Infineon 1ED38x0Mc12M, EiceDRIVER User Manual

EiceDRIVER™ 1ED38x0Mc12M Enhanced
1ED38x0Mc12M (1ED-X3 Digital)
Reference manual
Single-channel 5.7 kV (rms) isolated gate driver IC with I2C configurability for DESAT, So-o, UVLO, Miller clamp and optional two-level turn-o
Features
650 V, 1200 V, 1700 V, 2300 V IGBTs, SiC, and Si MOSFETs
±3 A, ±6 A, and ±9 A typical sinking and sourcing peak output current
Separate source and sink outputs for hard switching or optional two-level turn-o and with active Miller clamp
I2C bus for parameter configuration and status register readout
Precise, adjustable, and temperature compensated V
Adjustable IGBT so turn-o aer desaturation detection
Operation at high ambient temperature up to 125 °C with over-temperature shut down at 160 °C (±10 °C)
Tight IC-to-IC propagation delay matching (t
Undervoltage lockout protection with hysteresis for input and output side with active shut-down
Configurable feedback or fault-o behavior for comparator result of integrated ADC
High common-mode transient immunity CMTI = 200 kV/µs
Small space-saving DSO-16 fine-pitch package with large creepage distance (>8 mm)
Safety certification
- UL 1577 recognized (File E311313) with V
- IEC 60747-17/VDE 0884-11 approval (pending) with V
Refer to the product datasheet for electrical parameters and certification details
PDD,max
ISO,test
detection (DESAT) with fault output
CEsat
= 30 ns)
= 6840 V (rms) for 1 s, V
= 1767 V (peak, reinforced)
IORM
= 5700 V (rms) for 60 s
ISO
Potential applications
Industrial motor drives - compact, standard, premium, servo drives
Solar inverters
UPS systems
Welding
Commercial and agricultural vehicles (CAV)
Commercial air-conditioning (CAC)
High-voltage isolated DC-DC converters
Isolated switch mode power supplies (SMPS)
Product validation
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.
PG-DSO-16
Reference manual
www.infineon.com/gdisolated 2021-02-15
Please read the Important Notice and Warnings at the end of this document v2.1
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
Device information
Device information
Product type Output current Isolation class Marking OPN
1ED3830MC12M 3 A (typ) reinforced 3830MC12 1ED3830MC12MXUMA1
1ED3860MC12M 6 A (typ) reinforced 3860MC12 1ED3860MC12MXUMA1
1ED3890MC12M 9 A (typ) reinforced 3890MC12 1ED3890MC12MXUMA1
1ED3830MU12M 3 A (typ) UL 1577 3830MU12 1ED3830MU12MXUMA1
1ED3860MU12M 6 A (typ) UL 1577 3860MU12 1ED3860MU12MXUMA1
1ED3890MU12M 9 A (typ) UL 1577 3890MU12 1ED3890MU12MXUMA1
Description
The 1ED38x0Mc12M family (X3 Digital) consists of galvanically isolated single channel gate driver ICs in a small PG-DSO-16 package with a large creepage and clearance of 8 mm. The gate driver ICs provide a typical peak output current of 3 A, 6 A, and 9 A.
Adjustable control and protection functions are included to simplify the design of highly reliable systems. All parameter adjustments are done from the input side via the I2C interface (pin SDA and SCL).
All logic I/O pins are supply voltage dependent 3.3 V or 5 V CMOS compatible and can be directly connected to a microcontroller.
The data transfer across the galvanic isolation is realized by the integrated coreless transformer technology.
CPU
IN,H
RDYC, FLT_N
I2C
IN,L
RDYC, FLT_N
VCC1
GND1
VCC1
GND1
EiceDRIVER
with digital
interface
EiceDRIVER
with digital
interface
VCC2,H
DESAT,H
TM
ON,H
OFF,H
CLAMP,H
GND2,H
VEE2,H
VCC2,L
DESAT,L
TM
ON,L
OFF,L
CLAMP,L
GND2,L
VEE2,L
Figure 1 Typical application
Reference manual 2 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual

Table of contents

Table of contents
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Related products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3.1 Start-up and fault clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3.2 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Input side undervoltage lockout, VCC1 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Output side under-voltage lockout, VCC2 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Output side undervoltage lockout, VEE2 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Input side logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.3.1 IN non-inverting driver input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.3.2 RDYC ready status output, fault-o and fault clear input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2.1 Ready sources and configuration of not ready events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2.2 RDYC fault-o input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2.3 RDYC fault clear input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 FLT_N status output and fault-o input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.3.3.1 Fault sources and configuration of fault events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3.2 FLT_N fault-o input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4.1 I2C bus byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.3.4.2 I2C bus read/write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4.3 I2C bus address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Operating states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.4.1 OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Address configuration state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.4.3 Parameter configuration state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.4.4 Parameter transfer state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.5 Normal operation state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.4.6 Not ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.7 Fault state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.8 So-reset, restore and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.4.8.1 So-reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.4.8.2 Automatic configuration restore from input side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.4.8.3 Automatic configuration recovery from output side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.5 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.7 Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.7.1 DESAT behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7.2 DESAT adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Reference manual 3 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
Table of contents
3.7.2.1 DESAT1 adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.7.2.2 DESAT2 adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.8 Gate driver output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.8.1 Turn-on behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.8.2 Turn-o and fault turn-o behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.8.2.1 Hard switching turn-o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.2.2 Two-level turn-o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.2.2.1 Two-level turn-o behavior at normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.2.2.2 Two-level turn-o behavior at overload condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8.2.2.3 Two-level turn-o short pulse behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8.2.2.4 Two-level turn-o short pulse behavior with slow turn-on ramp speed . . . . . . . . . . . . . . . . 37
3.8.2.3 So turn-o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8.2.4 Switch-o timeout until forced switch-o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
3.8.3 Active shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8.4 Active Miller clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
3.8.4.1 CLAMP output types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Short circuit clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 Configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
4.1.1 I2CADD: I2C address of gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
4.1.2 I2CGADD: I2C group address of gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 I2CCFGOK: I2C address configuration access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.1.4 PSUPR: Input pin filter times for IN, RDYC, FLT_N, and I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.5 FCLR: FLT_N clear behavior by RDYC or timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.6 RECOVER: Input and output configuration recovery modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.7 UVTLVL: UVLO threshold level for VCC2 and VEE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.8 UVSVCC2C: VCC2 so UVLO enable and threshold level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.9 UVSVEE2C: VEE2 so UVLO enable and threshold level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.1.10 ADCCFG: ADC enable and compare polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
4.1.11 VEXTCFG: CLAMP pin voltage compare limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.1.12 OTWCFG: Over-temperature warning level and action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.13 D1LVL: DESAT disable and DESAT1 voltage threshold level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.14 D1FILT: DESAT1 filter time and type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.1.15 D2LVL: DESAT2 enable during TLTO, influence on fault o, and voltage threshold level . . . . . 56
4.1.16 D2FILT: DESAT2 filter time and type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.1.17 D2CNTLIM: DESAT2 event counter limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.18 D2CNTDEC: DESAT2 event count down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.1.19 DLEBT: DESAT leading edge blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.20 F2ODLY: Delay from fault event to gate driver o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.21 DTECOR: DESAT temperature compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
4.1.22 DRVFOFF: Type of fault switch-o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Reference manual 4 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
Table of contents
4.1.23 DRVCFG: Type of normal switch-o and TLTO gate charge range . . . . . . . . . . . . . . . . . . . . . . . . . .65
4.1.24 TLTOC1: TLTO level and ramp A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.25 TLTOC2: TLTO duration and ramp B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.1.26 CSSOFCFG: So turn-o current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.1.27 CLCFG: CLAMP and pin monitoring filter time and type, CLAMP output types and disable . . . . . 68
4.1.28 SOTOUT: Switch-o timeout time and fault signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.1.29 CFGOK: Register configuration lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.30 CLEARREG: Clear event counter registers for DESAT2, VCC1 UVLO, VCC2 UVLO, event flags,
and so-reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
4.2.1 Sticky bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
4.2.2 RDYSTAT: Status of input side, output side, and gate driver IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 SECUVEVT: Output side UVLO events causing a not ready state (sticky bits) . . . . . . . . . . . . . . . . . 74
4.2.4 GFLTEVT: Indicator of active fault handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.5 FLTEVT: Fault status and events of input side and output side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.6 PINSTAT: Status of pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.7 COMERRST: Status of input to output communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.8 CHIPSTAT: Logic status of gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.9 EVTSTICK: Event indicator (sticky bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.10 UV1FCNT: Counter of unfiltered VCC1 UVLO events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.11 UV2FCNT: Counter of unfiltered VCC2 UVLO events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.12 D2ECNT: Counter of DESAT2 events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
4.2.13 ADCMVDIF: Filtered ADC calculation result of VCC2 to GND2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.14 ADCMGND2: Filtered ADC result of GND2 to VEE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.15 ADCMVCC2: Filtered ADC result of VCC2 to VEE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.16 ADCMTEMP: Filtered ADC result of gate driver temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.17 ADCMVEXT: Filtered ADC result of CLAMP to VEE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
5 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
5.1 Reference layout for thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
5.2 Printed circuit board guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Reference manual 5 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual

