slope when reaching the CoolMOS™ threshold. This is achieved by a slope control of the rising edge at the driver’s output (see Figure 20) to the CoolMOS™ gate.
Thus the leading switch on spike is minimized. When CoolMOS™ is switched off, the falling shape of the driver is slowed down when reaching 2V to prevent an
t
overshoot below ground. Furthermore the driver circuit is designed to eliminate cross conduction of the output stage. At voltages below the undervoltage lockout threshold V
the gate drive is active low.
VCCoff
Version 2.6 14 25 Dec 2006
CoolSET™-F2
Functional Description
ca. t = 130ns
5V
V
Gate
t
Figure 20 Internal Gate Rising Slope
3.8 Protection Unit (Auto Restart Mode)
An overload, open loop and overvoltage detection is integrated within the Protection Unit. These three failure modes are latched by an Error-Latch. Additional thermal shutdown is latched by the Error-Latch. In case of those failure modes the Error-Latch is set after a blanking time of 5µs and the CoolMOS™ is shut down. That blanking prevents the Error-Latch from distortions caused by spikes during operation mode.
3.8.1 Overload / Open Loop with Normal Load
Figure 21 shows the Auto Restart Mode in case of overload or open loop with normal load. The detection of open loop or overload is provided by the Comparator C3, C4 and the AND-gate G2 (see Figure 22). The detection is activated by C4 when the voltage at pin SoftS exceeds 5.3V. Till this time the IC operates in the Soft-Start Phase. After this phase the comparator C3 can set the Error-Latch in case of open loop or overload which leads the feedback voltage V threshold of 4.8V. After latching VCC decreases till
8.5V and inactivates the IC. At this time the external
Soft-Start capacitor is discharged by the internal transistor T1 due to Power Down Reset. When the IC is inactive V the Capacitor C R
. Then the Error-Latch is reset by Power Up
Start-Up
increases till V
VCC
by means of the Start-Up Resistor
VCC
CCon
Reset and the external Soft-Start capacitor C charged by the internal pull-up resistor R the Soft-Start Phase which ends when the voltage at pin SoftS exceeds 5.3V the detection of overload and open loop by C3 and G2 is inactive. In this way the Start Up Phase is not detected as an overload.
to exceed the
FB
= 13.5V by charging
is
Soft-Start
. During
Soft-Start
Overload / Open Loop with Normal Load
5µs Blanking
FB
4.8V
Failure
Det ect i on
Soft S
5.3V
Soft-Start Phase
T
Dri ve r
VCC
13.5V
8.5V
Burst 1
Figure 21 Auto Restart Mode
SoftS
FB
C
Soft-Start
6.5V
R
T1
Power Up Reset
Soft-Start
C4
5.3V
4.8V C3
T
Resta rt
G2
t
t
t
t
Error-Latch
R
FB
6.5V
Figure 22 FB-Detection
Version 2.6 15 25 Dec 2006
CoolSET™-F2
Functional Description
But the Soft-Start Phase must be finished within the Start Up Phase to force the voltage at pin FB below the failure detection threshold of 4.8V.
3.8.2 Overvoltage due to Open Loop with No Load
Open loop & no load condition
5µs Blanking
FB
4.8V
Failure
Detection
SoftS
5.3V
4.0V
Driver
Soft-Start Phase
Overvoltage
Detection Phase
T
Burst2
T
Restart
t
t
normal operation mode is prevented from overvoltage detection due to varying of VCC concerning the regulation of the converter output. When the voltage V
is above 4.0V the overvoltage detection by C1 is
SoftS
deactivated.
