IDT 89HPEB383 User Manual

Page 1
®
IDT® 89HPEB383
®
Bridge
User Manual
July 2011
6024 Silver Creek Valley Road, San Jose, California 95138
Telephone: (800) 345-7015 • (408) 284-8200 • FAX: (408) 284-2775
©2011 Integrated Device Technology, Inc.
Printed in U.S.A.
Page 2
Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.
GENERAL DISCLAIMER
Code examples provided by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of the code examples below is completely at your own risk. IDT MAKES NO REPRESENT ATIONS OR WARRANTIES OF ANY KIND CONCERNING THE NONINFRINGEMENT, QUALITY, SAFETY OR SUITABILITY OF THE CODE, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU­LAR PURPOSE, OR NON-INFRINGEMENT. FURTHER, IDT MAKES NO REPRESENT ATIONS OR WARRANTIES AS TO THE TRUTH, ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR MATERIALS CONCERNING CODE EXAMPLES CONTAINED IN ANY IDT PUBLICATION OR PUBLIC DISCLOSURE OR THAT IS CONTAINED ON ANY IDT INTERNET SITE. IN NO EVENT WILL IDT BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, I NCIDENTAL, INDIRECT, PUNITIVE OR SPECIAL DAMAGES, HOWEVER THEY MAY ARIS E, AND EVEN IF IDT HAS BEEN PREVIOUSLY ADVISED ABOUT THE POSSIBILITY OF SUCH DAMAGES. The code examples also may be subject to United States export control laws and may be subject to the export or import laws of other countries and it is your responsibility to comply with any applicable laws or regulations.
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IDT, the IDT logo, and Integrated Device Technology are trademarks or registered trademarks of Integrated Device Technology, Inc.
CODE DISCLAIMER
LIFE SUPPORT POLICY
Page 3
Contents
About this Document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1. Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 General Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 PCIe Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 PCI Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 PCIe Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 PCI Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 EEPROM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 JTAG Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Power-up Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Power Supply Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
i
3. Data Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Upstream Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Downstream Data Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Transaction Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Upstream Transaction Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Downstream Transaction Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Buffer Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Upstream Non-posted Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Upstream Posted Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Downstream Non-posted Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 Downstream Posted Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Prefetching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Short Term Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Polarity Inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4. Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Memory-mapped I/O Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 4
Contentsii
4.3 Prefetchable Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 VGA Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 ISA Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Non-transparent Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7.1 PCIe to PCI Non-prefetchable Address Remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7.2 PCIe to PCI Prefetchable Address Remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7.3 PCI to PCIe Address Remapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Legacy Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5. Configuration Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Configuration Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Type 0 Configuration Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Type 1 Configuration Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 Type 1 to Type 0 Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.4 Type 1 to Type 1 Forwarding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.5 Type 1 to Special Cycle Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 PCIe Enhanced Configuration Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Configuration Retry Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6. Bridging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Flow Control Advertisements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Buffer Size and Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 Assignment of Requestor ID and Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Forwarding of PCIe to PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.1 PCIe Memory Write Request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.2 PCIe Non-posted Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.6 Forwarding of PCI to PCIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6.1 PCI Memory Write Request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6.2 PCI Non-posted Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.7 PCI Transaction Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8 PCIe Transaction Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.9 Message Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9.1 INTx Interrupt Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9.2 Power Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9.3 Locked Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9.4 Slot Power Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9.5 Vendor-defined and Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.10 Transaction Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.11 Exclusive Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7. PCI Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 5
Contents iii
7.3 PCI Arbitration Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8. Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.3 Interrupt Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9. Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2 PCIe as Originating Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.2.1 Received Poisoned TLPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.2.2 Received ECRC Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.2.3 PCI Uncorrectable Data Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2.4 PCI Uncorrectable Address/Attribute Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.2.5 Received Master-Abort on PCI Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2.6 Received Target-Abort On PCI Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3 PCI as Originating Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.3.1 Received PCI Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3.2 Unsupported Request Completion Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.3 Completer Abort Completion Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.4 Timeout Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.4.1 PCIe Completion Timeout Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.4.2 PCI Delayed Transaction Timeout Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.5 Other Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.6 Error Handling Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10. Reset and Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.1 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.1.1 PCIe Link Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.1.2 PCI Bus Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2 Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.2.1 PCIe Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.2.2 PCI Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11. Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.1.2 Unsupported Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.2 Power Management Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3 Power States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3.1 ASPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3.2 L0 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.3.3 L0s State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.3.4 L1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.3.5 L2/L3 Ready. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.3.6 L3 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 6
Contentsiv
11.3.7 LDn State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.3.8 Link State Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.3.9 Device Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.3.10 D0 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.3.11 D3
11.3.12 D3
11.3.13 D State Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3.14 Power Management Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3.15 Power State Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.4 Power Saving Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Hot
State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Cold
12. Serial EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.2 System Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.3 EEPROM Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12.4 Functional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
13.2 TAP Controller Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
13.3 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
13.4 Bypass Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
13.5 JTAG Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
13.6 JTAG Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
13.6.1 Register Access from JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
13.6.2 Write Access to Registers from the JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
13.6.3 Read Access to Registers from JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
13.7 Dedicated Test Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
13.8 Accessing SerDes TAP Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
14.2 PCI Configuration Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
14.3 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
14.3.1 PCI Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
14.3.2 PCI Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
14.3.3 PCI Class Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
14.3.4 PCI Miscellaneous 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
14.3.5 PCI Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
14.3.6 PCI Secondary Status and I/O Limit and Base Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
14.3.7 PCI Memory Base and Limit Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
14.3.8 PCI PFM Base and Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5
14.3.9 PCI PFM Base Upper 32 Address Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
14.3.10 PCI PFM Limit Upper 32 Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
14.3.11 PCI I/O Address Upper 16 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
14.3.12 PCI Capability Pointer Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 7
Contents v
14.3.13 PCI Bridge Control and Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14.3.14 Secondary Retry Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.3.15 PCI Miscellaneous Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
14.3.16 PCI Miscellaneous Clock Straps Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
14.3.17 Upstream Posted Write Threshold Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
14.3.18 Completion Timeout Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.3.19 Clock Out Enable Function and Debug Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.3.20 SERRDIS_OPQEN_DTC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.4 Upstream Non-transparent Address Remapping Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.4.1 NTMA Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.4.2 NTMA Primary Upper Base Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
14.4.3 NTMA Secondary Lower Base Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
14.4.4 NTMA Secondary Upper Base Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
14.4.5 NTMA Secondary Lower Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
14.4.6 NTMA Secondary Upper Limit Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
14.5 PCI Capability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
14.5.1 SSID/SSVID Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
14.5.2 SSID Capability Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
14.5.3 SSID ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
14.5.4 PCI Power Management Capability Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
14.5.5 PCI Power Management Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
14.5.6 EEPROM Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
14.5.7 Secondary Bus Device Mask Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
14.5.8 Short-term Caching Period Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
14.5.9 Retry Timer Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
14.5.10 Prefetch Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
14.6 PCIe Capability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.6.1 PCIe Capabilities Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.6.2 PCIe Device Capabilities Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
14.6.3 PCIe Device Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.6.4 PCIe Link Capabilities Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
14.6.5 PCIe Link Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
14.7 Downstream Non-transparent Address Remapping Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
14.7.1 Secondary Bus Non-prefetchable Address Remap Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . 184
14.7.2 Secondary Bus Non-prefetchable Upper Base Address Remap Register . . . . . . . . . . . . . . . . . . . . . . 185
14.7.3 Secondary Bus Prefetchable Address Remap Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14.7.4 Secondary Bus Prefetchable Upper Base Address Remap Register . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.7.5 Primary Bus Non-prefetchable Upper Base Address Remap Register . . . . . . . . . . . . . . . . . . . . . . . . 186
14.7.6 Primary Bus Non-prefetchable Upper Limit Remap Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.8 Advanced Error Reporting Capability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
14.8.1 PCIe Advanced Error Reporting Capability Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
14.8.2 PCIe Uncorrectable Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
14.8.3 PCIe Uncorrectable Error Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.8.4 PCIe Uncorrectable Error Severity Registe r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
14.8.5 PCIe Correctable Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 8
Contentsvi
14.8.6 PCIe Correctable Error Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
14.8.7 PCIe Advanced Error Capabilities and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.8.8 PCIe Header Log 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.8.9 PCIe Header Log 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.8.10 PCIe Header Log 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
14.8.11 PCIe Header Log 4 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
14.8.12 PCIe Secondary Uncorrectable Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
14.8.13 PCIe Secondary Uncorrectable Error Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
14.8.14 PCIe Secondary Uncorrectable Error Severity Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
14.8.15 PCIe Secondary Error Capabilities and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
14.8.16 PCIe Secondary Header Log 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
14.8.17 PCIe Secondary Header Log 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
14.8.18 PCIe Secondary Header Log 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14.8.19 PCIe Secondary Header Log 4 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14.8.20 Replay Latency Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.8.21 ACK/NACK Update Latency Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.8.22 N_FTS Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.9 PCIe and SerDes Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14.9.1 Base Offset Address Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14.9.2 PCIe Per-Lane Transmit and Receive Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.9.3 PCIe Transmit and Receive Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.9.4 PCIe Output Status and Transmit Override Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.9.5 PCIe Receive and Output Override Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
14.9.6 PCIe Debug and Pattern Generator Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
14.9.7 PCIe Pattern Matcher Control and Error Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
14.9.8 PCIe SS Phase and Error Counter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
14.9.9 PCIe Scope Control and Frequency Integrator Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
14.9.10 PCIe Clock Module Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
14.9.11 PCIe Control and Level Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
14.9.12 PCIe Control and Level Override Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
15. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
15.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
15.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
15.3 Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
15.4 Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
15.5 DC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
15.6 AC Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
15.6.1 PCI Interface AC Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
15.6.2 PCIe Differential Transmitter Output Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15.6.3 PCIe Differential Receiver Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.6.4 Reference Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
15.6.5 Boundary Scan Test Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
15.6.6 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
15.7 AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 9
Contents vii
16. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.1 Pinouts and Mechanical Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
16.1.1 QFP Package Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
16.1.2 QFP Package Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
16.1.3 QFN Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
16.1.4 QFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
16.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
16.3 Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
17. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 10
Contentsviii
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 11
Figures
Figure 1: PEB383 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2: PEB383 Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3: Network Interface Card Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4: DVR Card Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5: Motherboard Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6: ExpressCard Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7: Upstream Data Path[update for PEB383] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8: Downstream Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9: Memory-mapped I/O Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10: 64-bit Prefetchable Memory Address Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 11: I/O Address Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 12: ISA Mode I/O Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 13: Memory Window Remapping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 14: PCIe Configuration Address Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 15: PCI Type 0 Configura tion Ad dress Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 16: PCI Type 1 Configura tion Ad dress Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 17: PCI Arbiter Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 18: PCI Arbitration Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 19: Arbitration Pointers – Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 20: Arbitration Pointers – Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 21: Interrupt Handling Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 22: PCIe Flowchart of Device Error Signaling and Logging Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 23: Transaction Error Forwarding with PCIe as Originating Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 24: Transaction Error Forwarding with PCI as Originating Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 25: Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 26: PCIe Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 27: PCI Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 28: PCIe Link Power Management States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 29: D State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 30: EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 31: 9-bit EEPROM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 32: 16-bit EEPROM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 33: 9-bit EEPROM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 34: 16-bit EEPROM Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 35: EEPROM WREN Instruction Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 36: EEPROM RDSR Instruction Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 37: Read/Write Access from JTAG — Serial Data In. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 38: Observe from JTAG — Serial Data Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 39: PCIe SerDes Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 40: Transmitter Eye Voltage and Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 41: Minimum Receiver Eye Timing and Voltage Compliance Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Figure 42: Weighing Function for RMS Phase Jitter Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
ix
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 12
Figuresx
Figure 43: Input Timing Measurement Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Figure 44: Output Timing Measurement Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 45: PCI TOV (max) Rising Edge AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 46: PCI TOV (max) Falling Edge AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 47: PCI TOV (min) AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 13
Tables
Table 1: Pin Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 2: PCIe Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3: PCI Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4: EEPROM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5: JTAG Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6: Power-up Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7: Power Supply Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8: Completion Buffer Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9: Initial Credit Advertisement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10: PCI Transaction Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 11: PCIe Transaction Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 12: Transaction Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 13: Error Forwarding Requirements (Step A to Step B) for Received PCIe Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 14: Bridge Requirements for Transactions Requiring a Completion (Immediate Response) . . . . . . . . . . . . . . . . . . . . 68
Table 15: Error Forwarding Requirements for Received PCI Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 16: Error Forwarding Requirements for PCI Delayed Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 17: ECRC Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 18: Poisoned TLP Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 19: Malformed TLP Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 20: Link and Flow Control Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 21: Uncorrectable Data/Address Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 22: Received Master/Target Abort Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 24: Request Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 23: Completion Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 25: Reset Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 26: Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 27: PCI Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 28: PCIe Link States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 29: Power Management State Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 30: Power saving modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 31: EEPROM Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 32: PCI Type 1 Configuration Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 33: SSID Capability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 34: Power Management Capability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 35: PCIe Capability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 36: Advanced Error Reporting Capability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 37: Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 38: SerDes Per-lane and Clock Control and Status Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 39: TX_LVL Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 40: Absolute Maximum Ratings – PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 41: Absolute Maximum Ratings – PCIe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 42: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
xi
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 14
Tablesxii
Table 43: PEB383 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 44: PEB383 Power Dissipation per Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 45: DC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 46: PCI Clock (PCI_CLK) Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Table 47: PCIe Differential Transmitter Output Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Table 48: PCIe Differential Receiver Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 49: Reference Clock (PCIE_REFCLK _n/p) Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 0
Table 50: Boundary Scan Test Signal Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Table 51: Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Table 52: Thermal Specifications — 66MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Table 53: Thermal Specifications — 33MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 15

About this Document

This section discusses the following topics:
“Scope” on page 1
“Document Conventions” on page 1

Scope

The PEB383 User Manual discusses the features, configuration requirements, and design architecture of the PEB383.