1 Block diagram

1 Block diagram
VCC1
FLT_N
RDYC
SDA
SCL
2
IN
7
UVLO1
PWM logic
1
TX
RX
UVLO2
CLAMP control, monitoring, and
ADC input
opt.
VEE2
VCC2
14
10
VCC2
CLAMP
6
Output control
1
and monitoring
with hard-
12
ON
switching, TLTOff,
and SoftOff
11
OFF
5
VEE2
1
TRXLOGIC
TRX LOGIC
VCC2
4
DESAT
13 DESAT control and monitoring
3
2
15
GND2
UVLO3
1
GND1
1
8 9 16
GND1
VEE2
VEE2 VEE2
Figure 2 Block diagram
Reference manual 6 v2.1
2021-02-15
EiceDRIVER™ 1ED38x0Mc12M Enhanced
Reference manual

2 Related products

2 Related products
Note: Please consider the gate driver IC power dissipation and insulation requirements for the selected
power switch and operating condition.
Product group Product name Description
TRENCHSTOP IGBT Discrete
IKQ75N120CS6 High Speed 1200 V, 75 A IGBT with anti-parallel diode in TO247-3
IKW15N120BH6 High Speed 1200 V, 15 A IGBT with anti-parallel diode in TO247
IHW40N120R5 Reverse conducting 1200 V, 40 A IH IGBT with integrated diode in
TO247
CoolSiC™ SiC MOSFET Discrete
CoolSiC™ SiC MOSFET Module
TRENCHSTOP
IGBT Modules
IMBF170R650M1 1700 V, 650 mΩ SiC MOSFET in TO263-7 package
IMW120R045M1 1200 V, 45 mΩ SiC MOSFET in TO247-3 package
IMZ120R350M1H 1200 V, 350 mΩ SiC MOSFET in TO247-4 package
IMZA65R027M1H 650 V, 27 mΩ SiC MOSFET in TO247-4 package
IMW65R107M1H 650 V, 107 mΩ SiC MOSFET in TO247-3 package
FS45MR12W1M1_B11 EasyPACK™ 1B 1200 V / 45 mΩ sixpack module
FF6MR12W2M1_B11 EasyDUAL™ 2B 1200 V, 6 mΩ half-bridge module
F3L11MR12W2M1_B74 EasyPACK™ 2B 1200 V, 11 mΩ 3-Level module in Advanced NPC
(ANPC) topology
F4-23MR12W1M1_B11 EasyPACK™ 1B 1200 V, 23 mΩ fourpack module
F4-200R17N3E4 EconoPACK™ 3 1700 V, 200 A fourpack IGBT module
FS150R17N3E4 EconoPACK™ 3 1700 V, 150 A sixpack IGBT module
FF650R17IE4 PrimePACK™ 3 1700 V, 650 A half-bridge dual IGBT module
FF1000R17IE4 PrimePACK™ 3 1700 V, 1000 A half-bridge dual IGBT module
FF1200R17IP5 PrimePACK™ 3+ 1700 V, 1200 A dual IGBT module
FF1500R17IP5 PrimePACK™ 3+ 1700 V, 1500 A dual IGBT module
FF1500R17IP5R PrimePACK™ 3 1700 V, 1500 A dual IGBT module
FF1800R17IP5 PrimePACK™ 3+ 1700 V, 1800 A dual IGBT module
FP10R12W1T7_B11 EasyPIM™ 1B 1200 V, 10 A three phase input rectifier PIM IGBT
module
FS100R12W2T7_B11 EasyPACK™ 2B 1200 V, 100 A sixpack IGBT module
FP150R12KT4_B11 EconoPIM™ 3 1200V three-phase PIM IGBT module
FS200R12KT4R_B11 EconoPACK™ 3 1200 V, 200 A sixpack IGBT module
Reference manual 7 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual

