IDT VersaClock 6E Register Descriptions And Programming Manual

Automotive VersaClock® 6E Register
Descriptions and Programming Guide

Register Descriptions

The register descriptions section describes the behavior and function of the customer-programmable non-volatile-memory registers in the VersaClock 6E clock generators.

Table 1. Automotive VersaClock 6E Product(s)

Product Description Package
5P49V60 5-Output VersaClock 6E (automotive, AEC-Q100) 24 pins
For details of product operation, refer to the product datasheet.

VersaClock 6E Register Set

The device contains volatile (RAM) 8-bit registers and non-volatile 8-bit registers (Figure 1). The non-volatile registers are One-Time Programmable (OTP), and bit values can only be changed from 1 (unburned state) to 0.
Each configuration table contains all the information to set up the device's output frequencies. When these configuration tables are programmed, the device will automatically load the RAM registers with the desired configuration on power-up. The device initializes in
2
either I mode until power is toggled (Table 2). When powered up in I²C mode, the first configuration table, CFG0, is loaded. When powered up in selection-pin mode, the SEL0 and SEL1 inputs are decoded to select one of the four configuration tables CFG0-CFG3.
The RAM registers (Table 4) include Status registers for read-back of the device's operating conditions in I

Figure 1. Register Maps

C mode or selection-pin mode, depending on the state of the OUT0/SELB_I2C pin on power-up, and remains in the selected
2
C mode.
1©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide
Contents
Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
VersaClock 6E Register Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
User Configuration Table Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
I2C Interface and Register Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
VersaClock 6E Family Power-Up Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
OTP Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
In-System VersaClock 6E OTP Non-Volatile Programming via I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Default Register Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
OTP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Factory Reserved Registers for Internal Use Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Configuration Register Detail and Functionality Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Shutdown Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Case 1: Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Case 2: Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Setting Up a Low-Power Shutdown Mode through I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Crystal Load Capacitor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Short Example of Programming Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PLL Pre-Divider Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PLL Fractional Feedback Divider and Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PLL Loop Filter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Fractional Output Dividers and Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Example of FOD calculation for SSCE = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Output Divider Control Settings (Table 47 through Table 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Output Divider Integer Settings (Table 51 through Table 58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Output Divider Fractional and Spread Settings (Table 59 through Table 94) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Output Divider Skew Integer and Fractional Part Registers Settings (Table 95 through Table 107) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Clock Output Configurations Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide

User Configuration Table Selection

At power-up, the voltage at OUT0_SEL_I2CB pin 24 is latched by the part and used to select the state of SEL0/SCL pin 9 and SEL1/SDA pin 8 (Table 2).
If a weak pull-up (10k) is placed on OUT0_SEL_I2CB, the SEL0/SCL and SEL1/SDA pins will be configured as hardware select inputs, SEL0 and SEL1. Connecting SEL0 and SEL1 to VDDD and/or GND selects one of 4 configuration register sets, CFG0 through CFG3, which is then loaded into the non-volatile configuration registers to configure the clock synthesizer.
If a weak pull-down is placed on OUT0_SEL_I2CB (or if it is left floating to use internal pull-down), the pins SEL0 and SEL1 will be configured as a I configuration registers to configure the clock synthesizer. The host system can use the I
2
C interface's SDA and SCL slave bus. Configuration register set CFG0 is always loaded into the non-volatile
2
C bus to update the non-volatile configuration
registers to change the configuration, and to read status registers.

Table 2. Power-Up Setting of Hardware Select Pin vs I2C Mode, and Default OTP Configuration Register

OUT0_SEL_I2CB Strap at
Power-Up
10k pull-up
10k pull-down or floating SDA SCL
SEL1/SDA pin SEL0/SCL pin Function
0 0 OTP bank CFG0 used to initialize RAM configuration registers.
0 1 OTP bank CFG1 used to initialize RAM configuration registers.
1 0 OTP bank CFG2 used to initialize RAM configuration registers.
1 1 OTP bank CFG3 used to initialize RAM configuration registers.
2
I
C bus enabled to access registers.
OTP bank CFG0 used to initialize RAM configuration registers.

I2C Interface and Register Access

When powered up in I2C mode (Table 2), the device allows access to internal RAM registers (Table 4). The OTP registers (Table 3) are programmed by loading the desired values into the RAM registers that shadow the target OTP registers (Table 4), and initiating the internal programming sequence for the desired register range.
Users should not write to the Trim RAM in address range 0x01–0x0F, or the Test RAM in address range 0x6A–0x6F, and should only write to the OTP Control in address range 0x70–0x7F when programming the OTP.
The RAM in address range 0x80–0x8F is not used by the device and may be used for any purpose.