Document Conventions

This document uses the following conventions.
1
Non-differential Signal Notation
Non-differential signals are either active-low or active-high. An active-low signal has an active state of logic 0 (or the lower voltage level), and is denoted by a lowercase “n”. An active-high signal has an active state of logic 1 (or the higher voltage level), and is not denoted by a special character. The following table illustrates the non-differential signal naming convention.
State Single-line signal Multi-line signal
Active low NAMEn NAMEn[3]
Active high NAME NAME[3]
Differential Signal Notation
Differential signals consist of pairs of complement positive and negative signals that are measured at the same time to determine a signal’s active or inactive state (they are denoted by “_p” and “_n”, respectively). The following table illustrates the differential signal naming convention.
State Single-line signal Multi-line signal
Inactive NAME_p = 0
NAME_n = 1
NAME_p[3] = 0 NAME_n[3] = 1
Active NAME_p = 1
Integrated Device Technology, Inc.
Confidential - NDA Required
NAME_n = 0
NAME_p[3] is 1 NAME_n[3] is 0
PEB383 User Manual
July 25, 2011
Page 16
About this Document2
Object Size Notation
•A byte is an 8-bit object.
•A word is a 16-bit object.
•A doubleword (Dword) is a 32-bit object.
Numeric Notation
Hexadecimal numbers are denoted by the prefix 0x (for example, 0x04).
Binary numbers are denoted by the prefix 0b (for example, 0b010).
Registers that have multiple iterations ar e denoted by {x..y} in their names; where x is first register and address, and y is the last register and address. For example, REG{0..1} indicates there are two versions of the register at different addresses: REG0 and REG1.
Symbols
Tip
This symbol indicates important configuration information or suggestions.
This symbol indicates procedures or operating levels that may result in misuse or damage to the device.
Specification Status
Version 0.25 – This specification describes early design and functional inform ation abo ut a devi ce. It is available at the G2 gate, which precedes the definition and planning phase.
Version 0.5 – This specification describes early design and functional information about a device. It is available after the G2 gate, but during the definition and planning phase.
Version 0.75 – This specification describes the majority of functional information about a device. It is available at the G3 gate, which precedes the development phase.
Version 1.0 – This specification describes all the functional information about a device. It is available at the G4 gate, which precedes the qualification (tape-out) phase.
This symbol indicates a basic design concept or information considered helpful.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 17
About this Document 3

Revision History

October 22, 2009: Initial publication of PEB383 User Manual. November 18, 2009: Updated pinouts for QFN and QFP packages. December 8, 2009: Updated pinouts and package drawings for QFN and QFP packages. December 18, 2009: Added simulated power numbers to Table 43. Updated Tables 51 and 52 with
simulated Thermal Characteristics values. Updated pinouts and package drawings for QFN and QFP packages.
January 20, 2010: In Table 7, changed power numbers for Core, PCIe, and PLL from 1.0V to 1.05V in the Description column and from 1.2V to 1.05V in the Design Rec. column. In Table 42, changed power numbers for Core, PCIe, and PLL from 1.2V to 1.05V and also changed minimum and maximum values for these 3 parameters. In Table 43, changed power numbers for Core, PCIe, and PLL from 1.0V to 1.05V.
March 29, 2010: In Table 3, changed pull-up resistor values from 2.4K to 8.2K for Interrupts A, B, C, and D.
May 5, 2010: In Table 42, changed TA min and max temperatures to 0 and 70 respectively. In Section
15.3, updated old Table 43 and added new Table 44 for Power Dissipation values. May 28, 2010: In Chapter 16, Packaging, updated QFP package drawing. Added new Chapter 17,
Ordering Information.
August 3, 2010: In Chapter 17, added Tape and Reel to ordering codes. November 23, 2010: In Chapter 16, replaced existing QFN package drawing with revised PSC-4327. January 5, 2011: In Chapter 13, section 13.7, deleted last bullet containing reference to
TEST_BIDIR_CTRL. March 7, 2011: In Chapter 14, changes bit types labeled RE to RWL, added description for RWL in
section 14.1, revised description for bits 0 and 1 in register CLKOUT_ENB_FUNC_DBG, and changed Reset Value in RID field to 0x01 in register PCI_CLSS. In Chapter 16, section 16.1.2, added revised 128-pin QFP package drawing.
May 17, 2011: In Chapter 14, section 14.5.1, added text to the third paragraph that starts with “Note that...”. Added ZB silicon to Order page in Chapter 17.
o
May 26, 2011: In Chapter 15, Table 42, changed maximum ambient temperature from 70 to 85
C.
June 21, 2011: In Chapter 2, Table 3, changed pull-up for PCI_INTA-D pins from 8.2K to 2.4K. July 25, 2011: In Chapter 2, Table 3, revised text in Design Recommendation for PCIE_REFCLK pins.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 18
About this Document4
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 19

1. Functional Overview

Topics discussed include the following:
“Overview”
“Features”
“Device Architecture”
“Typical Applications”

1.1 Overview

The IDT PEB383 is a high-performance bus bridge that connects the PCI Express (PCIe) protocol to the PCI bus standard (see Figure 1).
The PEB383’s PCIe Interface supports a x1 lane PCIe configuration. This enables the bridge to offer exceptional throughput performance of up to 2.5 Gbps per transmit and receive direction. The device’s PCI Interface can operate up to 66 MHz. This interface offers designers extensive flexibility by supporting the flowing addressing modes: transparent, and non-transparent.
5
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 20
Figure 1: PEB383 Block Diagram
1. Functional Overview > Features6

1.2 Features

The PEB383’s key features are listed in the following sub-sections.

1.2.1 General Features

Forward bridge, PCIe to PCI
Single store and forward for optimal latency performance
Supports two modes of addressing:
— Transparent: For eff icient, flow-through configurations — Non-transparent: For address remapping of the PCIe and the PCI domains
Compliant to the following specifications:
PCI Express Base Specification (Revision 1.1)PCI Express-to-PCI/PCI-X Bridge Specification (Revision 1.0)PCI-to-PCI Bridge Specification (Revision 1.2)PCI Local Bus Specification (Revision 3.0)PCI Bus Power Management Interface Specification (Revision 1.2)
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 21
1. Functional Overview > Features 7
3.3V PCI I/Os with 5V tolerant I/Os
Support for four external PCI bus masters through an integrated arbiter
Support for external PCI bus arbiter
Support for Masquerade mode (can overwrite vendor and device ID from EEPROM)
JTAG IEEE 1149.1, 1149.6
Support for D0, D3 hot, D3 cold power management states
Support for Subsystem ID (SSID) and Subsystem Vendor ID (SSVID)
Legacy mode support for subtractive decode
Exclusive access using PCI_LOCKn
Packaged in a 14x14mm 128 pin TQFP and a 10x10mm 132 pin QFN.

1.2.2 PCIe Features

1 lane
128-byte maximum payload
Advanced error reporting capability
End-to-end CRC (ECRC) check and generation
Up to four outstanding memory reads
512-byte read completion buffer
ASPM L0s link state power management
•ASPM L1
Legacy interrupt signaling

1.2.3 PCI Features

32/64-bit addressing
32-bit data bus
•5V tolerant
Exclusive access using PCI_LOCKn
25-, 33-, 50-, and 66-MHz operation
Up to four outstanding read requests
1-KB read completion buffer
Clock outputs for four PCI devices
Short-term caching support
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 22

1.3 Device Architecture

A high-level, architectural diagram of the PEB383 is displayed in Figure 2. For more information about data flow through the device, see “Upstream Data Path” and “Downstream Data Path”.
Figure 2: PEB383 Device Architecture
PCIe (Primary Interface)
Rx PH Y
SERDES
Data Link Layer
Tr ansa ct i on La ye r
Flow co ntrol ACK/noACK
1. Functional Overview > Device Architecture8
Tx P HY
SERDES
Dat a L ink Lay e r
Transaction Layer
CLK/ Rese t
EEPROM
JTAG
PCI
Arbiter
A ddres s decoding
s
r e
f
f u b
e
t
i
r w
d
e
)
t
y
s
r
t
o
p
n
e
m
8
(
a
e
e
r
t
t
y
s
b
n w
2
o
1
d
5
Or deri ng
Mast er in te rf ac e
1K Re play buffers
e u e
u q t s
e u
q e R
d
a e R
m a
e
r
t s
n w
o D y
r
t
n e
4
Conf ig writes & read Reques t Co nf ig r eads
)
d
y
a
r
t
e
r
n
e
m
4
(
a
Read
st ate
cache
e
e
r
t
t
y
s
b
n w
2
o
1
d
5
r
e
f
f u
b n
o
i
t
e
l p
m
o c
Con figur atio n Reg ister s
r
e
f
f
d
u
a
b
)
e
r
y
n
r
t
o
n
i
m
t
e
a
e
l
e
8
r
p
t
(
s
m
p
K
o
u
1
c
Read
st ate
cache
ordering
e u e
u q t s
e u
q e R
d
a e R
m a
e
r
t
s p
U y
r
t
n e
8
Target interface
Ad dr es s de co d i ng
s
r e
f
f u b
e
t
i
r w
d
e
t
s o
p m
a
e
r
t s
p u )
y
r
t n
e 4
( 2
1
5
PC I In te r fa c e (Se c ond ary In te r face )
Packets received on the PCIe Interface are processed by the data link layer and transaction layer, if applicable. If a packet is destined for the transaction layer, its address is decoded and forwarded to the appropriate destination:
Configuration register
Downstream posted write buffer
Downstream read request queue
Downstream read completion buffer
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 23
1. Functional Overview > Device Architecture 9
PCI data that is destined for the PCIe fabric are subject to PCIe ordering rules. Data is pulled from the appropriate queue:
Configuration register
Upstream posted write buffer
Upstream read request queue
Upstream read completion buffer PCI transactions that are decoded for the PCIe address space are forwarded to the appropriate queue:
Upstream read request queue
Upstream posted write buffer Transactions destined for downstream devices on the PCI bus, are subject to PCI ordering rul es. Data is
pulled form the appropriate queue:
Downstream posted write buffer
Downstream read request queue PCIe is a serialized protocol at the physical layer, and a packetized protocol at the data link layer. The
PCIe lane operates at 2.5 Gb symbol rate, or at 2.0 Gb data rate; the difference is a result of the 8/10b coding process. The PEB383 uses the following processes to ensure the accurate and timely delivery of data through the data link layer:
Credit-based flow control – Prevents data loss and congestion
ACK/noACK protocol and End-to-End CRC (ECRC) – Ensures reliable data delivery if bit errors occur
Replay buffer – Replays packets that are not acknowledged by the receiver (NAK)
In contrast, PCI is a parallel data interface at the physical layer. PCI is a non-packetized protocol. When a bus master starts a read or a write transaction, it indicates only the starting transaction address to the target, and not the size of the read or write. In the case of a PCI write, which is initiated on the PCI Interface and is destined for the root complex, the data is written into an upstream posted write buffer in the PEB383. The end of the write transaction is signaled by the master on the PCI bus. Once the write is completed the data can be forwarded to the PCIe Interface. If the posted write buffer is about to overflow, the PEB383 indicates a retry/disconnect on the PCI bus. Once the posted write buffer empties, the PEB383 can accept additional write transactions. The PEB383 will split write transactions as required to meet PCIe constraints: to prevent a write crossing a 4-KB boundary; if byte enables are used throughout the transaction; or if the quantity of data exceeds the maximum payload size (see MAX_SIZE in “PCIe Device Capabilities Register”). The upstream posted write buffer is managed as a simple FIFO.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 24
1. Functional Overview > Typical Applications10
A read initiated on the PCI bus that is decoded for an upstream target is handled as a delayed transaction by the PEB383. The bridge latches the read transaction and attempts to reserve buffer space in its upstream read completion buffer. If space is successfully reserved in the buffer, the PEB383 initiates a read on the PCIe Interface. When the read data is returned from the root comple x, it is store d in the upstream read completion buffer. PCI-initiated reads, however, do not define the amount of data to read. Once the master on the PCI bus retries the read transaction, the transaction is checked to determine if the read data is returned. If it has the read data, the PEB383 responds as the target and transfers the read data to the PCI bus. Note the upstream read completion buffer is not a simple FIFO, as the order that masters on the PCI bus retry is not deterministic. If the complet io n buffer becomes empty prior to the transaction completing, the PEB383 disconnects from the PCI bus. When the read transaction is completed, the PEB383 discards any prefetched data that is not used and frees up the buffer . The maximum number of outstanding read requests per master is controlled by DTL[7:0] bits in
“Secondary Retry Count Register”.
A write initiated on the PCIe Interface with the target on the downstream PCI bus is written into the downstream posted write buffer. The PEB383 acts as the master for the transaction and arbitrates for the PCI bus and initiates the write transaction. The downstream posted write buffer is managed as a FIFO. There will always be space available in the buffer to accept packet data because of the flow control method used by the PCIe data link layer. If the downstream posted write buffer is about to overflow , the upstream device will be informed of this by its lack of credits and will not send any more write data to the PEB383.
A read initiated on the PCIe Interface with the target on the downstream PCI bus is written into the downstream read request queue. The downstream read request queue is managed with flow control credits to prevent overflowing. The PEB383 latches the read transaction and attempts to reserve space in the downstream read completion buffer. If space is successfully reserved in the buffer, the PEB383 acts as the master for the transaction and initiates a read transaction on the PCI bus.Programmable address decoders instruct the PEB383 which transactions on the PCI bus to forward upstream, and which transactions on the PCIe link to forward downstream.