3 Functional description

3 Functional description
The 1ED38x0Mc12M family (X3 Digital) consists of galvanically isolated single channel gate driver ICs with an extensive digital adjustable feature parameter set. All adjustments are done from low voltage input side during start up via I2C bus. The configuration is stored into registers.
To start-up the gate driver IC for normal operation both input and output sides of the gate driver IC need to be powered.
The 1ED38x0Mc12M family (X3 Digital) is designed to support various supply configurations on the input and output side. On the output side unipolar and bipolar supply is possible.
The output stage is realized as rail-to-rail. There the gate driver voltage follows the supply voltage without an additional voltage drop. In addition it provides an easy clamping of the gate voltage during short circuit of an external IGBT.
The RDYC status output reports correct operation of the gate driver IC like suicient voltage supply. The FLT_N status output reports failures in the application like desaturation detection.
To ensure safe operation the gate driver IC is equipped with an input and output side under-voltage lockout circuit. The UVLO levels are optimized for IGBTs and MOSFETs, and are adjustable.
The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The gate driver IC reacts on a DESAT fault by turning o the IGBT with one of the following configurable turn-o methods:
two-level turn-o
adjustable so-o
hard switch-o The two-level turn-o (TLTO) is a voltage controlled turn-o function. The so turn-o function is used to switch-o the external IGBT in overcurrent conditions in a so-controlled
manner to protect the IGBT against collector emitter over-voltages. An adjustable active Miller clamp function protects the IGBT from parasitic turn-on in fast switching
applications. The 1ED38x0 family also oers several measurement and monitoring functions. The monitoring functions can
be divided into:
hardware based functions and
ADC measurement based functions.

3.1 Start-up and fault clearing

For normal operation both input and output sides of the gate driver IC need to be powered. A low level at the FLT_N pin always indicates a fault condition. In this case the IC starts internal mechanisms for fault clearing.
Input side start-up
1. Voltage at VCC1 reaches the input UVLO threshold: input side of gate driver IC starts operating
2. FLT_N follows input supply voltage
3. Input side is ready to communicate across I2C bus, awaiting user gate driver parameter configuration
4. Records parameters received across the I2C bus
5. Waits until output side is powered
6. Initiates internal start-up: Transfers configured values to output side
7. Performs internal self-test
The complete start-up time t
Output side start-up
1. Voltage at VCC2 reaches the output UVLO threshold: output side of gate driver IC starts operating
2. Activates OFF gate driver output: connected gate stays discharged
3. Waits until input side is powered
Reference manual 8 v2.1
depends on the duration of the user parameter configuration.
START1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
4. Initiates internal start-up: Receives configured values from input side
5. Performs internal self-test
The complete start-up time t The gate driver IC releases RDYC to high to signal a successful start-up and its readiness to operate. The gate
driver IC will follow the status of the IN signal.
Clearing a fault with RDYC to low cycle
1. Set IN to low
2. Set RDYC to low for a duration longer than the fault clear time t
3. Release RDYC to high a. If the source of the fault is no longer present, FLT_N is released to high
b. If another fault source is active, FLT_N stays low and the cycle needs to be repeated
4. Continue PWM operation
Clearing a fault by self clear timer
depends on the duration of the user parameter configuration.
START2
CLRMIN
1. Set IN to low
2. Self clear timer starts counting
3. Self clear timer reaches self clear time a. If the source of the fault is no longer present, FLT_N is released to high
b. If another fault source is active, FLT_N stays low and the timer restarts
4. Continue PWM operation

3.2 Supply

The 1ED38x0Mc12M family (X3 Digital) is designed to support various supply configurations. The input side can be used with a 3.3 V or 5 V supply.
The output side requires either an unipolar supply (VEE2 = GND2) or a bipolar supply.
Individual supply voltages between VCC2 and GND2 or GND2 and VEE2 shall not exceed 25 V.
The total supply voltage between VCC2 and VEE2 shall not exceed 35 V.
To ensure safe operation of the gate driver IC, it is equipped with an input and output side undervoltage lockout circuit.
Unipolar supply
In unipolar supply configuration the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2. GND2 and VEE2 are connected together and this common potential is connected to the IGBT emitter.
+3V3
SGND
IN
RDYC
FLT_N
SCL
SDA
10k
10k
VCC1
GND1
IN
RDYC
FLT_N
SCL
SDA
VCC2
DESAT
ON
OFF
CLAMP
GND2
VEE2
+15V
100n
1k
1R
1R
Figure 3 Application example with unipolar supply
Reference manual 9 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
Bipolar supply
For bipolar supply the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2 and a negative voltage of -8 V or -15 V at VEE2 relative to GND2.
Between VCC2 and VEE2 the maximum potential dierence is 35 V.
+3V3
SGND
IN
RDYC
FLT_N
SCL
SDA
10k
10k
100n
VCC1
GND1
IN
RDYC
FLT_N
SCL
SDA
VCC2
DESAT
ON
OFF
CLAMP
GND2
VEE2
+15V
1k
1R
1R
-8V
Figure 4 Application example with bipolar supply
Negative supply prevents a parasitic turn-on due to the additional voltage margin to the gate turn-on threshold.
VEE2 over GND2 supply connection check
The gate driver IC has a built-in connection check for VEE2. A loss of VEE2 connection will be detected and signaled via RDYC.

3.2.1 Input side undervoltage lockout, VCC1 UVLO

To ensure correct operation of the input side and safe operation of the application the gate driver IC is equipped with an input supply undervoltage lockout for VCC1.
UVLO behavior during start-up:
1. The voltage at the supply terminal VCC1 reaches the V
2. The gate driver IC waits on the address and parameter configuration and synchronizes it with the output
side
3. The IC releases the RDYC output to high and is ready to operate.
The complete start-up time t
depends on the duration of the user parameter configuration.
START1
UVLO behavior during shut-down:
If the supply voltage V
of the input side drops below V
VCC1
output will be switched o.
The fault signal FLT_N follows the input supply voltage.
UVLO1H
UVLO1L
threshold
the RDYC signal is switched to low and the
Reference manual 10 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
IN
VCC1
V
V
UVLO1H
UVLO1L
VCC2
ON+OFF
RDYC
FLT_N
t
t
UV1LRDYC
PDRDYC
t
START1
t
PDRDYC
Figure 5 UVLO VCC1 behavior
The gate driver IC supports an alternative UVLO detection in order to provide the means of analyzing the quality of the VCC1 power supply. The number of unfiltered UVLO comparator output transitions is stored in the register
UV1FCNT.UV1F_CNT and can be read out via I2C bus.