VCC
6.5V C1
16.5V
R
Soft-Start
4.0V
SoftS
C
Soft-Start
T1
C2
Power Up Reset
Figure 24 Overvoltage Detection
3.8.3 Thermal Shut Down
Error Latch
G1
t
t
VCC
16.5V
13.5V
8.5V
Overvoltage Detection
Figure 23 Auto Restart Mode
Figure 23 shows the Auto Restart Mode for open loop and no load condition. In case of this failure mode the converter output voltage increases and also VCC. An additional protection by the comparators C1, C2 and the AND-gate G1 is implemented to consider this failure mode (see Figure 24).The overvoltage detection is provided by Comparator C1 only in the first time during the Soft-Start Phase till the Soft-Start voltage exceeds the threshold of the Comparator C2 at 4.0V and the voltage at pin FB is above 4.8V. When VCC exceeds 16.5V during the overvoltage detection phase C1 can set the Error-Latch and the Burst Phase during Auto Restart Mode is finished earlier. In that case T
is shorter than T
Burst2
. By means of C2 the
Soft-Start
Thermal Shut Down is latched by the Error-Latch when junction temperature T
of the pwm controller is
j
exceeding an internal threshold of 140°C. In that case the IC switches in Auto Restart Mode.
Note: All the values which are mentioned in the
functional description are typical. Please refer to Electrical Characteristics for min/max limit values.
Version 2.6 16 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4 Electrical Characteristics
4.1 Absolute Maximum Ratings
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction
of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 6 (VCC) is discharged before assembling the application circuit.
Parameter Symbol Limit Values Unit Remarks
min. max.
Drain Source Voltage ICE2A0565/165/265/365/765I/765P2 ICE2B0565/165/265/365/765I/765P2 ICE2A0565G ICE2A0565Z
Drain Source Voltage ICE2A180Z/280Z/380P2
Pulsed drain current,
t
limited by T
p
jmax
ICE2A0565/ ICE2B056/ ICE2A0565G/ ICE2A0565Z
ICE2A165/ ICE2B165
ICE2A265/ ICE2B265
ICE2A365/ ICE2B365
ICE2A180Z I
ICE2A280Z I
ICE2A765P2/ ICE2B765P2/ ICE2A765I/ ICE2B765I
V
DS
V
DS
I
D_Puls1
I
D_Puls2
I
D_Puls3
I
D_Puls4
D_Puls5
D_Puls6
I
D_Puls7
-650VTj = 110°C
-800VTj = 25°C
2.0 A
3.8 A
9.8 A
23.3 A
4.1 A
14.8 A
19.0 A
ICE2A380P2/ I
D_Puls8
5.7 A
Version 2.6 17 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
Parameter Symbol Limit Values Unit Remarks
min. max.
Avalanche energy, repetitive t max. T
1)
Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR* f
limited by
AR
=150°C
j
1)
ICE2A0565 E
ICE2A165 E
ICE2A265 E
ICE2A365 E
ICE2B0565 E
ICE2B165 E
ICE2B265 E
ICE2B365 E
ICE2A0565G E
ICE2A0565Z E
ICE2A180Z E
ICE2A280Z E
ICE2A765I E
ICE2B765I E
ICE2A765P2 E
ICE2B765P2 E
ICE2A380P2 E
AR1
AR2
AR3
AR4
AR5
AR6
AR7
AR8
AR9
AR10
AR11
AR12
AR13
AR14
AR15
AR16
AR17
-0.01mJ
-0.07mJ
-0.40mJ
-0.50mJ
-0.01mJ
-0.07mJ
-0.40mJ
-0.50mJ
-0.01mJ
-0.01mJ
-0.07mJ
-0.40mJ
-0.50mJ
-0.50mJ
-0.50mJ
-0.50mJ
-0.06mJ
Version 2.6 18 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
Parameter Symbol Limit Values Unit Remarks
min. max.