1.4 Typical Applications

This section illustrates some typical applications for the PEB383.
Figure 3: Network Interface Card Application
Integrated
CPU
PEB383
32-bit, 66-MHz PCIx1 PCIe
FE
GbE
USB
PEB383 User Manual July 25, 2011
80E2000_TA001_01
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 25
1. Functional Overview > Typical Applications 11
Figure 4: DVR Card Application
Camera
Camera
Camera
Camera
Video
Decoder
Video
Decoder
PCI Bus
PEB383
x1 PCIe
Figure 5: Motherboard Application
PCI Slot
PCI Slot
PCI
PEB383
PCIe
Video
Decoder
10x10 mm footprint Supports up to four PCI devices off x1 PCIe
Video
Decoder
80E2000_TA002_01
Graphics
Memory
80E2040_TA001_01
PCIe Slot
Processor
Chipset
Peripherals
CPU
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 26
Figure 6: ExpressCard Application
1. Functional Overview > Typical Applications12
x1 PCIe
PEB383
PCI
I/O Controller
80E2010_TA001_01
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 27

2. Signal Descriptions

Topics discussed include the following:
“Overview”
“PCIe Interface Signals”
“PCI Interface Signals”
“EEPROM Interface Signals”
“JTAG Interface Signals”
“Power-up Signals”
“Power Supply Signals”

2.1 Overview

13
Signals are classified according to the types defined in the following table.
Table 1: Pin Types
Pin Type Definition
3.3 OD 3.3V CMOS open-drain output
3.3 3-state 3.3V CMOS tri-state output
3.3 Bidir 3.3V CMOS bi-directional
3.3 Bidir PU 3.3V CMOS bi-directional with 265K (+/- 45K) pull-up resistor
3.3 Bidir OD 3.3V CMOS bi-directional open-drain
3.3 In 3.3V CMOS input
3.3 In PU 3.3V CMOS input with 265K (+/- 45K) pull-up resistor
3.3 Out 3.3V CMOS output PCI Bidir PCI bi-directional PCI Bidir OD PCI bi-directional open-drain PCI In PCI input PCI Out PCI output PCI OD PCI output open-drain
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 28
Table 1: Pin Types (Continued)
Pin Type Definition
PCIE Diff Out PCIe differential output PCIE Diff In PCIe differential input

2.2 PCIe Interface Signals

Table 2: PCIe Interface Signals
Name Pin Type Description Design Recommendation
2. Signal Descriptions > PCIe Interface Signals14
PCIE_PERSTn 3.3 In Master reset in:
0 = PEB383 in reset 1 = PEB383 in normal mode
PCIE_TXD_n PCIE_TXD_p
PCIE_RXD_n PCIE_RXD_p
PCIE_REFCLK_n PCIE_REFCLK_p
PCIE_REXT Analog - This signal must be connected to VSS
PCIE Diff Out Transmit Data. These differential pair
signals send PCIe 8b/10b encoded symbols and an embedded clock to the link partner.
PCIE Diff In Receive Data. These differential pair
signals receive PCIe 8b/10b encoded symbols and an embedded clock from the link partner.
PCIE Diff In Reference Clock. 100-MHz differential
reference clock.
Direct connect to the PERST# signal.
DC blocking capacitors must be placed in the link between the transmitter and the receiver. Place a 0603 or 0402
0.075uF to 0.1uF ceramic capacitor on each TXD_n, TXD_p signal.
DC blocking capacitors must be placed in the link between the transmitter and the receiver; however, the DC blocking capacitors are normally placed near the transmitter. When designing an add-in card, capacitors are not required on this link. When designing a system board, the DC blocking capacitors should be placed near the transmitter.
Refer to Board Design Guidelines.
with a 191-ohm (1%) resistor.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 29
2. Signal Descriptions > PCI Interface Signals 15

2.3 PCI Interface Signals

Table 3: PCI Interface Signals
Name Pin Type Description Design Recommendation
PCI_AD[31:0] PCI Bidir Address/Data Bus. These multiplexed
signals provide a 32/64-bit address a nd 32-bit data bus.
PCI_CBEn[3:0] PCI Bidir Command/Byte Enables. These
multiplexed signals indicate the current transaction type.
PCI_CLK PCI In PCI Input Clock. This signal provides
timing for the PEB383, either from an external clock or from one of the PCI_CLKO[4:0] signals (see
“Clocking”).
PCI_CLKO[4:0] PCI Out PCI Output Clocks
(see “Clocking”).
PCI_DEVSELn PCI Bidir Device Select. A target device asserts
this signal when it decodes its address on the bus. The master samples the signal at the beginning of a transaction, and the target rescinds it at the end of the transaction.
PCI_FRAMEn PCI Bidir Frame. The current initiator drives this
signal to indicate the start and duration of a transaction, and the bus target samples it. The bus master rescinds the signal at the end of the transaction.
None.
None.
None.
Point-to-point connection to PCI device. IDT recommends a 33 Ohm series termination resistor. In Master clocking mode, PCI_CLKO[4] should be connected to PCI_CLK.
Pull up (8.2K) to VIO_PCI.
Pull up (8.2K) to VIO_PCI.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 30
Table 3: PCI Interface Signals (Continued)
Name Pin Type Description Design Recommendation
2. Signal Descriptions > PCI Interface Signals16
PCI_GNTn[3:0] PCI Bidir / PCI
Out
PCI_INTDn PCI In Interrupt D. Pull-up (2.4K) to VIO_PCI. PCI_INTCn PCI In Interrupt C. Pull-up (2.4K) to VIO_PCI. PCI_INTBn PCI In Interrupt B. Pull-up (2.4K) to VIO_PCI.
Bus Grant. The PEB383 uses these multifunction signals to grant access to the PCI bus; however, they are used differently depending on whether or not the PEB383 PCI arbiter is used. If the arbiter is used, then PCI_GNTn[3:0] are outputs used by the PEB383 to grant access to the bus (see “PCI
Arbitration”).
If an external arbiter is used, PCI_GNTn[0] is an input that is driven by the arbiter to grant the PEB383 access to the bus. The remaining pins, PCI_GNTn[3:1], remain as outputs.
The input/output mode is controlled by bit[9] of “PCI Miscellaneous 0 Register”
on page 129.
Note: The PCI bus arbiter can be placed on the last bus master by bit[8] of “PCI
Miscellaneous 0 Register” on page 129.
PCI_GNTn[3:0] outputs connect directly to the PCI device’s PCI_GNTn inputs. Pull ups are not required on unused outputs.
PCI_INTAn PCI In Interrupt A. Pull-up (2.4K) to VIO_PCI. PCI_IRDYn PCI Bidir Initiator Ready. The bus master asserts
this signal to indicate it is ready to complete the current transaction.
PCI_LOCKn PCI OD Lock. This signal is used by the bus
master to lock the currently addressed memory target during a series of exclusive access transactions (see
“Exclusive Access”).
Pull-up (8.2K) to VIO_PCI.
Pull up (8.2K) to VIO_PCI.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 31
2. Signal Descriptions > PCI Interface Signals 17
Table 3: PCI Interface Signals (Continued)
Name Pin Type Description Design Recommendation
PCI_M66EN PCI In 66-MHz Enable. This signal enables the
PCI Interface for 66-MHz operation. 0 = 33-MHz operation 1 = 66-MHz operation
PCI_PAR PCI Bidir Parity. This signal carries even parity
across PCI_AD[31:0] and PCI_CBEn[3:0]. The bus master asserts this signal for the address and write data phases. The bus target asserts it for read data phases.
PCI_PERRn PCI Bidir Parity Error. This signal indicates a
parity error occurred during the current data phase. The bus target that receives the data asserts this signal.
PCI_PMEn PCI In Power Management Event. This signal
indicates a power management event occurred (see “Power Management”).
PCI_M66EN is used only in master clocking mode.
Embedded designs Tied to ground for 33-MHz operation;
otherwise, pull up to VIO_PCI. Bused designs using PCI slots for add-
in cards Place a 10K pull-up resistor (to
VIO_PCI) on PCI_M66EN and route the signal from slot to slot.
In slave clocking mode, PCI_M66EN can be tied to ground.
No pull-up or pull-down resistor is required.
Pull up (8.2K) to VIO_PCI.
Pull up (8.2K) to VIO_PCI.
PCI_REQn[3:0] PCI In
PCI Bidir
Integrated Device Technology, Inc.
Confidential - NDA Required
Bus Request. These signals are used to request access to the PCI bus. They are used differently, however, depending on whether or not the PEB383 PCI arbiter is used. If the PCI arbiter is used, then PCI_REQn[3:0] are inputs used by external masters to request access to the bus.
If an external arbiter is used, PCI_REQn[0] is an output used by the PEB383 to request access to the bus, while PCI_REQn[3:1] should be pulled high, as they are still inputs.
The input/output mode is controlled by bit[9] of “PCI Miscellaneous 0 Register”
on page 129.
Note: The PCI bus arbiter can be placed on the last bus master by bit[8] of “PCI
Miscellaneous 0 Register” on page 129.
Pull up (8.2K) to VIO_PCI.
PEB383 User Manual
July 25, 2011
Page 32
Table 3: PCI Interface Signals (Continued)
Name Pin Type Description Design Recommendation
2. Signal Descriptions > EEPROM Interface Signals18
PCI_RSTn PCI Out PCI reset: This signal reset s all device s
on the PC bus.
PCI_SERRn PCI Bidir OD System Error. This signal indicates an
address or attribute phase parity error occurred.
PCI_STOPn PCI Bidir Stop. A bus target asserts this signal to
indicate it wants to stop the current transaction on the current data phase.
PCI_TRDYn PCI Bidir Target Ready. The bus target asserts
this signal to indicate it is ready to complete the current data phase.

2.4 EEPROM Interface Signals

Table 4: EEPROM Interface Signals
Name Pin Type Description Design Recommendation
SR_CLK 3.3 Out Serial ROM clock: This signal is derived
from REFCLKn/p (see “System
Diagram”).
SR_CSn 3.3 Out Serial ROM chip select: This active-low
signal activates the chip-select (CS) on the external EEPROM.
No pull-up or pull-down resistor is required.
Pull-up (8.2K) to VIO_PCI.
Pull-up (8.2K) to VIO_PCI.
Pull-up (8.2K) to VIO_PCI.
No pull-up or pull-down resistor is required.
SR_DIN 3.3 Out Serial ROM data in: This signal
transfers output data from the PEB383 to the EEPROM.
SR_DOUT 3.3 In PU Serial ROM data out: This signal
transfers input data from the EEPROM to the PEB383.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 33
2. Signal Descriptions > JTAG Interface Signals 19

2.5 JTAG Interface Signals

Table 5: JTAG Interface Signals
Name Pin Type Description Design Recommendation
JTAG_TCK 3.3 In Test Clock. This signal clocks state
information and data into and out of th e PEB383 during boundary scan.
JTAG_TDI 3.3 In PU Test Data Input. This signal, in
conjunction with JTAG_TCK, shifts dat a and instructions into the TAP controller in a serial bit stream.
JTAG_TDO 3.3 Out Test Data Output. This signal, in
conjunction with JTAG_TCK, shifts dat a and instructions from the T AP control ler in a serial bit stream.
JTAG_TMS 3.3 In PU Test Mode Set. This signal controls the
state of the TAP controller.
JTAG_TRSTn 3.3 In PU Test Reset. This signal forces the TAP
controller into an initiali z e d state . Th is signal must be pulsed or pulled low externally to reset the TAP controller.
TEST_BCE 3.3 In Test Boundary Scan Compatibility
Enabled. This input aids 1149.6 testing and Scope function of PHYs.
Connect to 3.3V using a 2K pull-up resistor.
Connect to 3.3V using a 2K pull-up resistor.
If JT AG is not used, leave unconnecte d.
Connect to 3.3V using a 2K pull-up resistor.
If JTAG i s not used, connect this pin to a 2K pull-down resistor. If JTAG is used, connect to output of AND gate where inputs are TRST# and PERST#.
For more information, see the PEB383 Evaluation Board User Manual.
For 1149.1 Boundary Scan testing, this pin must be low. For 1149.6 Boundary Scan testing, this pin must be high.
TEST_ON 3.3 In This signal controls scan shift enable. Pull down for normal operation.

2.6 Power-up Signals

Table 6: Power-up Signals
Name Pin Type Description Design Recommendation
PWRUP_PLL_
BYPASS
3.3 In PLL bypass. This signal bypasses the
Integrated Device Technology, Inc.
Confidential - NDA Required
PLL in the PCI clock generation (see
“PCI Clocking”).
0 = Normal operation 1 = PLL bypass
This signal should always be tied low.
PEB383 User Manual
July 25, 2011
Page 34

2.7 Power Supply Signals

Table 7: Power Supply Signals
2. Signal Descriptions > Power Supply Signals20
Name Pin Type Description Design Recommendation
VDD Core power 1.05V core power None.
VDD_PCI I/O power 3.3 volt I/O power for PCI and 3.3V I/O
power for CMOS
VDD_PCIE Core power 1.05V power for SerDes Connect these signals to the 1.05V
VDDA_PCIE Analog power 3.3V analog power for SerDes Connect these signals to the 3.3V
VDDA_PLL Analog power 1.05V analog power for PLL Connect these signals to the 1.05V
VIO_PCI I/O power 5.0 I/O power, for 5.0V I/O compliance.
This signal can also be tied to 3.3V if
5.0V compliance is not required.
VSS GND GND, core power None.
VSS_IO GND GND, I/O power None.
VSSA_PLL GND GND, analog PLL power None.
a. For filtering and decoupling information for these signals, see “Power Supply Filtering and Decoupling” in the PEB383 Board
Design Guidelines.
b. For more information, see “Analog Power Supply Filtering” in the PEB383 Board Design Guidelines.
None.
source through a ferrite bead.
source through a ferrite bead.
source through a ferrite bead. Connect these signals to a 3.3V or 5V
source depending on the PCI devices attached to the PEB383 PCI bus.
a
b
b
b
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 35

3. Data Path

Topics discussed include the following:
“Overview”
“Transaction Management”
“Buffer Structure”
“Flow Control”
“Prefetching Algorithm”
“Short Term Caching”
“Polarity Inversion”

3.1 Overview

21
The PEB383 uses two buffering methods for transferring data between its PCIe and PCI ports:
Two-stage buffering for its upstream data path
One-stage buffering in its downstream data path
These buffering methods are summarized in the following sub-sections.