3.2.2 Output side under-voltage lockout, VCC2 UVLO

To ensure correct operation of the output side and safe operation of the IGBT in the application, the gate driver IC is equipped with an output supply undervoltage lockout for VCC2 versus GND2.
UVLO behavior during start-up:
If the voltage at the supply terminal VCC2 reaches the V
transfer the input side configuration to the output side before the RDYC output is released to high.
The rising voltage at the output side triggers a so-reset at the input side unless
- a new set of parameters has been written while the output side was o or
- the RECOVER.RESTORE bit was already set to 1B.
In that cases, the gate driver transfers the configuration to the output side and releases the RDYC output to high.
The complete start-up time t
depends on the duration of the user parameter configuration.
START2
UVLO behavior during shut-down:
If the supply voltage V
of the output side drops below V
VCC2
output will be switched o.
threshold the gate driver first needs to
UVLO2H
the RDYC signal is switched to low and the
UVLO2L
Reference manual 11 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
IN
VCC1
V
UVLO2H
V
UVLO2L
VCC2
ON+OFF
RDYC
FLT_N
Figure 6 UVLO VCC2 behavior
t
START2
t
PDRDYC
t
UV2LOFF
t
UV2LRDYC
Any V
event will lead to a fault-o and a RDYC low level. The actual UVLO threshold selection is done in
UVLO2L
register UVTLVL.UVVCC2TL. Going below this threshold will set the UVLO event register bit SECUVEVT.UV_VCC2. If the supply voltage drops further the output side resets and needs a restart to configure its parameters again. If the supply voltage recovers immediately without triggering a reset the gate driver IC will also release RDYC to high.
The gate driver IC is supporting an alternative UVLO detection in order to provide the means of analyzing the quality of the VCC2 power supply. The number of unfiltered UVLO2 comparator output transitions is stored in the register UV2FCNT.UV2F_CNT and can be read out via I2C bus.
In addition the 1ED38x0 family oers the feature to measure, monitor and readout the VCC2 voltage through an integrated ADC to tune the system behavior and adjust according to system/IGBT requirements.

3.2.3 Output side undervoltage lockout, VEE2 UVLO

The 1ED38x0 family oers three adjustable UVLO thresholds for the negative VEE2 supply rail tailored for the typical operation conditions like -5 V or -8 V or -15 V supply versus GND2. Start up/shut down behavior is identical to a VCC2 UVLO event assuming the VEE2 UVLO is configured.
VEE2 UVLO is handled in the undervoltage event register SECUVEVT.UV_VEE2, an V fault o and a RDYC low level. Configure the negative UVLO level in register UVTLVL.UVVEE2TL. A 00B in this register disables the VEE2 UVLO, e.g. for unipolar supply.
In addition the 1ED38x0 family oers the feature to measure, monitor, and readout the VEE2 voltage through an integrated ADC to tune the system behavior and adjust according to system/IGBT requirements.
event will lead to a
UVLO3L
Reference manual 12 v2.1
2021-02-15
EiceDRIVER™ 1ED38x0Mc12M Enhanced
Reference manual
3 Functional description

3.3 Input side logic

The input threshold levels are always CMOS compliant. The threshold levels are 30% of VCC1 for low level and 70% of VCC1 for high level.
The pins IN and SCL are for input only, and the pins SDA, FLT_N, and RDYC are input/output pins.

3.3.1 IN non-inverting driver input

The input pin has a positive logic. To turn on the associated IGBT apply a logic high signal at the IN pin. The 1ED38x0 family oers the adjustment of the IN input filter time with two trimmed values of typical 103 ns and 183 ns, as described in register PSUPR. The selected filter time directly influences the propagation delay.
3.3.2 RDYC ready status output, fault-o and fault clear input
The RDYC pin is a logic input and open drain output and has three dierent functions:
RDYC as ready status output of all ready sources
RDYC as fault-o input
RDYC as fault clear input
In a typical application the RDYC pins of all gate driver ICs in the inverter are connected together and form a single wire RDYC signal.
An external pull-up resistor is required to ensure RDYC status output during operation.
3.3.2.1 Ready sources and configuration of not ready events
Not ready events are signaled at RDYC pin by switching the pin voltage to GND1. The gate driver oers configurable and non configurable not ready events.
Table 1 Ready sources and configuration registers
Ready source Status register bit(s) Configuration register
bit(s)
Internal signal transmission
VEE2 over GND2 n.a. - gate driver in reset n.a. non-configurable, always
VCC1 supply UVLO n.a. - gate driver in reset n.a. non-configurable, always
VCC2 supply UVLO
VCC2 supply so UVLO
1)
COMERRST .CRC_PRI, .CR
C_SEC, .PCT_COM, .CRC_C OM, .DCT_COM
SECUVEVT.UV_VCC2 n.a. non-configurable, always
2)
SECUVEVT.UVSVCC2 UVSVCC2C.UVSVCC2E 1B enables so UVLO
n.a. non-configurable, always
UVSVCC2C.UVSVCC2L configures so UVLO level
Configuration description
enabled
enabled
enabled
enabled
monitoring