Avalanche current, repetitive tAR limited by max. T
V
=150°C
j
Supply Voltage V
CC
FB Voltage V
SoftS Voltage V
I
Sense
Junction Temperature T
Storage Temperature T
Thermal Resistance Junction-Ambient
ESD Robustness
1)
Equivalent to discharging a 100pF capacitor through a 1.5 k series resistor
1)
ICE2A0565 I
ICE2A165 I
ICE2A265 I
ICE2A365 I
ICE2B0565 I
ICE2B165 I
ICE2B265 I
ICE2B365 I
ICE2A0565G I
ICE2A0565Z I
ICE2A180Z I
ICE2A280Z I
ICE2A765I I
ICE2B765I I
ICE2A765P2 I
ICE2B765P2 I
ICE2A380P2 I
AR1
AR2
AR3
AR4
AR5
AR6
AR7
AR8
AR9
AR10
AR11
AR12
AR13
AR14
AR15
AR16
AR17
CC
FB
SoftS
I
Sense
j
S
R
thJA1
R
thJA2
R
thJA3
V
ESD
-0.5A
-1A
-2A
-3A
-0.5A
-1A
-2A
-3A
-0.5A
-0.5A
-1A
-2A
-7A
-7A
-7A
-7A
-2.4A
-0.3 22 V
-0.3 6.5 V
-0.3 6.5 V
-0.3 3 V
-40 150 °C Controller & CoolMOS™
-50 150 °C
- 90 K/W PG-DIP-8-6
- 96 K/W PG-DIP-7-1
- 110 K/W P-DSO-16/12
-22)kV Human Body Model
2)
1kV at pin drain of ICE2x0565, ICE2A0565Z and ICE2A0565G
Version 2.6 19 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.2 Thermal Impedance (ICE2X765I and ICE2X765P2)
Parameter Symbol Limit Values Unit Remarks
min. max.
Thermal Resistance Junction-Ambient
ICE2A765I ICE2B765I
R
thJA4
- 74 K/W Free standing with no heat-sink
ICE2A765P2 ICE2B765P2
ICE2A380P2 R
Junction-Case ICE2A765I
R
thJA5
thJC1
-82K/W
-2.5K/W
ICE2B765I ICE2A765P2 ICE2B765P2
ICE2A380P2 R
thJC2
-2.86K/W
4.3 Operating Range
Note: Within the operating range the IC operates as described in the functional description.
Parameter Symbol Limit Values Unit Remarks
min. max.
V
Supply Voltage V
CC
Junction Temperature of Controller
T
CC
JCon
V
CCoff
21 V
-25 130 °C Limited due to thermal shut down of controller
Junction Temperature of
T
JCoolMOS
-25 150 °C
CoolMOS™
Version 2.6 20 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4 Characteristics
Note: The electrical characteristics involve the spread of values given within the specified supply voltage and
junction temperature range T are related to 25°C. If not otherwise stated, a supply voltage of V
4.4.1 Supply Section
Parameter Symbol Limit Values Unit Test Condition
from – 25 °C to 125 °C.Typical values represent the median values, which
J
= 15 V is assumed.
CC
min. typ. max.
Start Up Current I
Supply Current with Inactive Gate
Supply Current with Active Gate
ICE2A0565 I
ICE2A165 I
ICE2A265 I
ICE2A365 I
ICE2B0565 I
ICE2B165 I
ICE2B265 I
ICE2B365 I
ICE2A0565G I
ICE2A0565Z I
ICE2A180Z I
ICE2A280Z I
Supply Current with Active Gate
ICE2A765I I
ICE2B765I I
ICE2A765P2 I
ICE2B765P2 I
ICE2A380P2 I
VCC Turn-On Threshold VCC Turn-Off Threshold VCC Turn-On/Off Hysteresis
VCC1
I
VCC2
VCC3
VCC4
VCC5
VCC6
VCC7
VCC8
VCC9
VCC10
VCC11
VCC12
VCC13
VCC14
VCC15
VCC16
VCC17
VCC18
VCC19
V
CCon
V
CCoff
V
CCHY
-275AVCC=V
-5.06.6mAV
-5.36.7mAV
-6.57.8mA
I
I
SoftS
FB
SoftS
FB
= 0
= 0
-6.78.0mA
-8.59.8mA
-5.26.7mA
-5.57.0mA
-6.17.3mA
-7.18.3mA
-5.36.7mA
-5.36.7mA
-6.57.8mA
-7.79.0mA
-8.59.8mAV
-7.18.3mA
I
SoftS
FB
= 0
-8.59.8mA
-7.18.3mA
-6.78.0mA
13
-
4.5
13.5
8.5 5
14
-
5.5
V V V
CCon
= 0
= 5V
= 5V
-0.1V
Version 2.6 21 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4.2 Internal Voltage Reference