3.1.1 Upstream Data Path

Two-stage buffering in the upstream path consists of two different sized buffers for each transaction type: posted, non-posted, and completion (see Figure 7).
The first-stage buffering in the PCI Core, which supports the store and forward method, meets the synchronization requirements of PCI and PCIe. This buffer design also provides optimized throughput and improved latencies.
The second-stage buffering in the PCIe Core, which supports the cut-through method, handles the possible backpressure due to scaled down link, lack of flow control credits, and replay. Posted and completion buffers allow the PEB383 to accept a few more cycles of data transfer even after the assertion of stall which indicates to the initiator in the PCI Core to stop the data transfer. This buffer design ensures idle cycles are not inserted in data cycles while forwarding TLPs to its egress block.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 36
Figure 7: Upstream Data Path[update for PEB383]
3. Data Path > Overview22
A ddress Decoder
Claim Cycle
1stStage Buffering
Store and Forwa rd
Posted Buffer (512 bytes)
T
a
r
g
Non P osted Queue
e
t I
n
t
e
r
f
a
c
e
M a
s
t
e
r
I
n
t
e
r
f
a
c
e
8 E ntri es
Dow n s tre am Re ad Completion Buffer
(51 2 byte s)
PCI Cor e
Device Core
Int erface
Posted Request
Non-Posted
Request
Com p let ions
PME_n
CS R
EHU
2ndStage Bufferi n g
Cut thr o ug h
Posted FIFO
( 512 bytes)
Non Posted FIFO
4 E ntries
Completion FIFO
(64 b yte s)
PME
Mesaa g e
TLP
PMC
Erro r Messa ge TLP
Retry Bu ffer (1 KB)
PCIe Core
S
c
r
a
m b
l
e
r

3.1.2 Downstream Data Path

In the downstream path, the PEB383 uses one-stage buffering for each type of transaction (see
Figure 8). These buffers support the store and forward method, receive flow control, protocol
differences, synchronization, and error handling requirements.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 37
3. Data Path > Transaction Management 23
Figure 8: Downstream Data Path
Device Core Interface
Rec eive Fl ow
Contro l Buffe rs
Posted Buf fer
(512 Bytes)
Pac ket Decoder
B y
D
R
x S
E
R
D E
S
t
e
e
U
-
s
n
c
-
r
s
a
t
m
r
i
b
p
l
e
e
r
r
LC RC Checker
Address Decoder
EC RC Che cke r
T LP E rror
De t e ct e r
Reques t Generator
Non-Posted Queue
4 Entries
Upstream Read
Completion Buffer
(1 K B)
A
r
b
i
t
e
r
Delayed Completion
M a
s
t
e
r
I
n
t
e
r
f
a
c
e
P
C
I I
n
t
e
r
f
a
c
e
T
a
r
g
e
t
I
n
t
e
r
f
a
c
e
PC Ie Cor e

3.2 Transaction Management

The following sub-sections describe how the PEB383 handles upstream and downstream transactions.

3.2.1 Upstream Transaction Management

Transactions that originate on the PCI Interface that are de stined for the PCIe Interface ar e stored in the respective queues or buffers in the PCI clock domain, and are then forwarded to the PCIe Core (see
Figure 7). PCI buffer logic decomposes the received transactions as per the PCIe constraints (for
example, MAX_RD_SIZE, MAX_PAY_SIZE, RCB, and 4-KB address boundary). Three sets of data and control signals for the three types of transactions (posted, non-posted, and completions) are used between the PCI and PCIe Cores.
Transactions are stored temporarily in the PCIe Core buffers before they are used to construct TLPs, and are then made visible to TLP arbiter. The TLPs are processed by the TLP arbiter only after ordering rules are satisfied. The TLP arbiter selects one of the five input TLPs (error message, PME message, posted, completion, and non-posted TLPs) in a round-robin mode if sufficient credits and retry buffer space is available for the specific TLPs. The TLP arbiter continues to check the available credit and retry buffer space against each of the active inputs, and selects the one that meets the constraint. The ECRC adder calculates and appends a 32-bit ECRC value to the end of the TLP selected by the arbiter if ECRC generation is enabled by software, and then forwards the TLP to the Data link layer.
PC I Co re
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 38
The Data link layer applies a sequence number to the TLP received from transaction layer block, and then calculates and appends a 32-bit LCRC value to ensure integrity during the transmission across the physical lanes. A copy of the TLP sent to the physical layer is stored in the retry buffer for future replay if there is negative acknowledgement from the other end component. The Retry buffer replays the stored unacknowledged TLPs if it receives a NAK or replay timer expiration.
The Byte striper block of the physical layer unit appends start and end characters to the TLP received from Data link layer, and then multiplexes the bytes of the packet onto the lanes. These bytes on the lanes are scrambled using LFSR to eliminate repetitive bit patterns in the bit stream. The scrambled 8-bit characters are sent to the SerDes to convert to a 10-bit character in order to transmit it in a serial bit stream on the physical lanes.

3.2.2 Downstream Transaction Management

In the downstream path, the physical layer unit converts the incoming serial bit stream into a parallel symbol stream, de-scrambles the bytes in the transmit path, assembles packets, and then sends them to the Data link layer unit (see Figure 8).
The Data link layer unit checks for LCRC and sequence number errors for packets received from the physical layer unit. If there are no errors, LCRC and sequence number fields are stripped and resultant TLP is sent to Transaction layer unit.
3. Data Path > Buffer Structure24
The Transaction layer unit checks for ECRC errors and framing violations based on header fields and ECRC fields in the TLP received from the Data link layer unit. It extracts routing information based on the header fields and determines whether to forward or reject the TLP. The ECRC field is stripped and the resulting information in the TLP header, payload, and any detected error information, is sent to the PCI Core.
The PEB383 uses receive flow control buffers in the PCI Core instead of in the PCIe Core to store downstream requests or completions to be forwarded on the PCI Interface.

3.3 Buffer Structure

The following sub-sections describe the three PEB383 buffer structures:
Upstream non-posted buffer
Upstream posted buffer
Downstream non-posted buffer
Downstream posted buffer

3.3.1 Upstream Non-posted Buffer

There are four entries in the upstream read request queue. The 1-KB completion buffer is split up into 4 x 256-byte segments. When a read occurs on the PCI bus a read request is FIFO queued in one of the 4 entry non-posted request queue, if there is space. The PCI transaction is retried so that the master will return when the bridge has fetched the data. If there are unallocated completion buffers (equal or greater than the programed allocation size) a PCIe read request is sent upstream, requesting the programed allocation amount of data.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 39
3. Data Path > Buffer Structure 25
By default the programed allocation amount of buffers that are allocated is equal to the prefetch size. In order to prevent one device from consuming all the buffers, the allocation size can be programmed to be less than the prefetch size. For example, if the prefetch size was set to 1 KB, then only one outstanding request would result, as once all the buffers are allocated no more requests can be sent. The allocation size can be programmed to be 512 bytes (or 256, 128) so that 1, 2, or 4 outstanding requests are possible (see MAX_BUF_ALOC bits in the “Upstream Posted Write Threshold Register”).
Table 8: Completion Buffer Allocation
MAX_BUF_ALOC
Bit setting
----->
0b11 0b10 0b01 0b11
Prefetch ALOC
1024 bytes 1024 1 512 2 256 4 256 4
512 bytes 512 2 512 2 256 4 256 4 256 bytes 256 4 256 4 256 4 256 4 128 bytes 128 4 128 4 128 4 128 4
a. Completion buffer allocation in bytes. b. Number of Out standing Read Requests.
a
The requests are sent in order — small requests do not pass large requests — as completion buffers are unallocated. Otherwise, this would cause unfairness since smaller requests could block larger requests. The completions can occur out of order; that is, the bridge always responds with completion data if it is in the buffers. This is done to improve throughput when there are multiple outstanding read requests.
3.3.1.1 Non-posted Write Buffer
The PEB383 supports one non-posted write transaction. Similar to read requests, its request information is stored in one of the eight request queue entries, and its data is stored in a 32-bit register. Non-posted write requests are forwarded onto the PCIe Core in two PCIe clock cycles. Request information is forwarded in the first cycle, while 32-bit data is forwarded in the second cycle.
ORR
b
ALOC ORR ALOC ORR ALOC ORR

3.3.2 Upstream Posted Buffer

The upstream posted buffer is a FIFO of size 512 bytes that stores mem ory writ e transactions that originate on the PCI Interface and are destined to devices on PCIe Interface. The PEB383 completes the posted transactions on the originating bus before forwarding them to the PCIe Interface. Unlike the read buffers, the amount of space assigned to ea ch transac tion is dynamic. A single transaction can use 512 bytes of buffer space. The PEB383 translates all types of memory write transactions from the PCI Interface to memory write requests on the PCIe Interface. The PEB383 terminates a new transaction with retry and an active transaction with disconnect if sufficient buffer space is not available.
The PEB383 uses an 8-deep request FIFO to store the request information, including first and last Dwords byte enables of the received transactions.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 40
Memory write transactions can contain any or al l in valid payload bytes, where as memory write and invalidate (MWI) transactions carry all the valid payload bytes. The PEB383 decomposes the received transactions with non-contiguous byte enables on 32-byte boundaries while writing into the request FIFO.
The PCI Core makes a request to the PCIe Core if one of the following conditions is met:
All data bytes of the transaction are received and are stored in the data buffer
Received data bytes count exceeds the programmed threshold value (see UPST_PWR_THRES in
“Upstream Posted Writ e Threshold Register”)
Received data bytes count exceeds the PCIe maximum payload size (see MAX_PAY_SIZE in
“PCIe Device Control and Status Register”)
Address plus received data bytes count exceeds 4 KB
Data with non-contiguous byte enables

3.3.3 Downstream Non-posted Buffer

The 512-byte, downstream non-posted buffer stores the data returned for the non-posted requests that originate on the PCIe Interface and are destined for PCI devices.
3. Data Path > Flow Control26
A single completion of up to 512-bytes can be stored here. A single outstanding read is issued to the PCI side.

3.3.4 Downstream Posted Buffer

The 512-byte downstream posted write buffer stores the payload of memory write transactions that originate on the PCIe Interface and are destined for PCI devices. The amount of space assigned to each transaction is dynamic.
The PEB383 uses an 8-deep request FIFO to store the request information, including the first and last Dwords byte enables. The PEB383 initiates a transaction on the PCI Interface only after a complete packet is stored in the buffer. The PEB383 attempts another outstanding transaction only if the current transaction is either successfully completed or terminated with either master or target abort.

3.4 Flow Control

The PEB383 handles packet-based protoc ol on its PCIe Interface, and transaction-based protocol on its PCI Interface. PCI requesters initiate transactions without prior knowledge on receiver buffer status. As a result, flow control is managed through retries and disconnects that can waste bus bandwidth. In comparison, PCIe requesters initiate requests while having prior knowledge on receiver buffer availability status, and therefore, eliminate the wasteful effects of unnecessary retries and disconnects.
The PEB383 does not issue retries or disconnects on the PCI Interface for completions returned for a downstream read request, but may issue retries or disconnects for a posted or non-posted transaction on the PCI Interface based on the buffer space availability.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 41
3. Data Path > Prefetching Algorithm 27
The PEB383 uses flow control buffers in the PCI Core for three categories of downstream traffic. The amount of flow control buffer space availability is conveyed to the other end of the component using flow control credits. The PEB383 advertises infinite credits for completions as it ensures enough buffer space is available to store the returned completion data before initiating a read request. The PEB383 advertises initial flow control credits as follows. Each credit of data is 16 bytes.
Table 9: Initial Credit Advertisement
Credit Type Initial Advertisement
Posted Header (PH) 0x08 Posted Data (PD) 0x020 Non-Posted Header (NPH) 0x04 Non-Posted Data (NPD) 0x01 Completion Header (CPLH) 0x00 (Infinite) Completion Data (CPLD) 0x000 (Infinite)

3.5 Prefetching Algorithm

The PEB383 prefetches the data by default for the transaction that uses Memory Read Line or Memory Read Multiple command. The PEB383 does not prefetch the data by default for the transaction that uses the memory read command sinc e t he bri dge do es not know whether or not the transaction addre ss falls in prefetchable region.
The prefetch algorithm is configured for various commands as follows:
Memory read – Controlled by P_MR, MRL_66 and MRL_33 of the “Prefetch Control Register”. The default value of these bits indicates that either one Dword in 32-bit bus mode or two Dwords in 64-bit bus mode is prefetched.
Memory read line – Controlled by P_MRL, MRL_66 and MRL_33 of the “Prefetch Control
Register”. The default value of these bits indicates that either 128 bytes in 32-bit bus mode or
256 bytes in 64-bit bus mode is prefetched. The PEB383 prefetches one cacheline if P_MRL is set to 0.
Prefetch algorithm for memory read multiple command is controlled by P_MRM, MRM_66 and MRM_33 of the “Prefetch Control Register”. The default value of these bits indicates that either 256 bytes in 32-bit bus mode or 384 bytes in 64-bit bus mode is prefetched. The PEB383 prefetches two cachelines if P_MRM is set to 0.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 42

3.6 Short Term Caching

This feature provides performance improvements in situations where upstream devices are not able to stream data continuously to meet the prefetching needs of the PEB383. As defined in the PCI-to-PCI Bridge Specification (Revision 1.2), when the bus master completes a transaction, the bridge is required to discard the balance of any data that was prefetched for the master. To prevent performance impac ts when dealing with devices between requester and completer that can only stream data of 128 to 512 bytes due to buffering constraints, the PEB383 uses “Short Term Caching.” This feature provides a time-limited read data cache in which the PEB383 will not discard prefetched read data after the request completes on the initiating bus.
To enable Short Term Caching, set the STC_EN bit in the “PCI Miscellaneous Control and Status
Register”. When enabled, the PEB383 does not discard the additional prefetched data when the read
transaction completes on the initiating bus. The PEB383 then continues t o prefet ch data up to the amount specified in the “Prefetch Control Register”. If the initiator generates a new transaction that requests the previously prefetched data, the PEB383 returns that data.
The PEB383 discards data after some of the data for a request is returned to the initiator and one of the following conditions is met:
Short-term discard timer is expired before the initiator has requested additional data (see
“Short-term Caching Period Register”).
3. Data Path > Short Term Caching28
An upstream posted transaction is received on the PCI Interface
Short-term caching should only be used in systems that can ensure the data provided to the master has not been modified since the initial transaction.