Table 3. OTP Register Map Summary

Register Range OTP Register Block Name Register Block Description
0x000 OTP Control OTP burned status & I²C address setting.
0x001–0x00F Trim Presets Program default settings. See page 6.
0x010–0x069 CFG0 User configuration settings bank 0.
0x06A–0x0C3 CFG1 User configuration settings bank 1.
0x0C4–0x11D CFG2 User configuration settings bank 2.
0x11E–0x177 CFG3 User configuration settings bank 3.
0x178–0x1AF Factory Use Factory settings–do not over-program.
3©2019 Integrated Device Technology, Inc. June 7, 2019

Table 4. RAM Register Map Summary

Automotive VersaClock® 6E Register Descriptions and Programming Guide
Register Range RAM Register Block
0x00 OTP Control OTP Control 0x000
0x01–0x0F Trim Trim 0x000–0x00F
0x10–0x1F Configuration–Main
0x20–0x2F Configuration–CLK1
0x30–0x3F Configuration–CLK2
0x40–0x4F Configuration–CLK3
0x50–0x5F Configuration–CLK4
0x60–0x69 Configuration–Outputs
0x6A–0x6F Factory Use
0x70–0x7F OTP Control
0x80–0x8F Unused RAM
0x90–0x9F Factory Use
Corresponding OTP Register
Block Name
CFG0
CFG1
CFG2 CFG3
Corresponding OTP Register Block Address
Range
0x010–0x069
0x06A–0x0C3
0x0C4–0x11D
0x11E–0x177

VersaClock 6E Family Power-Up Behavior

On power-up, the following RAM register loading sequence occurs:
1. The RAM registers always initialize to a hard-wired set of default values, which are also the 'Default register values' for OTP shown in subsequent tables.
2. If OTP_ burned bit D7 = 0 in the OTP Control register (Table 7), this indicates that the both the Trim OTP tables and at least one of
the four OTP user configuration tables have been programmed.
• Factory programmed product is typically shipped in this condition. Device has factory trim performed and with required customization written into OTP memory. IDT programs user customization at factory test. Please visit our website for device customization request.
• Trim RAM data will be updated from the Trim OTP registers into the appropriate trim RAM registers, overwriting the initial default values.
• Configuration data will be read from the one of the four OTP user configuration tables into the appropriate configuration RAM registers, overwriting the initial default values. When powered up in I powered up in selection-pin mode, the SEL0 and SEL1 input pins are decoded to select one of the four configuration tables (Table
23).
• Initialization is now complete, and the part will operate per the configuration settings.
3. If OTP_ burned bit D7 = 1 in the OTP Control register (Table 7), this indicates that the four OTP user configuration tables are
unconfigured.
• Un-programmed product is shipped in this condition and ready for user self-program and customization.
• Configuration RAM data remains at the hard-wired set of default values.
• Initialization is now complete, and the part will operate per the default configuration settings.
• When powered up in I
2
C mode, the Configuration RAM registers can be written with the user's desired settings by the host system, and the clock generator operated without ever programming any of the four OTP user configuration tables. Alternatively, the host system (or a programming system) can program one of more of the four OTP user configuration tables, and also clear the OTP_ burned bit D7 in the OTP Control register (Table 7) to 0. The VersaClock 6E device will follow the behavior according to section 0 above for subsequent power ups.
2
C mode, the first configuration table, CFG0, is loaded. When
4©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide

OTP Programming

The steps for OTP programming are given in Table 5. The procedure is to write the desired default data to the appropriate RAM registers, and then to instruct the part to burn a desired register address range into OTP.
The RAM registers have an 8-bit register address (0x00 to 0x9F), while the user OTP registers have a 9-bit address (0x000 to 0x177). This is because there are 4 banks of configuration data in OTP. The OTP addressing therefore extends across two RAM registers (Table
5). The 9-bit user start address is set by register 0x73[7:0] + 0x74[7]. The 9-bit user end address is set by register 0x75[7:0] + 0x76[7].

Table 5. OTP Programming Procedure

Step Procedure Notes
Connect all VDD pins to a single 3.3V, with OUT0_SEL_I2CB pin
0
left floating.
1 Wait 100ms. Part power-up initialization.
Power on the part in I²C mode.
Write device RAM configuration registers 0x10 to 0x69 to the
2
desired state.
3 Write registers 0x73 to 0x78 following the procedure in Table 5.
4 Write register 0x72 = 0xF0. Reset burn bit.
5 Write register 0x72 = 0xF8. Burn the OTP range defined above.
6 Wait 500ms.
7 Write register 0x72 = 0xF0. Reset burn bit.
8 Write register 0x72 = 0xF8. Repeat the burn.
9 Wait 500ms.
10 Write register 0x72 = 0xF0. Reset burn bit.
11 Done programming. Programming complete.
12 Write register 0x72 = 0xF2. Perform margin read.
13 Write register 0x72 = 0xF0. Reset margin read bit.
Read register 0x9F:
14
If bit D1 = 0, programming was successful.
If bit D1 = 1, programming failed.
These RAM values will be programmed into OTP as new default register values.
Set burn register source address range and destination register bank CFG0, 1, 2, or 3.
Wait for burn to complete. Device stops acknowledging while burning.
Wait for burn to complete. Device stops acknowledging while burning.
Test if OTP programming was successful.
15 Write register 0x9F = 0x00. Reset margin read status bit.
One configuration register bank (CFG0, 1, 2, or 3) is now burned.
16
To burn another bank, repeat the procedure from Step 2.
When all desired configuration register bank have been burned,
17
write device OTP Control register 0x00 with OTP_burned bit D7 clear.
18 Exit. Done.
Burn further configuration register banks if desired.
Burn OTP Control register clearing OTP_burned bit D7. This sets the part to load configuration data from OTP on power-up.
5©2019 Integrated Device Technology, Inc. June 7, 2019