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Trimmed Reference Voltage V
REF
6.37 6.50 6.63 V measured at pin FB
4.4.3 Control Section
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Oscillator Frequency ICE2A0565/165/265/365/765I/765P2 ICE2A0565G/0565Z/180Z/280Z/380P2
Oscillator Frequency ICE2B0565/165/265/365/765I/765P2
Reduced Osc. Frequency ICE2A0565/165/265/365/765I/765P2 ICE2A0565G/0565Z/180Z/280Z/380P2
Reduced Osc. Frequency ICE2B0565/165/265/365/765I/765P2
Frequency Ratio f
osc1/fosc2
ICE2A0565/165/265/365/765I/765P2 ICE2A0565G/0565Z/180Z/280Z/380P2
Frequency Ratio f
osc3/fosc4
ICE2B0565/165/265/365/765I/765P2
f
OSC1
f
OSC3
f
OSC2
f
OSC4
93 100 107 kHz VFB = 4V
62 67 72 kHz VFB = 4V
-21.5-kHzVFB = 1V
-20-kHzVFB = 1V
4.5 4.65 4.9
3.18 3.35 3.53
Max Duty Cycle D
Min Duty Cycle D
PWM-OP Gain A
V
Operating Range Min Level V
FB
V
Operating Range Max level V
FB
Feedback Resistance R
Soft-Start Resistance R
max
min
V
FBmin
FBmax
FB
Soft-Start
0.67 0.72 0.77
0- - VFB < 0.3V
3.45 3.65 3.85
0.3 - - V
--4.6V
3.0 3.7 4.9 k
42 50 62 k
Version 2.6 22 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4.4 Protection Unit
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Over Load & Open Loop
V
FB2
4.65 4.8 4.95 V V
SoftS
> 5.5V
Detection Limit
Activation Limit of Overload &
V
SoftS1
5.15 5.3 5.46 V VFB > 5V
Open Loop Detection
Deactivation Limit of Overvoltage Detection
Overvoltage Detection Limit V
Latched Thermal Shutdown T
Spike Blanking t
1)
The parameter is not subject to production test - verified by design/characterization
V
Spike
SoftS2
VCC1
jSD
3.88 4.0 4.12 V VFB > 5V
V
> 17.5V
CC
16 16.5 17.2 V V
130 140 150 °C
V
1)
SoftS
> 5V
FB
< 3.8V
-5-µs
4.4.5 Current Limiting
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Peak Current Limitation (incl. Propagation Delay Time)
V
csth
0.95 1.0 1.05 V dV
/ dt = 0.6V/µs
sense
Leading Edge Blanking t
LEB
-220-ns
Version 2.6 23 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4.6 CoolMOS™ Section
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Drain Source Breakdown Voltage ICE2A0565/165/265/365/765I/765P2 ICE2B0565/165/265/365/765I/765P2 ICE2A0565G/0565Z
Drain Source Breakdown Voltage ICE2A180Z/280Z/380P2
Drain Source
ICE2A0565 R
On-Resistance
ICE2A165 R
ICE2A265 R
ICE2A365 R
ICE2B0565 R
ICE2B165 R
ICE2B265 R
ICE2B365 R
ICE2A0565G R
ICE2A0565Z R
ICE2A180Z R
ICE2A280Z R
ICE2A765I R
ICE2B765I R
ICE2A765P2 R
ICE2B765P2 R
ICE2A380P2 R
V
(BR)DSS
V
(BR)DSS
DSon1
DSon2
DSon3
DSon4
DSon5
DSon6
DSon7
DSon8
DSon9
DSon10
DSon11
DSon12
DSon13
DSon14
DSon15
DSon16
DSon17
600 650
800 870
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4.7
10.0
3
6.6
0.9
1.9
0.45
0.95
4.7
10.0
3
6.6
0.9
1.9
0.45
0.95
4.7
10.0
4.7
10.0
3
6.6
0.8
1.7
0.45
0.95
0.45
0.95
0.45
0.95
0.45
0.95
1.89
4.15
-
-
-
-
5.5
12.5
3.3
7.3
1.08
2.28
0.54
1.14
5.5
12.5
3.3
7.3
1.08
2.28
0.54
1.14
5.5
12.5
5.5
12.5
3.3
7.3
1.06
2.04
0.54
1.14
0.54
1.14
0.54
1.14
0.54
1.14
2.27
4.98
V V
V V
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Ω Ω
Tj=25°C T
=110°C
j
Tj=25°C T
=110°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C