3.7 Polarity Inversion

The PEB383 supports polarity inversion. For information on how to use this feature, see the PEB383 Board Design Guidelines.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 43

4. Addressing

Topics discussed include the following:
“Overview”
“Memory-mapped I/O Space”
“Prefetchable Space”
“I/O Space”
“VGA Addressing”
“ISA Addressing”
“Non-transparent Addressing”
“Legacy Mode”
29

4.1 Overview

This chapter discusses the various types of address decoding performed by the PEB383 when it forwards transactions upstream and downstream. The memory and I/O address ranges are defined using a set of base and limit registers in the bridge’s confi g uration header. The base and limit address registers define the address ranges that a bridge forwards downstream transactions. These registers are effectively inversely decoded to determine the address ranges on the PCI Interface for transactions that are forwarded upstream to the PCIe Interface.

4.2 Memory-mapped I/O Space

Memory transactions are forwarded across the PEB383 when their address falls within a window defined by one of the following registers:
“PCI Memory Base and Limit Register”
“PCI PFM Base and Limit Register” The memory-mapped I/O address spacing maps memory address ranges of devices that are not
prefetchable. For PCI to PCIe reads, prefetching occurs in this space only if the Memory Read Line or Memory Read Multiple commands are issued on the PCI bus. When either of these commands is use d, the quantity of data prefetched is determined by the prefetching algorithm defined in “Prefetching
Algorithm”. For PCIe-to-PCI, the number of bytes to read is determined by the Memory Read Request
TLP.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 44
4. Addressing > Memory-mapped I/O Space30
The response of the bridge to memory-mapped I/O transactions is controlled by the following:
•MS bit in “PCI Control and Status Register” – This bit must be set to allow memory transactions to be forwarded downstream. If not set, all memory transactions on the PCI bus are forwarded to the PCIe link. In addition, if not set, all memory requests on the PCIe Interface are completed with an Unsupported Request status.
BM bit in “PCI Control and Status Register” – This bit must be set to allow memory transactions to be forwarded upstream. If this bit is not set, all memory transactions on the PCI bus are ignored.
VGA_EN bit in “PCI Bridge Control and Interrupt Register”
The PEB383 forwards memory transactions downstream from its PCIe Interface to its PCI Interface if a memory address is in the range defined by the Memory Base and Memory Limit registers (when the base is less than or equal to the limit), as shown in Figure 9. A memory transaction on the PCI Interface that is within this address range, however, is not be forwarded upstream to the PCIe Interface. Any memory transactions on the PCI Interface that are outside this address range are forwarded upstream to the PCIe Interface (provided they are not in the address range defined by the set of prefetchable memory address registers).
Figure 9: Memory-mapped I/O Address Space
Upstream
Upstream
rimary Interface
rimary Interface
Downstream
Downstream
Memory Base
Memory Base
Memory Limit
Memory Limit
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 45
4. Addressing > Prefetchable Space 31
The memory-mapped I/O address range that is defined by the Base and Limit registers are always aligned to a 1-MB boundary and has a size granularity of 1 MB.

4.3 Prefetchable Space

The prefetchable address space maps memory address ranges of devices that are prefetchable; that is, devices that do not have side-effects during reads. For PCI-to-PCIe reads, prefetching occurs in this space for all memory read commands (MemRd, MemRdLine, MemRdMult) issued on the PCI bus. For these Read commands, the PEB383 prefetches data according to prefetching algorithm defined in
“Prefetching Algorithm”. For PCIe-to-PCI reads, the number of bytes to be read is determined by the
Memory Read Request. The Prefetchable Memory Base, Prefetchable Memory Limit, Prefetchable Base Upper 32 Bits, and
Prefetchable Limit Upper 32 Bits registers in the bridge configuration header specify an address range that is used by the bridge to determine whether to forward PCIe and PCI memory read and memory write transactions across the bridge. The prefetchable memory address range defined by these registers is always aligned to a 1-MB boundary and has a size granularity of 1 MB. If the address specified by the Prefetchable Memory Base and Prefetchable Base Upper 32 Bits registers is set to a value higher than the address specified by the Prefetchable Memory Limit and Prefetchable Limit Upper 32 Bits registers, the address range is disabled.
Following register bits effect the response by the bridge to memory transactions:
Memory Enable bit in “PCI Control and Status Register”
Bus Master Enable bit in “PCI Control and Status Register”
VGA Enable bit in “PCI Bridge Control and Interrupt Register” The PEB383 forwards memory transactions downstream from its PCIe Interface to its PCI Interface if
a memory address is in the range defined by the Prefetchable Memory Base and Prefetchable Memory Limit registers. Conversely, a memory transaction on the PCI Interface that is within this address range is not be forwarded upstream to the PCIe Interface. Any memory transactions on the PCI Interface that are outside this address range are forwarded upstream to the PCIe Interface (provided they are not in the address range defined by the memory-mapped I/O address range registers).
If the Prefetchable Memory Base is programmed to have a value greater than the Prefetchable Memory Limit, then the prefetchable memory range is disabled. In this case, all memory transaction forwarding is determined by the memory-mapped I/O base and limit registers. Note that all four prefetchable base and limit registers must be considered when disabling the prefetchable range.
Unlike non-prefetchable memory-mapped I/O memory, Prefetchable memory can be located below, above, or span across the first 4-GB address boundary. Figure 10 illustrates a prefetchable memory window that spans across the 4-GB address boundary. Memory locations above 4 GB are accessed using 64-bit addressing. PCIe memory transactions that use the Short Address (32-bit) format can target a non-prefetchable memory window or the portion of a prefetchable memory window that is below the first 4-GB address boundary. Memory transactions that use the Long Address (64-bit) format can target the portion of a prefetchable memory window that is at or above the first 4-GB address boundary.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 46
Figure 10: 64-bit Prefetchable Memory Address Range
Upstream
Upstream
Downstream
Downstream
Secondary Interface
rimary Interface
rimary Interface
Prefetchable Memory
GB Boundary 4 GB Boundary
GB Boundary 4 GB Boundary
Prefetchable Memory
Secondary Interface
4. Addressing > I/O Space32

4.4 I/O Space

I/O Base, I/O Limit, I/O Base Upper 16 Bits, and I/O Limit Upper 16 Bits registers in the PEB383 configuration header specify an address range that is used by the br idge to de termine whether to forward I/O read and I/O write transactions across the bridge. If the address specified by the I/O Base and I/O Base Upper 16 Bits registers is set to a value greater than the address specified by the I/O Limit and I/O Limit Upper 16 Bits registers, the address range is disabled.
The response of the bridge to I/O transactions is controlled by the following configuration register bits:
I/O Space Enable bit in “PCI Control and Status Register”
Bus Master Enable bit in “PCI Control and Status Register”
ISA Enable bit in “PCI Bridge Control and Interrupt Register”
VGA Enable bit in “PCI Bridge Control and Interrupt Register”
The I/O Enable bit must be set for any I/O transaction to be forwarded downstream. If this bit is not set, all I/O transactions on the PCI bus are forwarded to the PCIe link. If this bit is not set, all PCIe Interface I/O requests are completed with Unsupported Request status.
Memory Mapped I/O
Memory Mapped I/O
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 47
4. Addressing > I/O Space 33
The Bus Master Enable bit must be set for any I/O transaction to be forwarded upstream. If this bi t is not set, all I/O transactions on the PCI bus are ignored.
If ISA Enable bit is set, the bridge does not forward any I/O transactions downstream that are in the top 768 bytes of each 1-KB block within the first 64 KB of address space. Only transactions in the bottom 256 bytes of each 1-KB block are forwarded downstream. If the ISA Enable bit is clear, then all addresses within the range defined by the I/O base and limit registers are forwarded downstream. I/O transactions with addresses above 64 KB are forwarded according to the range defined by th e I/O base and limit registers. If the ISA Enable bit is set, the bridge forwards upstream any I/O transactions on the PCI bus that are in the top 768 bytes of each 1-KB block within the first 64 KB of address space, even if the address is within the I/O base and limit. All other transactions on the PCI bus are forwarded upstream if they fall outside the range defined by the I/O base and limit registers. If the ISA Enable bit is clear, then all PCI bus I/O addresses outside the range defined by the I/O base and limit registers are forwarded upstream.
A bridge uses the I/O Base and I/O Limit registers to determine whether to forward I/O transactions across the bridge, as shown in Figure 11. The I/O address range defined by these registers is always aligned to a 4-KB boundary and has a size granularity of 4 KB. A bridge forwards I/O read and I/O write transactions from its PCIe Interface to its PCI Interface if the address is in the range defined by the I/O base and I/O limit registers (when the base is less than or equal to the limit) . Conversely, I/O transactions on the PCI bus in the address range defined by these registers are not forwarded upstream by the bridge. I/O transactions on the PCI bus that are outside the defined address range are forwarded upstream.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 48
Figure 11: I/O Addre ss Space
Upstream
Upstream
Downstream
Downstream
rimary Interface
rimary Interface
0x0_C000 – 0x0_FFFF
0x0_C000 – 0x0_FFFF
0x0_B000 – 0x0_BFFF
0x0_B000 – 0x0_BFFF
0x0_A000 – 0x0_AFFF
0x0_A000 – 0x0_AFFF
0x0_9000 – 0x0_9FFF
0x0_9000 – 0x0_9FFF
0x0_8000 – 0x0_8FFF
0x0_8000 – 0x0_8FFF
Secondary Interface
Secondary Interface
4. Addressing > VGA Addressing34
0x0_0000 – 0x0_7FFF
0x0_0000 – 0x0_7FFF

4.5 VGA Addressing

The PEB383 supports VGA addressing. The VGA_EN bit in the “PCI Bridge Control and Interrupt
Register” controls the response by the bridge to both VGA frame buffer addresses and to VGA register
addresses. If the VGA Enable bit is set, the bridge decodes and forwards memory accesses to VGA frame buffer addresses and I/O accesses to VGA registers from the PCIe Interface to the PCI Interface (and block forwarding from PCI to PCIe of these same accesses).
The VGA_16BIT_EN bit in the “PCI Bridge Control and Interrupt Reg ister” selects between 10-bit and 16-bit VGA I/O address decoding, and is applicable when the VGA Enable bit is 1.
VGA memory addresses are 0x0A_0000 through 0x0B_FFFF
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 49
4. Addressing > ISA Addressing 35
VGA I/O Addresses (Address bits 15:10 are not decoded when the VGA 16-Bit Decode bit is 0b) are:
Address bits 9:0 = 0x3B0 through 0x3BB and 0x3C0 through 0x3DF (VGA 16-Bit Decode bit is 0b)
Address bits 15:0 = 0x03B0 through 0x03BB and 0x03C0 through 0x03DF (VGA 16-bit Decode bit is 1b)
The VGA Palette Snoop Enable bit is implemented as read-only with a value of zero.

4.6 ISA Addressing

The PEB383 supports ISA addressing through ISA Enable bit in the “PCI Bridge Control and Interrupt
Register”. The ISA Enable affects only I/O addresses that are in the bridge’s I/O range (as defined by
the I/O Base, I/O Base Upper 16 Bits, I/O Limit, and I/O Limit Upper 16 Bits) and in the first 64 KB of PCI I/O Space (0000 0000h to 0000 FFFFh). If this bit is set and the I/O address meets the stated constraints, the PEB383 blocks the forwarding of I/O transactions downstream if the I/O address is in the top 768 bytes of each naturally aligned 1-KB block. If the ISA Enable bit is clear, the PEB383 forwards downstream all I/O addresses in the address range defined by the I/O Base and I/O Limit registers.
If the ISA Enable bit is set, I/O transactions on the PCI bus in the top 768 bytes of any 1-KB address block within the first 64 KB of PCI I/O space is forwarded upstream, even if the address is between the I/O base and I/O limit addresses. Figure 12 illustrates this mapping for a 4-KB range.
The ISA Enable bit only affects the I/O address decoding behavior of the bridge. It does not affect the bridge's prefetching, posting, ordering, or error handling behavior.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 50
Figure 12: ISA Mode I/O Addressing
Upstream
Upstream
Downstream
Downstream
rimary Interface
rimary Interface
0x0_xD000 – 0x0_xFFF
0x0_xD000 – 0x0_xFFF
0x0_xC00 – 0x0_xCFF
0x0_xC00 – 0x0_xCFF
0x0_x900 – 0x0_x9FF
0x0_x900 – 0x0_x9FF
0x0_x800 – 0x0_x8FF
0x0_x800 – 0x0_x8FF
Secondary Interface
Secondary Interface
4. Addressing > ISA Addressing36
0x0_x500 – 0x0_x7FF
0x0_x500 – 0x0_x7FF
0x0_x400 – 0x0_x4FF
0x0_x400 – 0x0_x4FF
0x0_x100 – 0x0_x3FF
0x0_x100 – 0x0_x3FF
0x0_x000 – 0x0_x0FF
0x0_x000 – 0x0_x0FF
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 51
4. Addressing > Non-transparent Addressing 37

4.7 Non-transparent Addressing

At power-up, the host processor discovers the need for non-transparent bridging and enables the address remapping of prefetchable, non-prefetchable, and I/O ranges through configuration. Before enabling address remapping of the base and limit values, the remapped address ranges need to be programmed. The “Downstream Non-transparent Address Remapping Registers” allow downstream accesses to be mapped to arbitrary positions in PCI memory space. While the Memory Base and Limit registers always define the range of addresses to be claimed on the PCIe link and forwarded to the PCI bus, cycles that are claimed have their addresses modified because of the difference in the base addresses of the windows on the two buses.