Table 6. OTP Addressing For Programming

Automotive VersaClock® 6E Register Descriptions and Programming Guide
User Start
Register
OTP Control register 0x00 0x4E 0x00 0x61 0x00 0x00 0x00
Configuration CFG0* 0x00 0x4E 0x34 0xE1 0x00 0x00 0x00 to 0x69
Configuration CFG1 0x35 0x4E 0x61 0xE1 0x10 0x10 0x10 to 0x69
Configuration CFG2 0x62 0x4E 0x8E 0xE1 0x10 0x10 0x10 to 0x69
Configuration CFG3 0x8F 0x4E 0xBB 0xE1 0x10 0x10 0x10 to 0x69
Address[8:0]
Part-Select
Bit 0x73
Enable
Sub-block's
Test Mode
0x74
User End
Address[8:0]
Part-Select Bit
0x75
User End
Address[8:0]
Part-Select
Bits 0x76
Burned Register
Start Address
0x77
Read Register Start Address
0x78
Registers
Burned To
OTP
* Configuration CFG0 includes the Trim presets in 0x01 to 0x0F.
Use the steps in the following example as guidelines to program configuration 0 OTP registers:
1. Write the value from register address 0x00 to 0x69 (first bank) to RAM registers.
Starting at Address 0x00, write data: 61 F3 00 00 00 00 00 00 00 FF FD C0 00 B6 B4 92 A8 CC 81 80 00 03 8C 03 20 00 00 00 9F FF F0 80 00 81 00 00 00 00 00 00 00 00 04 00 01 01 90 00 00 8F 00 00 00 00 00 00 00 00 04 00 00 9C 40 00 00 81 02 00 00 00 00 00 00 00 04 00 00 00 C0 00 00 81 00 00 00 00 00 00 00 00 04 00 00 00 A0 00 3B 01 3B 00 BB 01 7B 01 FF FC
In above example, 61 is the value in register 0x00 that correspond to I
2
C address D4 and the trim presets are recommended defaults:
0x01–0x0F = “F3 00 00 00 00 00 00 00 FF FD C0 00 B6 B4 92".
In above example, a 25MHz crystal is expected, OUT0 is enabled, OUT1 is 50MHz LVCMOS, OUT2 is 10KHz LVCMOS, OUT3 is 100MHz LVCMOSD and OUT4 is 125MHz LVDS. In case of 5P49V6967 and 5P49V6968, the OUT3 setting will determine the frequency of the LP-HCSL outputs.
2. Write the following values to program the OTP with config0 and trim bits (Table 6):
• Reg Address (hex): 73 74 75 76 77 78
• Configuration 0: 00 4E 34 E1 00 00
3. Start Burn with Reg 0x72 set to F8.
4. Wait 500ms.
5. Reset Burn Start Bit 0x72 set to F0.

In-System VersaClock 6E OTP Non-Volatile Programming via I2C

For in-system programming of OTP, it is required to power the VDDA and VDDD pins from 3.3V. Other VDD pins can be powered from
1.8V, 2.5V or 3.3V, whatever is needed for the application.
Burning OTP requires a high internal voltage. The circuit responsible for generating the high internal voltage needs at least 3.3V to generate a high enough internal voltage for reliable OTP burning with good data retention.

Default Register Values

The following tables have a column “Default Value”. These are values as they show in a 5P49V69xxA000, so called “blank” device that is meant for field programming. When the device is still un-programmed, it runs a default mode with OUT0 enabled and OUT1 = 100MHz, assuming a 25MHz crystal is connected. The default values are the register settings for this default mode.
6©2019 Integrated Device Technology, Inc. June 7, 2019

OTP Control Register

Automotive VersaClock® 6E Register Descriptions and Programming Guide
The I2C slave address can be changed from the default 0xD4 to 0xD0 by programming the I2C_ADDR bit D0. Note that the I2C address change occurs on the I D0 should be followed by an I
2
C ACK of the write transaction. An I2C write sequence to register 0x00 that changes the value of I2C_ADDR bit
2
C STOP condition. Further I2C transactions to the part use the new address.
In the OTP Control Register (Table 7) bits can be set for the OTP Burn and OTP Trim status, VC6E or MEMS use and I2C address setting. Four bits are left unused.