=125°C
T
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Tj=25°C T
=125°C
j
Version 2.6 24 25 Dec 2006
CoolSET™-F2
Electrical Characteristics
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Effective output capacitance, energy related
Zero Gate Voltage Drain Current I
Rise Time t
Fall Time t
1)
Measured in a Typical Flyback Converter Application
ICE2A0565 C
ICE2A165 C
ICE2A265 C
ICE2A365 C
ICE2B0565 C
ICE2B165 C
ICE2B265 C
ICE2B365 C
ICE2A0565G C
ICE2A0565Z C
ICE2A180Z C
ICE2A280Z C
ICE2A765I C
ICE2B765I C
ICE2A765P2 C
ICE2B765P2 C
ICE2A380P2 C
o(er)1
o(er)2
o(er)3
o(er)4
o(er)5
o(er)6
o(er)7
o(er)8
o(er)9
o(er)10
o(er)11
o(er)12
o(er)13
o(er)14
o(er)15
o(er)16
o(er)17
DSS
rise
fall
-4.751-pFVDS =0V to 480V
-7-pF
-21-pF
-30-pF
-4.751-pF
-7-pF
-21-pF
-30-pF
-4.751-pF
-4.751-pF
-7-pF
-22-pF
-30-pF
-30-pF
-30-pF
-30-pF
-16.8-pF
-0.5AV
-30
1)
-ns
VCC
=0V
-301)-ns
Version 2.6 25 25 Dec 2006
5 Typical Performance
Characteristics
CoolSET™-F2
Typical Performance Characteristics
40
38
36
[µA]
34
VCC1
32
30
28
26
Start Up Current I
24
22
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Figure 25 Start Up Current I
5,9
5,7
5,5
[mA]
VCC2
5,3
5,1
4,9
Supply Current I
4,7
4,5
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
VCC1
vs. T
j
Junction Temperature [°C]
Figure 26 Static Supply Current I
VCC2
vs. T
PI-001-190101
7,1
6,9
6,7
6,5
[mA]
6,3
VCCi
6,1
5,9
5,7
5,5
5,3
5,1
Supply Current I
4,9
4,7
4,5
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2B365
ICE2B165
ICE2B265
PI-002-190101
ICE2B0565
Junction Temperature [°C]
Figure 28 Supply Current I
8,5
8,3
8,1
7,9
7,7
[mA]
7,5
7,3
VCCi
7,1
6,9
PI-003-190101
6,7
6,5
6,3
6,1
Supply Current I
5,9
5,7
5,5
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A180Z
VCCI
vs. T
ICE2A280Z
j
PI-002-190101
Junction Temperature [°C]
j
Figure 29 Supply Current I
VCCI
vs. T
j
8.9
8.8
8.4
8.0
7.6
[mA]
7.2
VCCi
6.8
6.4
6.0
5.6
5.2
4.8
Supply Current I
4.4
4.0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A165
ICE2A0565/G/Z
/G/Z
ICE2A365
Junction Temperature [°C]
Figure 27 Supply Current I
VCCI
vs. T
j
ICE2A265
PI-002-190101
8.7
8.5
8.3
8.1
[mA]
7.9
7.7
VCCi
7.5
7.3
7.1
6.9
6.7
6.5
Supply Current I
6.3
6.1
5.9
-25-15-5 5 152535455565758595105115125
ICE2A765P2
ICE2B765P2
ICE2A380P2
Junction Temperature [°C]
Figure 30 Supply Current I
VCCI
vs. T
j
Version 2.6 26 25 Dec 2006
PI-002-190101
CoolSET™-F2
Typical Performance Characteristics
13,58
13,56
[V]
13,54
CCon
13,52
13,50
13,48
13,46
13,44
VCC Turn-On Threshold V
13,42
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Figure 31 VCC Turn-On Threshold V
8,67
8,64
[V]
8,61
VCCoff
8,58
8,55
8,52
8,49
8,46
8,43
VCC Turn-Off Threshold V
8,40
-25-15-5 5 152535455565758595105115125
CCon
Junction Temperature [°C]
vs. T
6,510
[V]
6,505
REF
6,500
6,495
PI-004-190101
6,490
6,485
6,480
6,475
6,470
Trimmed Reference Voltage V
-25-15-5 5 152535455565758595105115125
PI-007-190101
Junction Temperature [°C]
j
Figure 34 Trimmed Reference V
102.0
101.5
101.0
[kHz]
100.5
OSC1
100.0
PI-005-190101
99.5
99.0
98.5
98.0
97.5
Oscillator Frequency f
97.0
-25-15-5 5 152535455565758595105115125