4.7.1 PCIe to PCI Non-prefetchable Address Remapping

Downstream transactions that fall within the address window defined by the “PCI Memory Base and
Limit Register” are remapped according to the address window defined by the “Secondary Bus Non-prefetchable Address Remap Control Register” and “Secondary Bus Non-prefetchable Upper Base Address Remap Register”. The following equations describe the address remapping process:
PriSecNPDiff = PriNPBase - SecNPBase, where
PriSecNPDiff: Defines the difference between the Primary Non-prefetchable Base and the
Secondary Non-prefetchable Base.
PriNPBase: Defined in the previous paragraph. — SecNPBase: Defined by “Secondary Bus Non-prefetchable Address Remap Control Register”
and “Secondary Bus Non-prefetchable Upper Base Address Remap Register”.
SecNPA ddr = PriNPAddr - PriSecNPDiff, where
SecNPAddr: Defines the remapped address that the PEB383 presents on the PCI bus. PriNPAddr: Defines the address presented to the PEB383 that falls within the registers
described in the previous paragraph.
PriSecNPDiff: See previous bullet.

4.7.2 PCIe to PCI Prefetchable Address Remapping

Downstream transactions that fall within the address window defined by the “PCI PFM Base and Limit
Register”, “PCI PFM Base Upper 32 Address Register”, and “PCI PFM Limit Upper 32 Address Register”are remapped according to the address window defined by the “Secondary Bus Prefetchable Address Remap Control Register” and “Secondary Bus Prefetchable Upper Base Address Remap Register”. The following equations describe the address remapping process:
PriSecPFDiff = PriPFBase - SecPFBase, where
PriSecPFDiff: Defines the difference between the Primary Prefetchable Base and the
Secondary Prefetchable Base.
— PriPFBase: Defined by the registers listed above. — SecPFBase: Defined by “Secondary Bus Prefetchable Address Remap Control Register” and
“Secondary Bus Prefetchable Upper Base Address Remap Register”.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 52
SecPFAddr = PriPFAddr - PriSecPFDiff, where
— SecPFAddr: Defines the remapped address the PEB383 presents on PCI bus. — PriPFAddr: Defines the address presented to the PEB383 that falls within the registers
described in the previous paragraph.
PriSecPFDiff: See previous bullet.

4.7.3 PCI to PCIe Address Remapping

Because the addresses of the downstream memory windows on the PCI bus have been shifted from their locations on the PCIe link, the address range of cycles that a bridge will not claim on the PCI bus must also be shifted. Therefore, memory cycles with addresses from SecNPBase (see “Secondary Bus
Non-prefetchable Address Remap Control Register” and “Secondary Bus Non-prefetchable Upper Base Address Remap Register”) to SecNPLimit or from SecFPBase (see “Secondary Bus Prefetchable Address Remap Control Register” and “Secondary Bus Prefetchable Upper Base Address Remap Register”) to SecFPLimit will not be claimed by the bridge on the PCI bus.
The Secondary Bus Non-prefetchable Limit is described in the following equation:
SecNPLimit = PriNPLimit - PriSecNPDiff, where
4. Addressing > Non-transparent Addressing38
PriNPLimit: Defined by “PCI Memory Base and Limit Register” and the additional “Primary
Bus Non-prefetchable Upper Limit Remap Register”.
PriSecNPDiff: Defines the difference between the Primary Non-prefetchable Base and the
Secondary Non-prefetchable Base.
The Secondary Prefetchable Limit is described in the following equation:
SecPFLimit = PriPFLimit - PriSecPFDiff, where — PriPFLimit: Defined by “PCI PFM Base and Limit Register” and “PCI PFM Base Upper 32
Address Register”.
PriSecPFDiff: Defines the difference between the Primary Prefetchable Base and the
Secondary Prefetchable Base.
Once the address is claimed as defined above, a memory cycle is forwarded from the PCI bus to the PCIe link with its address modified according to the Non-transparent Address (NTMA) remapping windows (see offsets 0x68 to 0x7C):
NTMA window remapping
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 53
4. Addressing > Non-transparent Addressing 39
The NTMA Secondary Base (see “NTMA Secondary Lower Base Register” and “NTMA Secondary
Upper Base Register”) and NTMA Secondary Limit (see “NTMA Secondary Lower Limit Register”
and “NTMA Secondary Upper Limit Register”) define memory windows in the PCI bus memory space that are mapped to arbitrary positions on the PCIe link. The resulting location of the NTMA window on the PCIe link is defined by the following equations:
PriSecNTMADiff = PriNTMABase - SecNTMABase, where
PriNTMABase: Defined by “NTMA Control Register” and “NTMA Primary Upper Base
Register”.
SecNTMABase: Defined by “NTMA Secondary Lower Base Register” and “NTMA
Secondary Upper Base Register”.
PriNTMALimit = SecNTMALimit + PriSecNTMADiff, where
SecNTMALimit: Defined by “NTMA Secondary Lower Limit Register” and “NTMA
Secondary Upper Limit Register”.
PriSecNTMADiff: See previous bullet.
A memory cycle whose address falls within a NTMA window on the PCI bus will have its address on the PCIe link modified by the following equati on:
PriNTMAAddr = SecNTMAAddr + PriSecNTMADiff, where
SecNTMAAddr: Secondary NTMA Address, which must fall within the window defined by
the NTMA Secondary Base and Limit registers.
PriSecNTMADiff: See previous bullet.
Transactions that are claimed on PCI Interface, and which are outside the NTMA window, are forwarded upstream without address remapping. Software should ensure that the location of the NTMA window on the PCI bus is outside of the PCI bus memory windows, and that the NTMA window on the PCIe link is outside of the PCIe link memory windows, or undefined operation may result. Figure 13 displays an example of memory window remapping.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 54
Figure 13: Memory Window Remapping Example
PCIe Address Space PCI Address Space
4. Addressing > Non-transparent Addressing40
C_FFFF_FFFF
C_C000_0000
A_FFFF_FFFF
9_C00_0000
BFFF_FFFF
8000_0000
NTMA Window
Prefetchable Window
Non-prefetchable Window
Prefetchable Window
NTMA Window
Non-prefetchable Window
1_FFFF_FFFF
C000_0000
7FFF_FFFF
4000_0000 3FFF_FFFF
0000_0000
I/O Address Remapping
The “PCI I/O Address Upper 16 Register” in the PEB383 configuration space indicates the number of upper bits of the I/O address that are not used when forwarding downstream I/O space cycles to the PCI bus. This allows I/O addresses to be translated down into the address range that is available on the PCI bus. There is no enable bit for I/O address remapping; any non-zero value in this register remaps the I/O transactions to a different address location, as described in this section.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 55
4. Addressing > Legacy Mode 41

4.8 Legacy Mode

When the PEB383 is in Legacy mode it supports subtractive decode. This is a non-standard feature that is enabled through the LEGACY bit in the “PCI Miscellaneous Clock Straps Register”.
When the PEB383 is in legacy mode, all MWr, MRd, IOWr, and IORd transactions received on the upstream port (PCIe) that do not decode to an internal address are forwarded to the PCI Interface. When the device is not in legacy mode, TLPs that do not fall between the base and limit registers are handled as Unsupported Requests (UR).
When the LEGACY bit is set, the PROG field of “PCI Class Register” is changed to 0x1, indicating to software that a subtractive bridge is present.
When the LEGACY bit is set all PCIe capabilities are hidden from software, and the following occurs:
1. Next pointer in “PCI Power Management Capability Register” is set to 0, indicating it is the last capability
2. “PCIe Capability Registers” are treated as reserved
3. “Advanced Error Reporting Capability Registers” are treated as reserved
4. Extended configuration registers are treated as reserved
Tip
When the PEB383 is configured in Legacy mode, the PCIe root port must also be configured to support subtractive decode.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 56
4. Addressing > Legacy Mode42
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 57

5. Configuration Transactions

Topics discussed include the following:
“Overview”
“Configuration Transactions”
“PCIe Enhanced Configuration Mechanism”
“Configuration Retry Mechanisms”

5.1 Overview

Each device in a PCIe or PCI system has a configuration space that is accessed using configuration transactions in order to define its operational characteristics. This chapter describes how the PEB383 handles PCIe configuration requests.
43

5.2 Configuration Transactions

There are two types of configuration transactions: Type 0 and Type 1. Type 0 configuration transactions access the PEB383’s internal configuration registers, while Type 1 configuration transactions access devices that reside downstream of the PEB383. T ype 1 transactions are converted to T ype 0 transactions if they target devices that reside on the downstream PEB383 bus. If the transaction is intended for a device that is downstream of the bus directly below the PEB383, the transaction is passed through the PEB383 as a Type 1 configuration transaction. If the transaction is not targeted for the PEB383 or any device below the PEB383, the transaction is rejected. Configuration transactions are only initiated by the Root Complex in PCIe-based systems.
Configuration address formats are as follows.
Figure 14: PCIe Configuration Address Format
Bus
Bus
Number
Number
Device
Device
Number
Number
Number
Number
ReservedFunction
ReservedFunction
Extended
Extended
Register
Register Address
Address
Address
Address
1 07 211 815 1218 1623 1931 24
1 07 211 815 1218 1623 1931 24
ReservedRegister
ReservedRegister
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 58
5. Configuration Transactions > Configuration Transactions44
Figure 15: PCI Type 0 Configuration Address Format
31 16
31 16
Reserved
Unique Address (AD[31:16])
Unique Address (AD[31:16])
corresponding to a particular Device
corresponding to a particular Device
Number)
Number)
Reserved
Figure 16: PCI Type 1 Configuration Address Format
31 24
31 24
Reserved
Reserved
Bus Number
Bus Number

5.2.1 Type 0 Configuration Transactions

The PEB383 responds to PCIe Type 0 configuration transactions that address its configuration space. This type of transaction configures the PEB383 and is not forwarded downstream. The PEB383 ignores Type 0 configuration transactions that originate on the PCI Interface. If a Type 0 configuration cannot be processed, the PEB383 handles it as an Unsupported Request.
15 11
15 11
Device
Device
Number
Number
Function
Function
Number
Number
Function
Function
Number
Number
Number
Number
Number
Number
1 07 210 815 11
1 07 210 815 11
00Register
00Register
1 07 210 823 16
1 07 210 823 16
01Register
01Register

5.2.2 Type 1 Configuration Transactions

PCIe Type 1 configuration transactions are used for device configuration in a hierarchical bus system. The Bus Number field contained in the header of a Type 1 configuration transaction specifies a unique PCI bus in the PCI bus hierarchy. The PEB383 compares the specified Bus Number with two register fields — Secondary Bus Number and Subordinate Bus Number in “PCI Bus Number Register” — that are programmed by system software or firmware to determine whether or not to forward a Type 1 configuration transactions across the bridge.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 59
5. Configuration Transactions > Configuration Transactions 45
If a T ype 1 configur ation tra nsaction is received on the PCIe Interface, the following sequence of tests is completed on the Bus Number field to determine how the PEB383 should handle the transaction :
1. If the Bus Number field is equal to the Secondary Bus Number value and the conditions for converting the transaction into a Special Cycle transaction are met, the PEB383 forwards the configuration request to its PCI Interface as a Special Cycle transaction. If the conditions are not met, the PEB383 forwards the configuration request to the PCI Interface as a Type 0 configuration transaction.
2. If the Bus Number field is not equal to the Secondary Bus Number value but is in the range of the Secondary Bus Number and the Subordinate Bus Number (inclusive) values, the T ype 1 configuration request is specifying a Bus Number that is located behind the bridge. In this case, the PEB383 forwards the configuration request to the PCI Interface as a Type 1 configuration transaction.
3. If the Bus Number field does not satisfy the tests 1 and 2, the Type 1 configuration request indicates a Bus Number that is not located behind the bridge. In this case, the configuration request in invalid and PEB383 handles this as an Unsupported Request.