Table 7. RAM0 0x00 – OTP Control Register

Bits Default Value Name Function
It's an active low state that indicates all the OTP burn process is done.
D7 1 OTP_burned
D6 1 OTP_TRIM An active low state that indicates OTP trim part is burned.*
D5 1 Unused Unused.
D4 1 Unused Unused.
D3 1 Unused Unused.
D2 1 Unused Unused.
D1 1 Unused Unused.
D7 = 1 tells the chip that OTP is not burned and it will run the default mode.
D7 = 0 tells the chip that OTP is burned and it will transfer OTP content to the registers for operating settings.
D0 1 Device I2C_ADDR If I2C_ADDR = 0 then D0 and if I2C_ADDR = 1 then D4.
* The trim values are commonly written with default values and the OTP_TRIM bit is left at “1”.

Factory Reserved Registers for Internal Use Only

Table 8. RAM0 – 0x01: Factory Reserved Bits - Device ID for Chip Identification

Bits Default Value Name Function
D7 1 CFG0_LOCK* Set to “0” to disable burning OTP of Configuration 0.
D6 1 CFG1_LOCK* Set to “0” to disable burning OTP of Configuration 1.
D5 1 CFG2_LOCK* Set to “0” to disable burning OTP of Configuration 2.
D4 1 CFG3_LOCK* Set to “0” to disable burning OTP of Configuration 3.
D3 1 Unused Unused.
D2 1 Unused Unused.
D1 1 Reserved Factory reserved, leave at “1”.
D0 1 Reserved Factory reserved, leave at “1”.
* Configuration Lock bits can be used to prevent future OTP burning that can modify OTP content.
7©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide

Table 9. RAM0 – 0x02: Factory Reserved Bits - ADC Gain Setting

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
ADC gain[7:0] ADC gain setting - Factory reserved bits
D3 0
D2 0
D1 0
D0 0

Table 10. RAM0 – 0x03: F a cto ry Reserved Bits - ADC Gain Setting

Bits Default Value Name Function
D7 1
D6 1
D5 1
D4 1
ADC gain[15:8] ADC gain setting - Factory reserved bits
D3 1
D2 1
D1 1
D0 1

Table 11. RAM0 – 0x04: F a cto ry Reserved Bits - ADC OFFSET

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
ADC offset[7:0] ADC offset - Factory reserved bits
D3 0
D2 0
D1 0
D0 0
8©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide

Table 12. RAM0 – 0x05: Factory reserved bits - ADC OFFSET

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
ADC offset[15:8] ADC offset - Factory reserved bits
D3 0
D2 0
D1 0
D0 0

Table 13. RAM0 – 0x06: F actory Reserved Bits

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
TEMPY[7:0] Factory reserved bits
D3 0
D2 0
D1 0
D0 0

Table 14. RAM0 – 0x07: F actory Reserved Bits

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
OFFSET_TBIN<7:0> Unused Factory reserved bits
D3 0
D2 0
D1 0
D0 0
9©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide

Table 15. RAM0 – 0x08: F actory Reserved Bits

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
GAIN<7:0> Unused Factory reserved bits
D3 0
D2 0
D1 0
D0 0

Table 16. RAM0 – 0x09: F actory Reserved Bits

Bits Default Value Name Function
D7 1
D6 1
test[3:0] Factory reserved bits
D5 1
D4 1
D3 1
D2 1
NP[3:0] Factory reserved bits
D1 1
D0 1

Table 17. RAM0 – 0x0A: Factory Reserved Bits

Bits Default Value Name Function
D7 1 Reserved
D6 1 Reserved
D5 1 Reserved
D4 1 Reserved
Factory reserved bits
D3 1 Reserved
D2 1 Reserved
D1 0 Reserved
D0 1 Reserved
10©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide

Table 18. RAM0 – 0x0B: Factory Reserved Bits

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
bandgap_trim_up
[5:0]
bandgap voltage trim, one step is 1.2mV higher than current.
D3 0
D2 0
D1 0 unused bit
D0 0 unused bit

Table 19. RAM0 – 0x0C: Factory Reserved Bits

Bits Default Value Name Function
D7 0
D6 0
D5 0
D4 0
bandgap_trim_dn
[5:0]
bandgap voltage trim, one step is 1.2mV lower than current.
D3 0
D2 0
D1 0 unused bit
D0 0 unused bit

Table 20. RAM0 – 0x0D: Factory Reserved Bits

Bits Default Value Name Function
D7 1
clk1_R_trim[2:0] clk_R_trim: trim for “R” variation, 1LSB is 10%, default is in the middle level.D6 0
D5 1
D4 1
clk2_R_trim[2:0] clk_R_trim: trim for “R” variation, 1LSB is 10%, default is in the middle level.D3 0
D2 1
D1 1 CLK4_amp[2] clk_amp: tune the amplitude of PAD, 1LSB is 10%, default is in the middle level.
D0 0 CLK4_amp[1] clk_amp: tune the amplitude of PAD, 1LSB is 10%, default is in the middle level.
11©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide

Table 21. RAM0 – 0x0E: Factory Reserved Bits

Bits Default Value Name Function
D7 1
clk3_R_trim[2:0] clk_R_trim: trim for “R” variation, 1LSB is 10%, default is in the middle level.D6 0
D5 1
D4 1
clk4_R_trim[2:0] clk_R_trim: trim for “R” variation, 1LSB is 10%, default is in the middle level.D3 0
D2 1
D1 0 CLK4_amp[0] clk_amp: tune the amplitude of PAD, 1LSB is 10%, default is in the middle level.
D0 0 CLK3_amp[0] clk_amp: tune the amplitude of PAD, 1LSB is 10%, default is in the middle level.