ADCCFG.VINT_EN 1B enables ADC for
internal voltages
VEE2 supply UVLO
Reference manual 13 v2.1
1)
SECUVEVT.UV_VEE2 UVTLVL.UVVEE2TL >0D enables UVLO
monitoring
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
Table 1 Ready sources and configuration registers (continued)
Ready source Status register bit(s) Configuration register
bit(s)
VEE2 supply so UVLO
2)
SECUVEVT.UVSVEE2 UVSVEE2C.UVSVEE2E 1B enables so UVLO
Configuration description
monitoring
UVSVEE2C.UVSVEE2L configures so UVLO level
ADCCFG.VINT_EN 1B enables ADC for
internal voltages
Gate driver configuration CHIPSTAT.CONFIG,
CHIPSTAT.ACTIVE
I2CCFGOK.I2CCFGOK 1B locks user address
configuration
CFGOK.USER_OK 1B locks user
configuration
1) A complete loss of secondary supply voltage followed by a power-up can result in a so-reset on the input
side requiring a parameter re-configuration.
2) If so UVLO is enabled, but ADC measurement is not enabled a so UVLO event will be signaled due to ADC
output value of 00H.
3.3.2.2 RDYC fault-o input
Pulling RDYC to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as the RDYC pin stays low and the IC uses its fault-o function to switch-o the IGBT.
The defined minimum adjustable pulse width (PSUPR.IN_SUPR) makes the IC robust against glitches at RDYC. The gate driver ignores pulses with a shorter duration.
IN
RDYC
<t
RDYCMIN
ON+OFF
RDYC ext.
>t
RDYCMIN
t
PDRDYC
t
SSIO
VEE2 + 2V
<t
RDYCMIN
>t
t
SSIO
RDYCMIN
Figure 7 RDYC short pulse behavior of external manipulation of the RDYC pin
Aer
an external RDYC low signal the IC is actively pulling RDYC to low until the voltage at ON pin falls below the
VEE2+2 V threshold.
The RDYC fault-o input is active low.
3.3.2.3 RDYC fault clear input
To use the RDYC as fault clear input, the register bit FCLR.FCLR_CFG needs to be 0B. Setting RDYC to low for longer than the fault clear time t Additionally the following conditions have to be met as well:
PWM IN pin level needs to be low,
voltage at ON pin has dropped below the VEE2+2 V threshold, and
triggering fault condition is no longer present.
The typical fault clear time t
CLRMIN
will reset the stored fault signal at pin FLT_N with the rising edge of RDYC.
CLRMIN
is 1.0 µs.
Reference manual 14 v2.1
2021-02-15
EiceDRIVER™ 1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
IN
FLT event
FLT_N
t
DESATFLT
t
DESATFLT
SSIO
>t
CLRMIN
VEE2 + 2V
>t
CLRMIN
t
SSIO
ON+OFF
t
RDYC
Figure 8 RDYC fault clear timing
V
RDYC
FLT_N
IH
Figure 9 RDYC fault clear rising edge to FLT_N
3.3.3 FLT_N status output and fault-o input
The FLT_N pin is a logic input and open drain output and has two dierent functions:
FLT_N as fault-status output for fault sources
FLT_N as fault-o input
In a typical application the FLT_N pins of all gate driver ICs in the inverter are connected together and form a single wire FLT_N signal.
An external pull-up-resistor is required to ensure FLT_N status output during operation.
3.3.3.1 Fault sources and configuration of fault events
Fault events are signaled at FLT_N pin by switching the pin voltage level to GND1. The gate driver oers configurable and non-configurable fault events.
Table 2 Fault sources and configuration registers
Fault source Status register bit(s) Configuration register
bit
Over temperature
FLTEVT .OTP_EVT n.a. non-configurable, always
protection
Over temperature warning FLTEVT.OTW_EVT OTWCFG.OTW_ACFG 0B disables OTW event
Desaturation detection of
FLTEVT .D1_EVT, .D2_EVT D1LVL.D_DIS 1B disables DESAT
IGBT
Secondary desaturation
FLTEVT.D2_EVT D2LVL.D2_ACFG 0B disables DESAT2 event
detection of IGBT
Switch-o timeout FLTEVT.SOTO_EVT SOTOUT.SOTOUT_F 0B disables timeout event
CLAMP pin voltage limit FLTEVT.VEXTFLT ADCCFG.VEXTL_EN 0B disables limit event
Reference manual 15 v2.1
Configuration description
enabled
completely, no event monitoring
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
The status register bits still highlight a possible fault event even if their configuration register disables the triggering of FLT_N. The desaturation detection configuration with register bit D1LVL.D_DIS however disables this part of the integrated circuit and therefore disables also both DESAT events.
3.3.3.2 FLT_N fault-o input
Pulling FLT_N to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as the FLT_N pin stays low and the IC uses its fault-o function to switch-o the IGBT.
The defined minimum adjustable pulse width (PSUPR.IN_SUPR) makes the gate driver IC robust against glitches at FLT_N.
Aer a low at the FLT_N pin either internally or externally applied, the fault event is latched until cleared.
The FLT_N fault-o input is active low.
IN
FLT_N
<t
FLT_NMIN
ON+OFF
FLT_N ext. FLT_N ext.
>t
FLT_NMIN
t
PDFLT_N
t
SSIO
+t
FSCLR
<t
FLT_NMIN
VEE2 + 2V
t
SSIO
>t
FLT_NMIN
+t
FSCLR
Figure 10 FLT_N short pulse behavior of external manipulation of the FLT_N pin with self clear
IN
FLT_N
<t
FLT_NMIN
FLT_N ext. FLT_N ext.
>t
FLT_NMIN
t
PDFLT_N
<t
FLT_NMIN
>t
FLT_NMIN
ON+OFF
RDYC
>t
CLRMIN
>t
CLRMIN
Figure 11 FLT_N short pulse behavior of external manipulation of the FLT_N pin cleared by RDYC