ICE2A0565/G/Z ICE2A165 ICE2A265 ICE2A365 ICE2A180Z ICE2A280Z ICE2A765P2 ICE2A380P2
REF
vs. T
j
PI-008-190101
Junction Temperature [°C]
Figure 32 VCC Turn-Off Threshold V
5,10
[V]
5,07
CCHY
5,04
5,01
4,98
4,95
4,92
4,89
4,86
4,83
VCC Turn-On/Off Hysteresis V
-25-15-5 5 1525354555657585 95105115125
VCCoff
Junction Temperature [°C]
Figure 33 VCC Turn-On/Off Hysteresis V
vs. T
VCCHY
j
vs. T
Figure 35 Oscillator Frequency f
70,0
69,5
69,0
[kHz]
68,5
68,0
OSC3
67,5
PI-006-190101
j
67,0
66,5
66,0
65,5
65,0
64,5
Oscillator Frequency f
64,0
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Figure 36 Oscillator Frequency f
ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2B765P2
OSC1
OSC3
vs. T
vs. T
j
PI-008a-190101
j
Version 2.6 27 25 Dec 2006
CoolSET™-F2
Typical Performance Characteristics
22.0
21.8
[kHz]
21.6
OSC2
21.4
21.2
21.0
20.8
20.6
20.4
20.2
Reduced Osc. Frequency f
20.0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A0565/G/Z ICE2A165 ICE2A265 ICE2A365 ICE2A180Z ICE2A280Z ICE2A765P2 ICE2A380P2
Junction Temperature [°C]
Figure 37 Reduced Osc. Frequency f
21,0
20,8
[kHz]
20,6
OSC4
20,4
20,2
20,0
19,8
19,6
19,4
19,2
Reduced Osc. Frequency f
19,0
-25-15-5 5 152535455565758595105115125
ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2B765P2
OSC2
Junction Temperature [°C]
vs. T
3,45
3,43
3,41
OSC4
/f
3,39
ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2B765P2
PI-010a-190101
PI-009-190101
Frequency Ratio f
OSC3
3,37
3,35
3,33
3,31
3,29
3,27
3,25
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
j
Figure 40 Frequency Ratio f
0,730
0,728
0,726
0,724
0,722
0,720
PI-009a-190101
0,718
0,716
Max. Duty Cycle
0,714
0,712
0,710
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
OSC3
/ f
OSC4
vs. T
j
PI-011-190101
Junction Temperature [°C]
Figure 38 Reduced Osc. Frequency f
4.75
4.73
4.71
OSC2
/f
4.69
OSC1
4.67
4.65
4.63
4.61
4.59
Frequency Ratio f
4.57
4.55
-25-15-5 5 152535455565758595105115125
ICE2A0565/G/Z ICE2A165 ICE2A265 ICE2A365 ICE2A180Z ICE2A280Z ICE2A765P2 ICE2A380P2
OSC4
Junction Temperature [°C]
Figure 39 Frequency Ratio f
OSC1
/ f
OSC2
vs. T
vs. T
j
Figure 41 Max. Duty Cycle vs. T
3,70
3,69
3,68
3,67
V
3,66
PI-010-190101
3,65
3,64
3,63
PWM-OP Gain A
3,62
3,61
3,60
-25-15-5 5 152535455565758595105115125
j
PI-012-190101
Junction Temperature [°C]
j
Figure 42 PWM-OP Gain AV vs. T
j
Version 2.6 28 25 Dec 2006
CoolSET™-F2
Typical Performance Characteristics
4,00
3,95
3,90
[kOhm]
3,85
FB
3,80
3,75
3,70
3,65
3,60
3,55
Feedback Resistance R
3,50
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Figure 43 Feedback Resistance RFB vs. T
58
56
[kOhm]
54
52
Soft-Start
50
48
46
44
42
40
Soft-Start Resistance R
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
5,320
5,315
5,310
[V]
5,305
5,300
Soft-Start1
PI-013-190101
5,295
5,290
5,285
5,280
Detection Limit V
5,275
5,270
-25-15-5 5 152535455565758595105115125
PI-016-190101
Junction Temperature [°C]
j
Figure 46 Detection Limit V
4,05
4,04
4,03
[V]
4,02
4,01
Soft-Start2
PI-014-190101
4,00
3,99
3,98
3,97
Detection Limit V
3,96
3,95
-25-15-5 5 152535455565758595105115125