Table 22. RAM0 – 0x0F: Factory Reserved Bits

Bits Default Value Name Function
D7 1 CLK1_amp[2]
D6 0 CLK1_amp[1]
D5 0 CLK1_amp[0]
D4 1 CLK2_amp[2]
D3 0 CLK2_amp[1]
clk_amp: tune the amplitude of PAD, 1LSB is 10%, default is in the middle level–Factory
reserved bits.
D2 0 CLK2_amp[0]
D1 1 CLK3_amp[2]
D0 0 CLK3_amp[1]

Configuration Registers

The internal RAM configuration registers occupy 0x10 to 0x69 (Table 4). The 4 OTP configuration banks CFG0, CFG1, CFG2, and CFG3 use the same register structure and setting behavior.
The tables with register details refer to the RAM register address for simplicity. Table 23 shows the 3-digit OTP register addresses 0x010 to 0x177 for the four banks of identical configuration registers, and the corresponding RAM register address.

Table 23. RAM and OTP Configuration Registers CFG0, CFG1, CFG2, CFG3 Summary

Register Address
Function
RAM CFG0 CFG1 CFG2 CFG3
0x10 0x010 0x06A 0x0C4 0x11E
0x11 0x011 0x06B 0x0C5 0x11F
0x12 0x012 0x06C 0x0C6 0x120
0x13 0x013 0x06D 0x0C7 0x121
0x14 0x014 0x06E 0x0C8 0x122
0x15 0x015 0x06F 0x0C9 0x123
Primary Source and Shutdown Register
VCO Band and Factory Reserved Bits
Crystal X1 Load Capacitor Register
Crystal X2 Load Capacitor Register
Factory Reserved Register
Reference Divider Register
12©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide
Table 23. RAM and OTP Configuration Registers CFG0, CFG1, CFG2, CFG3 Summary (Cont.)
Register Address
Function
RAM CFG0 CFG1 CFG2 CFG3
0x16 0x016 0x070 0x0CA 0x124
0x17 0x017 0x071 0x0CB 0x125
0x18 0x018 0x072 0x0CC 0x126
0x19 0x019 0x073 0x0CD 0x127
0x1A 0x01A 0x074 0x0CE 0x128
0x1B 0x01B 0x075 0x0CF 0x129
0x1C 0x01C 0x076 0x0D0 0x12A
0x1D 0x01D 0x077 0x0D1 0x12B
0x1E 0x01E 0x078 0x0D2 0x12C
0x1F 0x01F 0x079 0x0D3 0x12D
0x20 0x020 0x07A 0x0D4 0x12E
0x21 0x021 0x07B 0x0D5 0x12F
0x22 0x022 0x07C 0x0D6 0x130
0x23 0x023 0x07D 0x0D7 0x131
0x24 0x024 0x07E 0x0D8 0x132
0x25 0x025 0x07F 0x0D9 0x133
0x26 0x026 0x080 0x0DA 0x134
VCO Control Register and Pre-Divider
Feedback Integer Divider Register
Feedback Integer Divider Bits
Feedback Fractional Divider Register
Feedback Fractional Divider Register
Feedback Fractional Divider Register
Factory Reserved Register
Factory Reserved Register
RC Control Register
RC Control Register
Unused Factory Reserved Register
Output Divider 1 Control Register Settings
Output Divider 1 Fractional Settings
Output Divider 1 Fractional Settings
Output Divider 1 Fractional Settings
Output Divider1 Fractional Settings
Output Divider 1 Step Spread Configuration Register
0x27 0x027 0x081 0x0DB 0x135
0x28 0x028 0x082 0x0DC 0x136
0x29 0x029 0x083 0x0DD 0x137
0x2A 0x02A 0x084 0x0DE 0x138
0x2B 0x02B 0x085 0x0DF 0x139
0x2C 0x02C 0x086 0x0E0 0x13A
0x2D 0x02D 0x087 0x0E1 0x13B
0x2E 0x02E 0x088 0x0E2 0x13C
0x2F 0x02F 0x089 0x0E3 0x13D
0x30 0x030 0x08A 0x0E4 0x13E
0x31 0x031 0x08B 0x0E5 0x13F
0x32 0x032 0x08C 0x0E6 0x140
0x33 0x033 0x08D 0x0E7 0x141
0x34 0x034 0x08E 0x0E8 0x142
0x35 0x035 0x08F 0x0E9 0x143
0x36 0x036 0x090 0x0EA 0x144
0x37 0x037 0x091 0x0EB 0x145
Output Divider 1 Step Spread Configuration Register
Output Divider 1 Step Spread Configuration Register
Output Divider 1 Spread Modulation Rate Configuration Register
Output Divider 1 Spread Modulation Rate Configuration Register
Output Divider 1 Skew Integer Part
Output Divider 1 Skew Integer Part
Output Divider 1 Integer Part
Output Divider 1 Integer Part
Output Divider 1 Skew Fractional part
Unused Factory Reserved Register
Output Divider 2 Control Register Settings
Output Divider 2 Fractional Settings
Output Divider 2 Fractional Settings
Output Divider 2 Fractional Settings
Output Divider2 Fractional Settings
Output Divider 2 Step Spread Configuration Register
Output Divider 2 Step Spread Configuration Register