3.3.4 I2C bus

The 1ED38x0 family is equipped with a standard I2C bus interface to configure various parameters of the gate driver IC and read out measurement and monitoring registers.
Key I2C features include:
I2C bus slave device implementing all mandatory slave bus protocols for the specification UM10204 rev. 6
7 bit device addresses for individual and group addressing
Initial I2C device address: 1AH (MSB aligned, bits 7:1)
Signal voltage level compatible to 3.3 V and 5 V
Supported bus speeds at gate driver data pin (SDA) and clock pin (SCL):
- standard-mode (Sm), with bit rates up to 100 kbit/s
- fast-mode (Fm), with bit rates up to 400 kbit/s
- fast-mode plus (FM+), with bit rates up to 1 Mbit/s
Reference manual 16 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
SDA
SCL
SCL filter
data valid data change data valid
time
SCL filter time
data change
SDA
SCL
S - start P - stop
Figure 12 Start, stop and data conditions
All I2C bus commands start with a start condition and stops with a stop condition. The data at the SDA pin gets valid if SCL level is above the CMOS level threshold and the filter time has elapsed.
3.3.4.1 I2C bus byte format
All register addresses and data bytes of the 1ED38x0 family are 8 bit values. The serial data line (SDA) transmits and receives with the most significant bit (MSB) first.
There are two register areas implemented:
register addresses from 00H to 25H are used for configuration and
register addresses from 26H to 37H are used as status registers.
MSB MSB MSBLSB LSB LSB
Wr
SDA
A6 A5 A4 A3 A2 A1 A0 R7 R6 R5 R4 R3 R2 R1 R0 Ack D7 D6 D5 D4 D3 D2 D1 D0 Ack
Ack
SCL
Start
Ack = Acknowledge Wr = Write Ax = Adress Bit Rx = Register Bit Dx = Data Bit
Slave address (7 bit)
Addressing byte (8 bit)
Register address (8 bit)
Data (8 bit) Stop
Figure 13 Write byte format (starting at register address)
The addressing byte is transmitted MSB first and includes the 7 bit I2C address followed by the Wr/Rd bit at LSB position. Throughout this documentation, the hexadecimal device addresses are always written in this 8 bit format. In the configuration registers the 7 bit I2C addresses are aligned to LSB without the
Bit
Address register byte
SDA addressing byte
Default address: 1A
MSB
7 6 5 4 3 2 1
res A6 A5 A4 A3 A2 A1 A0
A6 A5 A4 A3 A2 A1 A0 W/R
0 0 0 1 1 0 1 0
H
LSB
Wr/Rd bit.
0
Figure 14 I2C address alignment in register and during transmission
All registers have a data size of 8 bit, but not all bits are implemented in all registers. Not implemented data bits read as 0B unless specified otherwise.
Reference manual 17 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
3.3.4.2 I2C bus read/write operation
Read and write operations are controlled by the I2C master (microcontroller).
Write byte (starting at specific register address)
1 7 1 1 8 1 8 1 1 S Slave address Wr Ack Register address Ack Data byte Ack P
Write n-bytes (starting at specific register address)
1 7 1 1 8 1 8 1 S Slave address Wr Ack Register address Ack Data byte (add.) Ack
Read byte (starting at specific register address)
1 7 1 1 8 1 7 1 11 8 1 1 S Slave address Wr Ack Register address Ack Data byte Nack PS Slave address AckRd
Read n-bytes (starting at specific register address)
1 7 1 1 8 1 7 1 11 8 1 S Slave address Wr Ack Register address Ack Data byte (add.) NackS Slave address AckRd
Data byte (add.+1)8Ack1Data byte (add.+n)8Ack
...
1
Ack
Data byte (add.+1)8Ack1Data byte (add.+n)
1
1
P
...
8
1 P
Read byte (starting at first status register)
1 7 1 1 8 1 1 S Slave address Rd Ack Data byte Nack P
Read n-bytes (starting at first status register)
1 7 1 1 8 1 S Slave address Rd Ack Data byte (add) Nack
1
Ack
Data byte (add+1)8Ack1Data byte (add+n)
...
8
1 P
Figure 15 Read/write operation
Write byte and write n-bytes to register
1. I2C master (microcontroller) to initiate write with start bit followed by 7 bit slave address (gate driver)
and write bit
2. Target gate driver answers with acknowledge (ACK)
3. Master to send 8 bit target register address
4. Target gate driver answers with ACK and sets internal register address
5. Master to send the data byte for current register
6. Target gate driver answers with ACK if target register is writable and increases internal register address by
1
H
7. Steps 5 and 6 can be repeated to send multiple bytes to consecutive registers
8. Master finalizes data write by sending a stop bit
Read byte and read n-bytes from specific register
1. I2C master (microcontroller) to initiate write with start bit followed by 7 bit slave address (gate driver)
and write bit
2. Target gate driver answers with acknowledge (ACK)
3. Master to send 8 bit target register address
4. Target gate driver answers with ACK and sets internal register address
5. Master begins new read session with start bit followed by 7 bit slave address (gate driver) and read bit
6. Target gate driver answers with acknowledge (ACK)
7. Target gate driver sends 8 bit data byte from current register and increases internal register address by 1
8. Master is responsible for ACK/NACK to control read of consecutive registers a. When responding with ACK, the master is waiting for another data byte and the sequence
continues at number 7
b. When responding with NACK, the master terminates the read session
9. Master finalized data read by sending a stop bit
Reference manual 18 v2.1
2021-02-15
H
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
Read byte and read n-bytes from status register
1. I2C master (microcontroller) to initiate read with start bit followed by 7 bit slave address (gate driver) and
read bit
2. Without a preceding register write the gate driver sets the internal register address to the first status register
3. Target gate driver answers with acknowledge (ACK)
4. Target gate driver sends 8 bit data byte from current register and increases internal register address by 1
5. Master is responsible for ACK/NACK to control read of consecutive registers a. When responding with ACK, the master is waiting for another data byte and the sequence
continues at number 4
b. When responding with NACK, the master terminates the read session
6. Master finalized data read by sending a stop bit
3.3.4.3 I2C bus address
H
The gate driver IC has two configurable 7 bit addresses:
device address I2CADD, e.g. for dedicated read out or configuration
group address I2CGADD to configure all gate driver ICs in the same group within one write cycle
Both addresses have to be set at start up. Configured addresses have to dier from the initial LSB aligned I2C device address 0DH.
Address configuration aer power up
The gate driver IC is configured to start up with the initial I2C device address. To set the device addresses the input side has to be powered up and VCC1 is stable above the turn-on undervoltage lockout level. At this point, the gate driver IC is still in OFF state.
Address configuration steps:
1. Set RDYC to low to deactivate the gate driver IC
2. Set IN to high to select the gate driver IC (chip select, IC enters address configuration state)
3. Send an I2C write command with 4 data bytes to the initial MSB aligned I2C device address 1A
H
a. Data byte 1: Target device register address 00H (RegisterI2CADD) b. Data bytes 2, 3: 7 bit device address and 7 bit group address aligned from bit 6 to bit 0 c. Data byte 4: value for I2CCFGOK = 01H , to accept and lock the address registers
4. All data bytes will be acknowledged by the gate driver IC to indicate successful transmission and address
acceptance, the gate driver IC enters parameter configuration state
5. Release IN and RDYC, the gate driver IC is now addressable using the addresses transferred
Address configuration during gate driver operation
To re-configure the I2C addresses while the gate driver IC is already in normal operation mode it needs to be switched to the address configuration state by executing the following steps:
1. Set RDYC to low, entering not ready state
2. Send an I2C write command with 2 data bytes to the current device address a. Data byte 1: Target device register address 1CH (Register CFGOK)
b. Data byte 2: Value 00H, to enter parameter configuration state
3. Send again an I2C write command with 2 data bytes to the current device address a. Data byte 1: Target device register address 02H (Register I2CCFGOK)
b. Data byte 2: Value 00H, to enter address configuration state and unlock address registers
4. Follow the steps 2 to 5 of the address configuration aer power up to complete the address re-
configuration
Reference manual 19 v2.1
2021-02-15
EiceDRIVER™ 1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
Address configuration notes
Attention: The gate driver IC does not acknowledge (NACK) a write of 01H to I2CCFGOK if the address
registers contain an invalid address.
Note: Reserved I2C bus addresses are not allowed but will be neither checked nor will the gate driver IC
send a NACK (not acknowledge) in response to such an address.
Reference manual 20 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description

3.4 Operating states

The 1ED38x0 family of gate driver ICs can take the following states:
OFF state, device not powered
Address configuration state, the I2C addresses can be set, gate driver IC is not active
Parameter configuration state, the gate driver parameters can be set and changed, gate driver IC is not
active
Parameter transfer state, the gate driver IC is transferring the parameters from input side to output side,
gate driver IC is not active
Normal operation, gate driver IC is active, ON and OFF outputs are following the IN signal, registers are read
only
Not ready state, gate driver IC is switched o according to fault o settings, status signaled by a low at RDYC
pin
Fault state, gate driver IC is switched o according to fault o settings, status signaled by a low at FLT_N pin
See later section for additional sub states on fault clear, so-reset, recover, and restore of parameter
configuration aer power loss
CFGOK.USER_OK = 0
Not Ready
State
VCC1 ok RDYC = 0 FLT_N = x IN = x
Fault State
RDYC = 1 FLT_N = 0 IN = x
Address
Configuration
State
Power on
OFF State
VCC1 nok VCC2 nok
VCC1 ok RDYC = 0 FLT_N = 1 IN = 1
I2CCFGOK.
I2CCFGOK
= 1
= 0
Parameter
Configuration
State
VCC1 ok RDYC = 0 FLT_N = x IN = x
CFGOK.
USER_OK
Soft-reset
= 1
Parameter
Transfer
State
VCC1 ok VCC2 ok RDYC = 0 FLT_N = x IN = x
RDYSTAT.
SEC_RDY
= 1
Operation
VCC1 ok VCC2 ok RDYC = 1 FLT_N = 1 IN = x
Normal
RDYC = 1
RDYC = 0
FLT_N = 0 or
.SEC_FLTN = 0
GFLTEVT
Fault clearing
Figure 16 Operating state diagram
Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for
logic pins with low (0), high (1), or either (x)
Register names in uppercase bold letters followed by the register bit name and value
States in bubbles with transitions marked by arrows with conditions attached