5.2.3 Type 1 to Type 0 Conversion

If a PCIe Type 1 configur ation transaction’s Bus Number field is equal to the Secondary Bus Number value, and the conditions for conversion to a Special Cycle transaction are not met, the PEB383 forwards the transaction to the PCI bus as a Type 0 configuration transaction. In this case, a device connected to the PCI Interface of the bridge is the target of the Type 0 configuration transaction.
To translate and convert a PCIe Type 1 configuration transaction to a PCI Type 0 configuration transaction, the PEB383 does the following:
Sets address bits PCI_AD[1:0] as 0b00
Sets address bits PCI_AD[7:2] the same as the PCIe transaction’s Register Address field
Sets address bits PCI_AD[10:8] the same as PCIe transaction’s Function Number field
For a Secondary bus operating in PCI mode, it drives value 0b0000 on address PCI_AD[15:11]
For a Secondary bus operating in PCI, the PEB383 check’s if the received Extended Register Address field is zero. If this field is non-zero, the PEB383 does not forward the transaction and treats it as an Unsupported Request on PCIe and a received Master-Abort on th e desti natio n bus . If the field is zero, the PEB383 decodes the PCIe Device Number field and asserts a single address bit in the range PCI_AD[31:16] during the address phase (for device numbers in the range 0b0_0000 to 0b0_ 1111b).

5.2.4 Type 1 to Type 1 Forwarding

If a PCIe T ype 1 configuration transaction is received and the value specified by the Bus Number field is within the range of bus numbers between the Secondary Bus Number (exclusive) and the Subordinate Bus Number (inclusive), the PEB383 forwards the transaction to its PCI Interface as a Type 1 configuration transaction. In this case , the target of the transaction does not reside on the PCI Interface but is located on a bus segment further downstream.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 60
5. Configuration Transactions > PCIe Enhanced Configuration Mechanism46
To translate the forwarded transaction from a PCIe Type 1 configuration request to a PCI Type 1 configuration transaction, the PEB383 does the following:
Sets address bits PCI_AD[1:0] as 0b01
PCI Register Number, Function Number, Device Number, and Bus Number (address bits PCI_AD[23:2]) are generated directly – th at is, unmodified – from the PCIe configuration transaction’s Register Address, Function Number, Device Number, and Bus Number fields, respectively.
Checks if the received Extended Register Address field is zero. If this field is non-zero, the PEB383 does not forward the transaction and treats it as an Unsupported Request on PCIe and a received Master-Abort on the destination bus. If the field is zero, the PEB383 generates PCI_AD[27:24] as 0b0000.

5.2.5 Type 1 to Special Cycle Forwarding

When the PEB383 receives a PCIe Type 1 configuration write request transaction, it converts it to a Special Cycle on its PCI Interface when the following conditions are met by the transaction:
The Bus Number field matches the Secondary Bus Number register value
The Device Number field is al l one s (eq ua ls 0b1_1111)
The Function Number field is all ones (equals 0b111)
The Register Address and Extended Register Address are both all zeros (equal 0b00_0000 and 0b0000, respectively).

5.3 PCIe Enhanced Configuration Mechanism

The PCIe Enhanced Configuration Mechanism adds four additional bits to the Register Address field, thereby expanding the space to 4096 bytes. The PEB383 forwards configuration transactions only when the Extended Register Address bits are all zero. This prevents address aliasing on the PCI bus that does not support Extended Register Addressing. If a configuration transaction targets the PCI bus and has a non-zero value in the Extended Register Address field, the PEB383 handles the transaction as if it received a Master-Abort on the PCI bus and then does the following:
Sets the appropriate status bits for the destination bus, as if the transaction had executed and resulted in a Master-Abort
Generates a PCIe completion with Unsupported Request status
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 61
5. Configuration Transactions > Configuration Retry Mechanisms 47

5.4 Configuration Retry Mechanisms

A PCIe-to-PCI bridge is required to return a completion for all configuration requests that cross the bridge from PCIe to PCI prior to expiration of the Completion Timeout timer in the Root Complex. This requires that bridges take ownership of all configuration requests forwarded across th e bridge. If the configuration request to PCI completes successfully prior to the bridge’s timer expiration, the bridge returns a completion with Normal Status on PCIe for that request. If the configuration request to PCI encounters an error condition prior to the bridge’s timer expiration, the bridge returns an appropriate error completion on PCIe. If the configuration request to PCI does not complete either successfully or with an error, prior to timer expiration, the bridge is required to return a completion with Configuration Retry Status (CRS) on PCIe for that request.
After the PEB383 returns a completion with CRS on PCIe, it continues to keep the configuration transaction active on the PCI bus. For PCI, the PEB383 keeps retrying the transaction until it completes on the PCI bus. When the configuration transaction completes on the PCI bus after the return of a completion with CRS on PCIe, the PEB383 discards the completion information. Bridges that use this option are also required to implement Bridge Configuration Retry Enable in the “PCIe Device Control
and Status Register”. If this bit is cleared, the bridge does not return a completion with CRS on behalf
of configuration requests forwarded across the bridge. The lack of a completion results in eventual Completion Timeout at the Root Complex.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 62
5. Configuration Transactions > Configuration Retry Mechanisms48
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 63

6. Bridging

Topics discussed include the following:
“Overview”
“Flow Control Advertisements”
“Buffer Size and Management”
“Assignment of Requestor ID and Tag”
“Forwarding of PCIe to PCI”
“Forwarding of PCI to PCIe”
“PCI Transaction Support”
“PCIe Transaction Support”
“Message Transactions”
“Transaction Ordering”
“Exclusive Access”
49

6.1 Overview

The PEB383 provides a connection path between a PCI bus and a PCIe link. The main function of the PEB383 is to allow transactions between a master or a transmitter on one bus\link, and a target or a receiver on the other bus\link. The PCI Interface can operate in 32-bit PCI mode up to 66 MHz. Transactions flow through the PEB383 can be classified as follows:
PCIe-to-PCI
PCI-to-PCIe

6.2 Flow Control Advertisements

The flow control method on the PCI Interface is managed through retries or disconnects, where as on the PCIe link it is managed using flow control credi ts.
On the PCI Interface, the PEB383 issues retries to new request transactions and issues a disconnect for the active transaction if the internal request queues or data storage buffers are full or approaching full.
On PCIe Interface, the PEB383 periodically conveys its available buffer space to the other end component in terms of flow control credits using flow control packets. The PEB383 advertises flow control credits as per PCIe protocol requirements.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 64
6. Bridging > Buffer Size and Management50

6.3 Buffer Size and Management

The PEB383 provides sufficient buffering to satisfy PCIe bridging requirements. The PEB383 does not overcommit its buffers: it forwards requests onto the other side only when enough buffer space is reserved to handle the returned completions.
The PEB383 uses 1-KB retry buffering, which is large enough to ensure that under normal operating conditions upstream traffic is never throttled. Ack latency value, internal processing delays, and receiver L0s exit latency values, are considered for determining the Retry buffer size.

6.4 Assignment of Requestor ID and Tag

The PEB383 assigns a unique transaction ID for all the non-posted requests forwarded to upstream devices. The PEB383 takes ownership of the upstream transactions on behalf of origin al requestors, and stores the transaction-related state information needed to return the completions to the original requesters. The action of replacing the original transaction’s requester ID and/or Tag fields with the bridge’s own assigned values is referred to as taking ownership of the transaction.
For upstream non-posted requests, the PEB383 assigns the PCIe requester ID using its secondary bus number and sets both the device number and function number fields to zero. For the upstream transactions, the PEB383 sets the Tag field to a request enqueued entry number.

6.5 Forwarding of PCIe to PCI

The PEB383 forwards posted, non-posted, and upstream read completions to the PCI devices, and stores the non-posted TLPs’ state information to return the completion TLPs to the PCIe Interface.

6.5.1 PCIe Memory Write Request

The PEB383 forwards the received PCIe Memory Write Requests to the PCI Interface with either Memory Write (MW) or Memory Write and Invalidate (MWI) command. The PEB383 translates the request into a PCI transaction using the MWI command if it meets the MWI command rules specified in the PCI Local Bus Specification (Revision 3.0), and the MWI bit is set in the “PCI Control and Status
Register”. An MW command is used for the remaining part of the MWI transact ion if the transact ion is
disconnected such that the remaining request does not meet the MWI command rules. The PEB383 does not support relaxed ordering among the received requests. It forwards all requests in the order they are received even if the relaxed ordering bit is set for some of the requests.

6.5.2 PCIe Non-posted Requests

The PEB383 translates the PCIe Memory Read Requests into PCI transactions that use a PCI memory read command (that is, Memory Read, Memory Read Line, or Memory Read Multiple) based on its cacheline size value, requested byte enables, and prefetchable and non-prefetchable memory windows. PCIe Read Request command translation is completed as follows:
Memory Read if the PCIe Request falls into the non-prefetchable address range defined by the
“PCI Memory Base and Limit Register”.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 65
6. Bridging > Forwarding of PCI to PCIe 51
Memory Read Line if the PCIe Request falls into the prefetchable range defined by the “PCI PFM
Base and Limit Register” , and the requested data size is less than or equal to the value specified in
Cacheline Size of the “PCI Miscellaneous 0 Register”.
Memory Read Multiple if the PCIe Request falls into the prefetchable range defined by the “PCI
PFM Base and Limit Register”, and the requested the data size is greater than or equa l to the value
specified in Cacheline Size of the “PCI Miscellaneous 0 Register”.
The PEB383 supports a single outstanding request. It does not attempt to read beyond the requested length. The PEB383 decomposes the requests if the requested data length is greater than 128 bytes, and returns the completions in 128-byte boundary fragments.
The PEB383 uses PCI byte enable fields such that the byte enable information is preserved and no additional bytes are requested for the transactions that fall into the non-prefetchable address range (for example, Configuration, I/O, and Memory read commands).

6.6 Forwarding of PCI to PCIe

The PEB383 forwards posted and non-posted requests and downstream read completions to PCIe devices, and stores the non-posted requests’ state information to return the delayed completions to the requester.

6.6.1 PCI Memory Write Request

The PEB383 translates the received Memory Write (MW) and Memory Write and Invalidate (MWI) transactions into PCIe Memory Write Requests. The PEB383 uses a 512-byte posted buffer to post the received transactions. Write requests are fragmented if one of the following PCIe constraints is met:
Address plus length crosses the 4-KB boundary
Burst writes with discontinuous byte enables
Payload size exceeds MAX_PAY_SIZE in “PCIe Device Control and Status Register”
The PEB383 terminates a posted transaction with retry only if the buffers are filled with previously received memory requests, or if the bridge is locked from the PCIe side (see “Locked Trans a ction”). For more information on locked accesses, see “Exclusive Access”.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 66

6.6.2 PCI Non-posted Requests

The PEB383 processes all non-posted transactions as delayed transactions. The PEB383 first terminates the received non-posted transaction with retry and then forwards it onto the PCIe Interface. The PEB383 stores the request-related state information while forwarding the request onto the PCIe Interface. This information tracks the requests repeated by the master and returned completions for the request. Since PCI read requests do not specify the amount of data to be read, the PEB383 uses a programmable prefetch algorithm to determine the amount of data to be read on behalf of the original requester. The PEB383 does not attempt to prefetch past the 4-KB address boundary on behalf of the original requester. The PEB383 stores the returned completion until the PCI requester repeats the initial request and terminates the delayed transaction. If short-term caching is enabled (see STC_EN in “PCI
Miscellaneous Control and Status Register”), the PEB383 responds to subsequent requests with the
incremental addresses issued by the master until the programmed number of data bytes are transferred to the master or the short-term discard timer is expired (see ST_DIST_EN in
“SERRDIS_OPQEN_DTC Register”).
The PEB383 enqueues up to four requests and issues the initial requests on the PCIe Interface in the order they were received; however, the ordering is not guaranteed for the subsequent requests of decomposed transactions.
The PEB383 discards the enqueued delayed request if the requested data is not returned before the completion timeout is expired (see “Completion Timeout Register”), and returns a delayed completion with target abort to the requester (see DISCARD2 in “PCI Bridge Control and Interrupt Register”). A delayed completion is discarded if the requester does not repeat the initial request or if the requester disconnects the delayed completion after few data bytes are transferred.
6. Bridging > Forwarding of PCI to PCIe52
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 67
6. Bridging > PCI Transaction Support 53

6.7 PCI Transaction Support

The following table lists the transactions supported by the PCI Interface.
Table 10: PCI Transaction Support
PCI Interface
Cmd Transaction
0000b Interrupt Acknowledge NA NA 0001b Special Cycle Yes NA 0010b I/O Read Yes Yes 0011b I/O Write Yes Yes 0100b Rsvd NA NA 0101b Rsvd NA NA 0110b Memory Read Yes Yes 0111b Memory Write Yes Yes 1000b Rsvd NA NA 1001b Rsvd NA NA 1010b Configuration Read Yes NA 1011b Configuration Write Yes NA 1100b Memory Read Multiple Yes Yes
a
As a Master As a Target
1101b Dual Address Cycle Yes Yes 1110b Memory Read Line Yes Yes 1111b Memory Write and Invalidate Yes Yes
a. For unsupported transactions, see “PCIe as Originating Interface”.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 68

6.8 PCIe Transaction Support

The following table lists the transactions supported by the PCIe Interface.
Table 11: PCIe Transaction Support
6. Bridging > PCIe Transaction Support54
PCIe Interface
TLP Type Transaction
MRd Memory Read Request Yes Yes MRdLk Memory Read Request Locked NA Yes MWr Memory Write Request Yes Yes IORd I/O Read Request Yes Yes IOWr I/O Write Request Yes Yes CfgRd0 Configuration Read Typ e0 NA Yes CfgWr0 Configuration Write Type 0 NA Yes CfgRd1 Configuration Read Typ e1 NA Yes CfgWr1 Configuration Write Type 1 NA Yes Msg Message Request Yes Yes MsgD Message Request with Data Payload NA Yes MsgD
(Vendor Defined) Cpl Completion without Data Yes Yes
Vendor-Defined Message Request With Data Payload
a
As a Transmitter As a Receiver
No No
CplD Completion with Data Yes Yes CplLk Completion without Data for
MRR- Locked
CplDLk Completion with Data for MRR - Locked Yes NA
a. For unsupported transactions, see “PCIe as Originating Interface”.
PEB383 User Manual July 25, 2011
Yes NA
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 69
6. Bridging > Message Transactions 55

6.9 Message Transactions

Message transactions are used for in-band communication of events, and therefore, eliminate the need for sideband signals. PCIe messages are routed depending on specific bit field encodings in the message request header.