Soft-Start1
vs. T
j
PI-017-190101
Junction Temperature [°C]
Figure 44 Soft-Start Resistance R
4,810
4,805
[V]
4,800
FB2
4,795
4,790
Detection Limit V
4,785
4,780
-25-15-5 5 152535455565758595105115125
Soft-Start
Junction Temperature [°C]
Figure 45 Detection Limit V
FB2
vs. T
j
vs. T
j
Figure 47 Detection Limit V
16,80
16,75
[V]
16,70
VCC1
16,65
16,60
16,55
PI-015-190101
16,50
16,45
16,40
16,35
16,30
16,25
16,20
Overvoltage Detection Limit V
-25-15-5 5 152535455565758595105115125
Soft-Start2
vs. T
j
PI-018-190101
Junction Temperature [°C]
Figure 48 Overvoltage Detection Limit V
VCC1
vs. T
j
Version 2.6 29 25 Dec 2006
CoolSET™-F2
Typical Performance Characteristics
1,010
1,008
[V]
1,006
csth
1,004
1,002
1,000
0,998
0,996
0,994
0,992
Peak Current Limitation V
0,990
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Figure 49 Peak Current Limitation V
280
270
[ns]
260
LEB
250
240
230
220
210
200
190
Leading Edge Blanking t
180
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
csth
Junction Temperature [°C]
vs. T
2,2
2,0
1,8
[Ohm]
1,6
dson
1,4
PI-019-190101
1,2
1,0
0,8
On-Resistance R
0,6
0,4
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A265 ICE2B265
PI-022-190101
ICE2A280Z
Junction Temperature [°C]
j
Figure 52 Drain Source On-Resistance R
10
9
8
ICE2A0565/G/Z ICE2B0565
PI-020-190101
[Ohm]
7
dson
6
5
4
3
On-Resistance R
2
1
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A165 ICE2B165 ICE2A180Z
DSon
ICE2A380P2
vs. T
j
PI-022-190101
Junction Temperature [°C]
Figure 50 Leading Edge Blanking V
1,0
0,9
0,8
[Ohm]
0,7
dson
0,6
0,5
0,4
On-Resistance R
0,3
0,2
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A365 ICE2B365
VCC1
Junction Temperature [°C]
Figure 51 Drain Source On-Resistance R
vs. T
DSon
j
vs. T
Figure 53 Drain Source On-Resistance R
1,0
0,9
0,8
[Ohm]
0,7
dson
PI-022-190101
j
0,6
0,5
0,4
On-Resistance R
0,3
0,2
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A765P2 ICE2B765P2
Junction Temperature [°C]
Figure 54 Drain Source On-Resistance R
DSon
DSon
vs. T
vs. T
j
PI-022-190101
j
Version 2.6 30 25 Dec 2006
720
700
[V]
680
(BR)DSS
660
/G/Z
ICE2A0565/G/Z
640
620
600
580
Breakdown Voltage V
560
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A165 ICE2A265 ICE2A365 ICE2B0565 ICE2B165 ICE2B265 ICE2B365 ICE2A765P2 ICE2B765P2
Junction Temperature [°C]
CoolSET™-F2
Typical Performance Characteristics
PI-025-190101
Figure 55 Breakdown Voltage V
940
[V]
920
900
(BR)DSS
880
860
840
820
800
Breakdown Voltage V
780
-25-15-5 5 152535455565758595105115125
ICE2A180Z ICE2A280Z ICE2A380P2
BR(DSS)
vs. T
Junction Temperature [°C]
Figure 56 Breakdown Voltage V
BR(DSS)
vs. T
j
PI-025-190101
j
Version 2.6 31 25 Dec 2006
CoolSET™-F2
6 Layout Recommendation for C
Note: Only for ICE2A765I/P2 and ICE2B765I/P2
Soft Start Capacitor Layout Recommendation in Detail
Detail X
Layout Recommendation for C
18
18
Figure 57A Layout of Board EVALSF2_ICE2B765P2
To improve the startup behavior of the IC during
startup or auto restart mode, place the soft start
capacitor C
as close as possible to the soft start PIN 6 and
GND PIN 4. More details see Detail X in Figure
57B.