3.4.1 OFF state

The OFF state is the default state of a non-powered gate driver IC. No operation is possible.
Input side is not powered.
Output side is o while powered or in active shut down while unpowered.
All commands besides input chip power-up are ignored.
Signal condition to enter state:
VCC1 power down
Reference manual 21 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
Signal condition to leave state:
to address configuration state: VCC1 power ok, VCC1 has passed upper UVLO1 threshold, IN is high

3.4.2 Address configuration state

The address configuration state is used to enter or change the I2C device address and is the first state aer the OFF state. The gate driver IC is ready to receive the device addresses.
Register access in this state:
I2CADD, I2C device address: read/write
I2CGADD, group address: read/write
I2CCFGOK, address configuration access lock register: read/write
Signal condition to enter state:
from OFF state: VCC1 power ok, VCC1 is passing upper UVLO1 threshold, IN is high
from parameter configuration state: register bit I2CCFGOK.I2CCFGOK set to 0
Signal condition to leave state:
to parameter configuration state: registers I2CADD and I2CGADD set according to the I2C and gate driver IC
address requirements, register bit I2CCFGOK.I2CCFGOK set to 1
B
B

3.4.3 Parameter configuration state

The parameter configuration state is used to configure or change device function and parameter and is the default state aer address configuration state.
Register access in this state:
address registers: read only
I2CCFGOK: read/write
configuration registers: read/write
status register: read only
Signal condition to enter state:
from address configuration state: register bit I2CCFGOK.I2CCFGOK set to 1
from not ready state: register bit CFGOK.USER_OK set to 0
B
B
from a so-reset
Signal condition to leave state:
to parameter transfer state: register bit CFGOK.USER_OK set to 1
to address configuration state: register bit I2CCFGOK.I2CCFGOK set to 0
B
B

3.4.4 Parameter transfer state

The parameter transfer state is used to transfer the configuration registers from primary to secondary side. Register access in this state:
status, configuration and address registers: read only
Signal condition to enter state:
from parameter configuration state: register bit CFGOK .USER_OK set to 1
Signal condition to leave state:
to normal operation state: VCC2/VEE2 power okay and register bit RDYSTAT.SEC_RDY set to 1
B
B
Reference manual 22 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description

3.4.5 Normal operation state

The normal operation state is used for status register read and PWM operation. Register access in this state:
status, configuration and address registers: read only
Signal condition to enter state:
from parameter transfer state: register bit RDYSTAT.SEC_RDY set to 1
from fault state: intermediate states of fault clear flow
from not ready state: RDYC signal released
Signal condition to leave state:
to fault state: FLT_N signal externally pulled to low or register bit GFLTEVT.SEC_FLTN = 0B indicating a fault
source from output side
to not ready state: RDYC signal pulled to low
B

3.4.6 Not ready state

The not ready state is used to indicate an inactive gate driver IC with PWM operation disabled. Register access in this state:
CFGOK register: read/write
status, configuration and address registers: read only
Signal condition to enter state:
from normal operation state: RDYC signal pulled to low
Signal condition to leave state:
to normal operation state: RDYC signal released
to parameter configuration state: CFGOK.USER_OK set to 0
B