13©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide
Table 23. RAM and OTP Configuration Registers CFG0, CFG1, CFG2, CFG3 Summary (Cont.)
Register Address
Function
RAM CFG0 CFG1 CFG2 CFG3
0x38 0x038 0x092 0x0EC 0x146
0x39 0x039 0x093 0x0ED 0x147
0x3A 0x03A 0x094 0x0EE 0x148
0x3B 0x03B 0x095 0x0EF 0x149
0x3C 0x03C 0x096 0x0F0 0x14A
0x3D 0x03D 0x097 0x0F1 0x14B
0x3E 0x03E 0x098 0x0F2 0x14C
0x3F 0x03F 0x099 0x0F3 0x14D
0x40 0x040 0x09A 0x0F4 0x14E
0x41 0x041 0x09B 0x0F5 0x14F
0x42 0x042 0x09C 0x0F6 0x150
0x43 0x043 0x09D 0x0F7 0x151
0x44 0x044 0x09E 0x0F8 0x152
0x45 0x045 0x09F 0x0F9 0x153
0x46 0x046 0x0A0 0x0FA 0x154
0x47 0x047 0x0A1 0x0FB 0x155
0x48 0x048 0x0A2 0x0FC 0x156
Output Divider 2 Step Spread Configuration Register
Output Divider 2 Spread Modulation Rate Configuration Register
Output Divider 2 Spread Modulation Rate Configuration Register
Output Divider 2 Skew Integer Part
Output Divider 2 Skew Integer Part
Output Divider 2 Integer Part
Output Divider 2 Integer Part
Output Divider 2 Skew Fractional part
Unused Factory Reserved Register
Output Divider 3 Control Register Settings
Output Divider 3 Fractional Settings
Output Divider 3 Fractional Settings
Output Divider 3 Fractional Settings
Output Divider 3 Fractional Settings
Output Divider 3 Step Spread Configuration Register
Output Divider 3 Step Spread Configuration Register
Output Divider 3 Step Spread Configuration Register
0x49 0x049 0x0A3 0x0FD 0x157
0x4A 0x04A 0x0A4 0x0FE 0x158
0x4B 0x04B 0x0A5 0x0FF 0x159
0x4C 0x04C 0x0A6 0x100 0x15A
0x4D 0x04D 0x0A7 0x101 0x15B
0x4E 0x04E 0x0A8 0x102 0x15C
0x4F 0x04F 0x0A9 0x103 0x15D
0x50 0x050 0x0AA 0x104 0x15E
0x51 0x051 0x0AB 0x105 0x15F
0x52 0x052 0x0AC 0x106 0x160
0x53 0x053 0x0AD 0x107 0x161
0x54 0x054 0x0AE 0x108 0x162
0x55 0x055 0x0AF 0x109 0x163
0x56 0x056 0x0B0 0x10A 0x164
0x57 0x057 0x0B1 0x10B 0x165
0x58 0x058 0x0B2 0x10C 0x166
0x59 0x059 0x0B3 0x10D 0x167
Output Divider 3 Spread Modulation Rate Configuration Register
Output Divider 3 Spread Modulation Rate Configuration Register
Output Divider 3 Skew Integer Part
Output Divider 3 Skew Integer Part
Output Divider 3 Integer Part
Output Divider 3 Integer Part
Output Divider 3 Skew Fractional part
Unused Factory Reserved Register
Output Divider 4 Control Register Settings
Output Divider 4 Fractional Settings
Output Divider 4 Fractional Settings
Output Divider 4 Fractional Settings
Output Divider 4 Fractional Settings
Output Divider 4 Step Spread Configuration Register
Output Divider 4 Step Spread Configuration Register
Output Divider 4 Step Spread Configuration Register
Output Divider 4 Spread Modulation Rate Configuration Register
14©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide
Table 23. RAM and OTP Configuration Registers CFG0, CFG1, CFG2, CFG3 Summary (Cont.)
Register Address
Function
RAM CFG0 CFG1 CFG2 CFG3
0x5A 0x05A 0x0B4 0x10E 0x168
0x5B 0x05B 0x0B5 0x10F 0x169
0x5C 0x05C 0x0B6 0x110 0x16A
0x5D 0x05D 0x0B7 0x111 0x16B
0x5E 0x05E 0x0B8 0x112 0x16C
0x5F 0x05F 0x0B9 0x113 0x16D
0x60 0x060 0x0BA 0x114 0x16E
0x61 0x061 0x0BB 0x115 0x16F
0x62 0x062 0x0BC 0x116 0x170
0x63 0x063 0x0BD 0x117 0x171
0x64 0x064 0x0BE 0x118 0x172
0x65 0x065 0x0BF 0x119 0x173
0x66 0x066 0x0C0 0x11A 0x174
0x67 0x067 0x0C1 0x11B 0x175
0x68 0x068 0x0C2 0x11C 0x176
0x69 0x069 0x0C3 0x11D 0x177
Output Divider 4 Spread Modulation Rate Configuration Register
Output Divider 4 Skew Integer Part
Output Divider 4 Skew Integer Part
Output Divider 4 Integer Part
Output Divider 4 Integer Part
Output Divider 4 Skew Fractional Part
Clock 1 Output Configuration
Clock 2 Output Configuration
Clock 1 Output Configuration
Clock 2 Output Configuration
Clock 1 Output Configuration
Clock 2 Output Configuration
Clock 1 Output Configuration
Clock 2 Output Configuration
CLK_OE/Shutdown Function
CLK_OS/Shutdown Function