(red section Detail X in Figure 57A)
18
Figure 57B Detail X, Soft Start Capacitor C18 Layout
Recommendation
Place Soft Start capacitor C18 in the same way as
shown in Detail X (blue mark).
Figure 57 Layout Recommendation for ICE2A765I/P2 and ICE2B765I/P2
Version 2.6 32 25 Dec 2006
7 Outline Dimension
PG-DIP-8-6 (Plastic Dual In-line Package)
CoolSET™-F2
Outline Dimension
Figure 58 PG-DIP-8-6 (Plastic Dual In-line Package)
PG-DIP-7-1 (Plastic Dual In-line Package)
1.7 MAX.
±0.1
0.46
7
1
9.52
Index Marking
1)
Does not include plastic or metal protrusion of 0.25 max. per side
±0.25
2.54
0.35
5
4
1)
0.38 MIN.
7x
3.25 MIN.
4.37 MAX.
7.87
8.9
±0.38
±1
0.25
6.35
+0.1
±0.25
1)
Figure 59 PG-DIP-7-1 (Plastic Dual In-line Package)
Dimensions in mm
Version 2.6 33 25 Dec 2006
CoolSET™-F2
4.4
9.9
12.1
e t.
t.
e
9.9
17.5
Outline Dimension
PG-TO220-6-46 Isodrain Package
±0.3
±0.3
10.2
0...0.15
Figure 60 PG-TO220-6-46 (Isodrain Package)
8
4 x 1.27
7.5
6.6
7.62
A
(0.8)
±0.3
8.6
6 x 0.6
+0.1
1.3
-0.02
B
0.05
1)
0.25 AMB
±0.2
9.2
0.5
±0.1
2.4
±0.1
5.3
±0.3
8.4
±0.3
1) Shear and punch direction no burrs this surfac Back side, heatsink contour All metal surfaces tin plated, except area of cu
PG-TO220-6-47 Isodrain Package
±0.3
±0.3
13
15.6
0...0.15
1.274 x
9.5
7.5
6.6
7.62
±0.2 ±0.2
A
±0.2
2.8
±0.3
8.6
6 x 0.6
4.4
+0.1
1.3
-0.02
B
-0.15
3.7
0.25 AMB
0.05
1)
±0.2
9.2
0.5
±0.1
2.4
±0.1
5.3
±0.3
8.4
±0.3
1) Shear and punch direction no burrs this surfac Back side, heatsink contour All metal surfaces tin plated, except area of cu
Figure 61 PG-TO220-6-47 (Isodrain Package)
Dimensions in mm
Version 2.6 34 25 Dec 2006
PG-DSO-16/12 (Plastic Dual Small Outline Package)
CoolSET™-F2
Outline Dimension
Figure 62 PG-DSO-16/12 (Plastic Dual Small Outline Package)
Dimensions in mm
Version 2.6 35 25 Dec 2006
Total Quality Management
Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen.
Dazu gehört eine bestimmte Geisteshaltung unserer Mitarbeiter. Total Quality im Denken und Handeln gegenüber Kollegen, Lieferanten und Ihnen, unserem Kunden. Unsere Leitlinie ist jede Aufgabe mit „Null Fehlern“ zu lösen – in offener Sichtweise auch über den eigenen Arbeitsplatz hinaus – und uns ständig zu verbessern.
Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen.
Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen.
Wir werden Sie überzeugen.
Quality takes on an allencompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you.
Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve.
Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge.
Give us the chance to prove the best of performance through the best of quality – you will be convinced.
http://www.infineon.com
Published by Infineon Technologies AG
Loading...