3.4.7 Fault state

The fault state is used during and aer a fault turn o until the fault condition is cleared. Register access in this state:
status, configuration and address registers: read only
Signal condition to enter state:
from normal operation state: FLT_N signal externally pulled to low or register bit GFLTEVT.SEC_FLTN = 0
indicating a fault source detected by the output side of the gate driver IC
Signal condition and flow to leave state:
B
Reference manual 23 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
FLT_N = 0 or
.SEC_FLTN = 0
GFLTEVT
t FCLR.FSCLR_T
GFLTEVT.SEC_FLTN = 1 &
FLTEVT.VOUT_ST = 0 &
Fault State
RDYC = 1 FLT_N = 0 IN = x
FCLR.FCLR_CFG = 1
IN = 0
GFLTEVT
.SEC_FLTN = 0
Fault Clear
Pending
RDYC = x FLT_N = 0 IN = x
Figure 17 Fault clear using self clear timer
Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for
logic pins with low (0), high (1), or either (x)
Register names in uppercase bold letters followed by the register bit name and value
States in bubbles with transitions marked by arrows with conditions attached
t > FCLR.FSCLR_T
& FLT_N = 1
Normal
Operation
RDYC = 1 FLT_N = 1
Register bit FCLR.FCLR_CFG = 1B (Fault clear using self-clear timer)
1. register bit GFLTEVT.SEC_FLTN = 1B, indicating that the fault source is no longer triggering and the fault o sequence is completed
2. register bit FLTEVT.VOUT_ST = 0B, indicating that the output switch-o is done
3. IN pin switched to low to enter the fault clear pending state
4. staying in fault clear pending for the duration of the configured self clear time FCLR.FSCLR_T without
having a new fault trigger GFLTEVT.SEC_FLTN = 0
B
5. aer fulfilling the above conditions the gate driver IC releases the FLT_N pin and returns to normal operation state
FLT_N = 0 or
.SEC_FLTN = 0
GFLTEVT
GFLTEVT.SEC_FLTN = 1 &
FLTEVT.VOUT_ST = 0 &
Fault State
RDYC = x FLT_N = 0 IN = x
FCLR.FCLR_CFG = 0
RDYC = 0 &
IN = 0
GFLTEVT
.SEC_FLTN = 0
&
t t
CLRMIN
RDYC = 0
Fault Clear
Pending
RDYC = 0 FLT_N = 0 IN = x
t > t
CLRMIN
RDYC = 1 &
FLT_N = 1
&
Normal
Operation
RDYC = 1 FLT_N = 1
Figure 18 Fault clear using RDYC pin
Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for
logic pins with low (0), high (1), or either (x)
Register names in uppercase bold letters followed by the register bit name and value
States in bubbles with transitions marked by arrows with conditions attached
Register bit FCLR.FCLR_CFG = 0B (Fault clear using RDYC pin)
1. register bit GFLTEVT.SEC_FLTN = 1B, indicating that the fault source is no longer triggering and the fault o sequence is completed
2. register bit FLTEVT.VOUT_ST = 0B, indicating that the output switch-o is done
3. IN pin switched to low
4. RDYC pin switched to low to enter the fault clear pending state
Reference manual 24 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
5. staying in fault clear pending for the duration of the fault clear time t
trigger GFLTEVT.SEC_FLTN = 0
6. RDYC pin released to high
7. aer fulfilling the above conditions the gate driver releases the FLT_N pin and returns to normal
operation state
B
without having a new fault
CLRMIN
3.4.8 So-reset, restore and recovery
The 1ED38x0 family oers three configuration related modes:
so-reset of all configuration registers to return to their reset values
automatic restore of all output registers aer an output not ready event
automatic recovery of all input registers aer an input not ready event
Both restore and recovery are independent and can be enabled at the same time. The automatic restore or recovery can only work if one driver side stays supplied.
3.4.8.1 So-reset
The so-reset configuration register bit CLEARREG.SOFT_RST allows to clear all configuration registers. Unless the automatic restore of output registers is configured, a so-reset will also be triggered aer a severe output side UVLO event.
Aer a reset the registers will have their reset values and the gate driver IC returns to the parameter configuration state. The I2C address registers I2CADD, I2CGADD, and I2CCFGOK will not be aected, only the configuration registers need a new set of parameters.
3.4.8.2 Automatic configuration restore from input side
The gate driver IC is equipped with an advanced configuration restore function. If the output side lost its configuration (e.g. VCC2 UVLO triggered so-reset) the input side is trying to restore the data from the input side to the output side as soon as the output side is ready again.
The function is configured in register bit RECOVER.RESTORE
0B = restore not active, the gate driver IC will
- perform a so-reset,
- clear parameter configuration bit CFGOK.USER_OK to 0B, and
- stay in parameter configuration state and wait for the user to re-configure the settings
1B = restore active, the gate driver IC will
- restore the output side and
- release RDYC and enter normal operation state
Reference manual 25 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
Parameter
Configuration
State
VCC1 ok RDYC = 0 FLT_N = x IN = x
CFGOK.
USER_OK = 0
Output Side
Power Down
(not-ready)
State
VCC1 ok VCC2 nok RDYC = 0
I2CCFGOK.I2CCFGOK = 1 CFGOK.USER_OK = 1 RECOVER.RESTORE = 1
VCC2 -> ok
Parameter
Transfer
State
VCC1 ok VCC2 ok RDYC = 0
RDYSTAT. SEC_RDY
= 1
Operation
VCC1 ok VCC2 ok RDYC = 1 FLT_N = 1
Normal
Figure 19 State diagram of output configuration restore from input side
Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for
logic pins with low (0), high (1), or either (x)
Register names in uppercase bold letters followed by the register bit name and value
States in bubbles with transitions marked by arrows with conditions attached
The output side power down state is a not ready state where additional conditions apply. The regular path to parameter configuration state is also possible. Otherwise the gate driver IC leaves this state to parameter transfer state aer a successful output side power up. Aer the register transfer the status register bit
RDYSTAT.SEC_RDY will be set to 1B and the gate driver IC returns to normal operation state.
A successful restore will be signaled by the sticky bit in the register bit EVTSTICK.SRESTORE.
3.4.8.3 Automatic configuration recovery from output side
The gate driver IC is equipped with an advanced configuration recovery function. If the input side lost its configuration (e.g. UVLO event at VCC1) the input side is trying to recover the data from the output side as soon as the input side is ready again.
The function is configured in register RECOVER.RECOVER:
0B recover not active, gate driver IC will
- perform a so-reset,
- clear parameter configuration bit CFGOK.USER_OK and I2CCFGOK.I2CCFGOK to 0B, and
- returns to OFF state
1B recover active, gate driver IC will
- recover the configuration from the output side,
- release RDYC, and
- enter normal operation state
Input Side
Power Down
State
VCC1 nok VCC2 ok RDYC = 0
I2CCFGOK.I2CCFGOK = 1 CFGOK.USER_OK = 1 RECOVER.RECOVER = 1
VCC1 -> ok
Parameter
Transfer
State
VCC1 ok VCC2 ok RDYC = 0
RDYSTAT.
PRI_RDY
= 1
Operation
VCC1 ok VCC2 ok RDYC = 1 FLT_N = 1
Normal
Figure 20 State diagram of input configuration recover from output side
Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for
logic pins with low (0), high (1), or either (x)
Register names in uppercase bold letters followed by the register bit name and value
States in bubbles with transitions marked by arrows with conditions attached
Reference manual 26 v2.1
2021-02-15
EiceDRIVER
1ED38x0Mc12M Enhanced
Reference manual
3 Functional description
The input side power down state is an extended o state. The gate driver IC leaves this state to parameter transfer state aer a successful input side power up. Aer the register transfer the status register
RDYSTAT.PRI_RDY will be set to 1B and the gate driver IC returns to normal operation state.
A successful recover will be signaled by the sticky bit in the register EVTSTICK.SRECOVER.

3.5 Measurement

The 1ED38x0 family oers several measurement functions and uses a free running successive-approximation­register analog-to-digital converter (SAR-ADC). The SAR-ADC has a 8 bit resolution and the results are digitally filtered with a three-point-two pass moving average filter.
Following internal and external parameter measurements are available:
ADCMVCC2 Measurement VCC2 to VEE2
ADCMVDIF Measurement and calculation VCC2 to GND2
ADCMGND2 Measurement GND2 to VEE2
ADCMTEMP Measurement junction temperature T
ADCMVEXT Measurement external voltages, e.g. NTC
Measurement result registers will be updated sequentially depending on selected sample sources. The update rate is typically below 100 µs.
The SAR-ADC configuration register ADCCFG is used to activate measurement channels and external voltage compare behavior. Measurement of internal junction temperature is always active. Activated SAR-ADC measurements also enable monitoring functions.
J

3.6 Monitoring

The 1ED38x0 family oers many monitoring functions. The monitoring functions can be divided into:
Hardware based functions
The hardware based monitoring functions use dedicated hardware, e.g. fast UVLO.
ADC-based functions
The ADC-based functions gather measured values of dierent parameters and compare them with limit values. Enable ADC measurement to use related ADC-based monitoring functions.
Both groups contain non-configurable and configurable functions.
Non-configurable hardware monitoring:
VEE2 over GND2, e.g. VEE2 connection failure
Turn-o monitoring, VON > VEE2+2 V (FLTEVT.VOUT_ST = 1B)
Gate voltage monitoring below VEE2+2 V (PINSTAT.ON_PIN = 1B)
Gate voltage monitoring above VCC2-2 V (PINSTAT.OFF_PIN = 1B)
Gate voltage monitoring above V
Pin status monitoring of IN pin high (PINSTAT.PWM_IN = 1B)
Pin status monitoring of RDYC pin high (PINSTAT.RDYC = 1B)
Pin status monitoring of FLT_N pin high (PINSTAT.FLT_N = 1B)
VCC1 supply voltage UVLO spike detection (UV1FCNT)
VCC2 supply voltage UVLO spike detection (UV2FCNT)
Configurable hardware monitoring:
Normal VCC2 supply UVLO event (SECUVEVT.UV_VCC2)
Normal VEE2 supply UVLO event (SECUVEVT.UV_VEE2)
Switch-o timeout, VON > VEE2+2 V and maximal switch-o timeout time elapsed (FLTEVT.SOTO_EVT)
(PINSTAT.TLTO_LVL = 1B)
TLTOFF
Reference manual 27 v2.1
2021-02-15
Loading...
+ 62 hidden pages