Configuration Register Detail and Functionality Description

Shutdown Function

The shutdown logic offers flexible configuration of shutdown signaling and clock output enable control. The shutdown logic is summarized in Table 24.
SH bit D0 in the Shutdown register 0x10 (Table 25) configures the SD/OE input's action as either:
Case 1: Output enable (OE) for the clock outputs (leaving the PLL running).Case 2: Full part shutdown. SH bit D1 = 0 for OE function, or 1 for shutdown function.
Case 1: Output Disable
In output disable mode, individual outputs can be selected to be either Hi-Z or driven high/low, depending on the configuration of the CLKx_OS and CLKx_OE bits shown in Table 24.
Case 2: Shutdown
When the part is shutdown, the PLL is shutdown, differential outputs are driven High/Low, and the single-ended LVCMOS outputs are driven low.
With SH (bit D0 in register 0x10) = 0 (“Output Enable” in the part configuration webtool):
When SP bit D1 = 0 in the Shutdown register 0x10 (Table 25), the SD/OE input is active low (“Negative polarity” in the part
configuration webtool). Outputs are active when SD/OE pin is low.
15©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide
When SP bit D1 = 1, SD/OE is active high (“Positive polarity” in the part configuration webtool). The following sequence shall be applied to activate the outputs:
1. Startup the VersaClock 6E and wait for PLL to lock.
2. Set the SD/OE pin to 0 (low level).
3. Set the SD/OE pin to 1 (high level).

Table 24. SD/OE Truth Table

Enable
Shutdown
SH bit (D0) SP bit (D1) OSn bit OEn bit
000 x xxTri-state
0 0 1 0 x x Output active
0 0 1 1 x 0 Output active
0 0 1 1 0 1 High-Low
001 1 11Tri-state
010 x xxTri-state
0 1 1 0 x 0 Output active
0 1 1 1 0 0 High-Low
011 1 10Tri-state
011 1 x0
100 x x0Tri-state
1 0 1 0 x 0 Output active
1 0 1 1 x 0 Output active
OE Polarity
Output
Suspend
Output Enable
(only OE)
SD/OE bit SD/OE pin OUTn
1
Output active (SD/OE pin needs to be first 0, then switched to 1 after PLL lock to activate the outputs)
110 x x0Tri-state
1 1 1 0 x 0 Output active
1 1 1 1 0 0 High-Low
111 1 10Hi-Z
1 x x x 0 1 High-Low
1xx x 11Hi-Z
SH bit = “Shutdown Bit”: Enable shutdown mode where the SD/OE pin can disable more than just outputs.
SP bit = “SD/OE pin Polarity Bit”: Set the polarity of the SD/OE pin where outputs enable or disable. Only works with OE, not with SD.
OSn bit = “Output Suspend Bit”: Permanently disable an output, independent of SD/OE pin.
OEn bit = “Output Enable Bit”: Permanently enable an output, independent of SD/OE pin. Only works with OE, not with SD.
SD/OE bit = “Output Disabled State”: Set the output state to either driven High/Low or Hi-Z when disabled with the SD/OE pin.
SD/OE pin = Physical pin on the device.
SH and SP bits exist only once and affect all outputs. Other bits exist per output and affect that specific output.
16©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide
Setting Up a Low-Power Shutdown Mode through I2C
1. Tristate the outputs by writing b'001ss000' to registers 0x60, 0x62, 0x64, and 0x66 where ss = 00, 10, or 11 for output clock supply voltages 1.8V, 2.5V, or 3.3V.
2. Program all outputs to single-ended CMOS by writing 0x00 to registers 0x68.
3. Enable shutdown functionality by either writing 0x83 or 0x43 to register 0x10, for crystal clock source or external clock respectively.
4. Disable all output dividers by writing 0x80 to registers 0x21, 0x31, 0x41, and 0x51.
5. Take the SD/OE input pin 7 high.

Table 25. RAM1 – 0x10: Primary Source and Shutdown Register

Bits Default Value Name Function
D7 1 en_xtal Crystal Oscillator circuit is disabled with 0 and enabled with 1.
D6 0 en_clkin CLKIN differential input circuit is disabled with 0 and enabled with 1.
D5 1 unused Unused Factory reserved bit.
D4 0 unused Unused Factory reserved bit.
Use “en_ref_doubler” is 1 to double the reference frequency for the Phase Frequency
D3 0 en_ref_doubler
Detector. Use “en_ref_doubler” is 0 to bypass the doubler.
D2 0 en_refmode
D1 0 SP
D0 0

Table 26. RAM6 – 0x68: CLK_OE/Shutdown Function

Bits Default Value Name Function
D7 1 CLK0_OE See Table 24 – This is bit OEn for output 0.
D6 1 CLK1_OE See Table 24 – This is bit OEn for output 1.
D5 1 CLK2_OE See Table 24 – This is bit OEn for output 2.
D4 1 CLK3_OE See Table 24 – This is bit OEn for output 3.
D3 1 CLK4_OE See Table 24 – This is bit OEn for output 4.
D2 1 clk0_slewrate[1]
en_global
shutdown
Enable path from reference clock to OUT1. Set to 1 when OUT1 is a copy of the reference clock (= OUT0). Set to 0 when using FOD1 for OUT1.
SD/OE input pin is active low if this bit is 0 and active high if this bit is 1. (If D0 = 0 then D1 reverses SD/OE pin polarity, affecting OE bits in output polarity. If D0 = 1, SD/OE pin = 1 causes global shutdown).
D1 reverses SD/OE pin polarity, affecting OE bits in output buffers and SD/OE input pin is shutdown (SD) if this bit is 1.
CLK0 slew rate setting bit[1]. 11 = Fastest.
00 = Slowest (20% slower than 11).
D1 1
D0 1
clk0_pwr_sel[1:0]
Clock output driver power supply voltage is indicated by these bits. D1 D0 = 0x indicates 1.8V.
D1 D0 = 10 indicates 2.5V.
D1 D0 = 11 indicates 3.3V.
17©2019 Integrated Device Technology, Inc. June 7, 2019
Automotive VersaClock® 6E Register Descriptions and Programming Guide
R
R
X
Xt al O s cil lator
Cs
C i
Ce
Ce

Table 27. RAM6 – 0x69: CLK_OS/Shutdown Function

Bits Default Value Name Function
D7 1 CLK0_OS CLK_OS checks the shut down truth table. See Shutdown Function section.
D6 1 CLK1_OS CLK_OS checks the shut down truth table. See Shutdown Function section.
D5 1 CLK2_OS CLK_OS checks the shut down truth table. See Shutdown Function section.
D4 1 CLK3_OS CLK_OS checks the shut down truth table. See Shutdown Function section.
D3 1 CLK4_OS CLK_OS checks the shut down truth table. See Shutdown Function section.
D2 1 clk0_slewrate[0] Depends on slew rate (depends on Shutdown function/truth table) – Set slew rate for clk0.
D1 0
otp_pwr_sel[1:0]
D0 0
Set Output Amplitude for OTP voltage:
Factory reserved Use D1 D0 = 00.

Crystal Load Capacitor Registers

Registers 0x12 and 0x13 are Crystal X1 and X2 Load capacitor registers respectively that are used to add load capacitance to X1 and X2 respectively. In X1 Switch mode is provided with different mode selection options and in X2 polarity selection of clock can be made whose values are given in the table.

Figure 2. Crystal Oscillator

G
M
F
S
C i
1
2
Cs
X
1
1
1
2
2
2
Short Example of Programming Crystal
Ci1 and Ci2 are on-chip capacitors that are programmable.
Cs is stray capacitance in the PCB and Ce is external capacitors for frequency fine tuning or for achieving load capacitance values beyond the range of the on-chip programmability.
All these capacitors combined make the load capacitance for the crystal.
• Capacitance on pin X1: Cx1 = Ci1 + Cs1 + Ce1.
• Capacitance on pin X2: Cx2 = Ci2 + Cs2 + Ce2.
• Total Crystal Load Capacitance C
Example: For a Xtal C
C
= (6.92pF+ 7.5pF + 1.5pF)/2 = 7.9pF which is the closest value to 8pF.
L
Here, Cstray = 1.5pF; Package stray = 7.5pF
The binary settings corresponding to this value will be: X1 = X2 = “10000”.
of 8pF, the registers need to be programmed with X1 = X2 = 6.92 pF to get a total
L
= Cx1 × Cx2 / (Cx1 + Cx2).
L
18©2019 Integrated Device Technology, Inc. June 7, 2019
Loading...
+ 40 hidden pages