6.9.1 INTx Interrupt Signaling

The PEB383 forwards the INTx interrupts – PCI_INT[A:D]n – generated by PCI devices onto the PCIe Interface, as PCIe Assert_INTx and Deassert_ INTx messa ges (for more information, see “Interrupt
Handling”).

6.9.2 Power Management

Power management messages support Power Management Events (PME) signaled by sources integrated into the bridge and for devices downstream of the bridge. The PEB383 forwards the power management events (PCI_PMEn) from PCI devices onto the PCIe Interface using PCIe PME messages (for more information, see “Power Management Event”).

6.9.3 Locked Transaction

Unlock messages support locked transaction sequences in the downstream direction. This type of message indicates the end of a locked sequence. The PEB383 supports locked transactions in the downstream direction and uses unlocked messages to unlock itself from the PCIe Interface (see
“Exclusive Access”).

6.9.4 Slot Power Limit

These messages are transmitted to downstream devices by the root complex or a switch. The PEB383 copies the set slot power limit payload into the Set Slot Power Limit Scale and Set Slot Power Value fields of the “PCIe Device Capabilities Register”.

6.9.5 Vendor-defined and Device ID

These messages are used for vendor-specific purposes. The PEB383 does not support forwarding of these messages. It terminates Device ID message transactions on the PCI Interface with Master-Abort. It silently discards the Vendor-defined Type 1 message TLPs and hand les the Vendor-defined Type 0 message TLPs as Unsupported Requests.
The PEB383 ignores the receipt of Ignored messages. It handles the receipt of Error signaling messages as Unsupported Requests. The PEB383 handles the receipt of INTx messages as malformed TLPs.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 70

6.10 Transaction Ordering

Table 12 defines the transaction ordering rules that are followed by the PEB383. These rules apply
uniformly to all types of transactions, including Memory, I/O, Configurations, and Messages. In the table, the columns represent a first received transaction while the rows represent a subsequently
received transaction. Each table entry indicates the ordering relationship between the two transactions. The table entries are defined as follows:
Yes – The second transaction is allowed to pass the first transaction.
No – The second transaction is not allowed to pass the first transaction. The PEB383 does not allow a posted transaction to pass another posted transaction even if the relaxed
ordering attribute bit is set. However, the device allows a Read completion with the relaxed ordering attribute bit set to pass a posted transaction.
Table entries with 1) and 2) are defined as follows:
1. Indicates the ordering relationship when the relaxed ordering attribute bit is clear in the second transaction header information.
2. Indicates the ordering relationship when the relaxed ordering attribute bit is set in the second transaction header information.
6. Bridging > Transaction Ordering56
Table 12: Transaction Ordering
Posted Request Non-Posted Request Completion
Can Row Pass Column?
Memory Write or Message
Posted
Request
Request
Read Request No Yes Yes Yes Yes I/O or
Configuration
Request
Non-Posted
Read Completion
I/O or Configuration
Completion
Write Completion
Memory Write or Message Request
1) No
2) No
No Yes Yes Yes Yes
1) No
2) Yes No Yes Yes Yes Yes
Read Request I/O or
Configuration Write Request
Yes Yes 1) Yes
Yes Yes 1) Yes
Read Completion I/O or
2) Yes
2) Yes
Configuration Write Completion
1) Yes
2) Yes
Yes
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 71
6. Bridging > Exclusive Access 57

6.11 Exclusive Access

ThePEB383 provides an exclusive access method, which allows non-exclusive accesses to proceed while exclusive accesses take place. This allows a master to hold a hardware lock across several accesses without interfering with non-exclusive data transfer. Locked transaction sequences are generated by the host processor(s) as one or more reads followed by a number of writes to the same location(s). The PEB383 supports locked transactions only in the downstream direction. Upstream Lock transactions are handled with the LOCKn signal ignored.
A Lock is established when all the following conditions are met:
A PCIe device initiates a Memory Read Lock (MRdLk) request to read from a target PCI device
LOCKn is asserted on the PCI bus
The target PCI device responds with a TRDYn The bus is unlocked when the Unlock Message TLP is received on the PCIe link. ThePEB383 enters into target-lock state when it receives a MRdLk TLP, and enters into full-lock state
when it receives successful completion from the target device. ThePEB383 attempts locked read request on the PCI bus only after all the requests received prior to the locked request are completed on the bus. While in target-lock state, thePEB383 handles all the received TLPs with UR but continues to accept the transactions on the PCI Interface.
When thePEB383 enters into full-lock state, all upstream transactions on the PCI Interface are retried and all the downstream requests on the PCIe Interface, except Memory transa ctions, are handled as UR. Requests pending in upstream queues or buffers and internally generated messages are not allowed to be forwarded to the PCIe Interface until thePEB383 is unlocked from the PCIe Interface. However, thePEB383 accepts read completions for upstream read requests that were issued before the lock was established on the PCI bus when they return on the PCIe link.
As soon as the PCI bus is locked, any PCIe cycle to PCI is driven with the PCI_LOCKn pin asserted, even if that specific cycle is not locked. This is not expected to occur because under the lock, the upstream component must not send any non-locked transactions downstream.
During the LOCK sequence, when the initial locked read command results in a master or target abort on the PCI bus, thePEB383 does not establish lock, and it sends a completion packet on the PCIe link with an error status. In case of a subsequent memory read or memory write receiving a target or master abort during a LOCK sequence, thePEB383 unlocks only after the unlock message is received on the PCIe Interface.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 72
6. Bridging > Exclusive Access58
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 73

7. PCI Arbitration

Topics discussed include the following:
“Overview”
“Block Diagram”
“PCI Arbitration Scheme”

7.1 Overview

The PCI internal bus arbiter manages access to the PCI bus for up to five requesters, including the PEB383. The bus arbiter has the following features:
Supports five requests (four external and one internal, the PEB383)
Can be programmed to give high and low priorities for requesters
59
Bus is parked on latest master given grant

7.2 Block Diagram

The bus arbiter handles internal requests from the PCI Core and external requests from devices on the PCI bus (see Figure 17). When the arbiter is enabled, the PEB383 asserts the grant for PCI devices and for the PCI Core. When the arbiter is disabled, there must be an external arbiter on the PCI bus that handles PEB383 requests through the PCI_REQ[0]n signal, and grants bus access using the PCI_GNT[0] signal.
Grants and Requests are bi-directional pins. PCI_REQ[0]n is output enabled when the internal arbiter is disabled. Enable of PCI_REQ[3:1]n are always hardcoded to 1’h0. PCI_GNT[0] is an input pin when the internal arbiter is disabled.
Figure 17: PCI Arbiter Block Diagram
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 74

7.3 PCI Arbitration Scheme

The arbiter can be programmed to enable or disable, and prioritize, each requester using the “PCI
Miscellaneous Control and Status Register”.
The PEB383, by default, is assigned a high priority and the other requesters are assigned a low priority . Based on the priority setting, requesters are divided into two groups of high and low priority. Within a group, priority is determined using a round-robin method (see Figure 18). The low-prio rity group is handled as one member of the high-priority group.
By default, the PCI arbiter initially parks the bus on the PEB383. After servicing the requesters when the bus is in idle state, the arbiter is parked on the last served requester.
The priority method is shown in Figure 18. Note that any one request input can only be mapped to high or low priority. If, for example, PCI_REQ2n is mapped to low priority, then the H2 state is skipped over.
Figure 18: PCI Arbitration Priority
H1
7. PCI Arbitration > PCI Arbitration Scheme60
H2
High
Priority
H3
L
Note: Any device can be high or low priority; however, a device can have only one priority setting as defined by the PCI_MISC_CSR register.
H0
H-PEB38x
L-PEB38x
L0
L3
Low
Priority
L2
L1
The PEB383 also keeps track of which requestor, in each priority group, was last served. This is achieved with two arbitration pointers, one for each priority. When a new requestor is granted the bus, the pointer(s) advance. This gives each requestor a fair chance of being selected first when multiple requestors request the bus.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 75
7. PCI Arbitration > PCI Arbitration Scheme 61
This is shown conceptually in Figure 19. Here the last serv ed high priority device is H1, and the last served low priority device is L2. When the high priority pointer is at H1, the order of priority is H2, H3, Low , H-PEB383, H0, and H1.
Figure 19: Arbitration Pointers – Example 1
High Priority
H-PEB38x
H0 H1 H2 H3
L
Low Priority
L-PEB38x
L0 L1 L2
L3
When the transaction for device 1 is complete, all input requests are sampled to determine which device should be granted next. If there are no requests the pointer stays at H1, and no grants are given. If two requests occur at the same time — in this example, L3 and H1 — then L3 is granted and the pointers advance as shown in Figure 20.
Figure 20: Arbitration Pointers – Example 2
High Priority
H-PEB38x
H0 H1 H2 H3
L
Low Priority
L-PEB38x
L0 L1 L2
L3
Once L3 is completed, the input requests are sampled again. H0 and H1 are now requesting the bus. H0 would then obtain access to the bus because the new priority ordering is H-PEB383, H0, H1, H2, H3, L. The initial ordering of the requests is not considered; that is, H1 requested before H0, but H0 wins as it is first in the priority list. This ensures that all requestors obtain equal access within a priority group.
After asserting the grant, if the bus is in an idle state for M clock cycles grant is de-asserted.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 76
7. PCI Arbitration > PCI Arbitration Scheme62
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 77

8. Interrupt Handling

Topics discussed include the following:
“Overview”
“Interrupt Sources”
“Interrupt Routing”

8.1 Overview

The PEB383 supports the two types of interrupts that originate on a PCI bus:
Legacy PCI interrupts, PCI_INT[D:A]n
Message-based interrupts — Message Signaled Interrupts (MSI)
63
— Enhanced Message Signaled Interrupts (MSI-X)
The PEB383’s PCI Interface forwards legacy INTx assertion/de-assertions in the form of As sert_INTx and Deassert_INTx messages on its PCIe link. The PEB383 handles MSI and MSI-X transactions as PCI memory write transactions. When the bridge receives an MSI/MSI-X transaction on its PCI Interface, it forwards it as a memory write TLP on its PCIe link. Both INTx messages and MSI/MSI-X transactions flow through the PEB383’s upstream posted buffer , as displayed in Figure 21.
Figure 21: Interrupt Handling Diagram
Upstream
Posted
Buffer
Interrupt
Message
Generation
PCI Target
Interface
Integrated Device Technology, Inc.
Confidential - NDA Required
PCI_INTAn
PCI_INTBn
PCI_INTCn
PCI_INTDn
PEB383 User Manual
July 25, 2011
Page 78
The Interrupt Message Generation module connects to the PCI Target Interface, external PCI_INT[D:A]n interrupts, and the upstream posted buffer (see Figure 21). Assertion and de-assertion of interrupts are stored in the form of Assert_INTx and Deassert_INTx flags. These flags are kept asserted until the posted buffer can handle corresponding assert and de-assert messages. If an interrupt pin is toggled when the PCI Interface is engaged with a PCI-initiated posted transaction, assert or de-assert message loading into the upstream p ost ed request buffer is stalled until the upstream posted transaction terminates. Posted transactions are retried on the AD bus while an interrupt message is loaded into the posted buffer. A De-assert message always follows an Assert message. More then one interrupt pin can toggle at any point of time; however, a round-robin arbitration schedules the interrupt message transmission.
There is no buffering for interrupt messages before loading them int o the upstream posted buffer. Therefore, only one pair of Assert_INTx and Deassert_INTx messages is loaded into the buffer when allowed. In the worst case, the bridge may send duplicate messages; however, this is permitted according to the PCI Express Base Specification (Revision 1.1).

8.2 Interrupt Sources

The PEB383 does not have an internal source of interrupts: it forwards legacy PCI_INT[D:A]n interrupts from the PCI Interface to the PCIe Interface in the form of Assert[D:A] and De -assert[D:A] messages with PEB383 PCIe transaction IDs.
8. Interrupt Handling > Interrupt Sources64

8.3 Interrupt Routing

Interrupt remapping is not performed by the PEB383. Legacy interrupts, PCI_INT[A:D]n, are routed to the upstream PCIe port in the form of Assert_INTx and Deassert_INTx [A,B,C,D] messages.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 79

9. Error Handling

Topics discussed include the following:
“Overview”
“PCIe as Originating Interface”
“PCI as Originating Interface”
“Timeout Errors”
“Other Errors”
“Error Handling Tables”

9.1 Overview

This chapter discusses how the PEB383 handles errors that occur during the processing of upstream and downstream transactions. For all errors that are detected by the bridge, it sets the appropriate Error Status bits – PCI Error bit(s) and PCIe Error status bit(s) – and generates an error messa ge on PCIe, if enabled.
65
Each error condition has an error severity level programmable by software, and a corresponding error message generated on PCIe. Each detected error condition has a default error severity level (fatal or non-fatal) and, when enabled, has a corresponding error message generated on PCIe. The error severity level is software programmable.
PCIe link error message generation is controlled by the following bits:
•SERR_EN in the “PCI Bridge Control and Interrupt Register”
•FTL_ERR_EN in the “PCIe Device Control and Status Register”
NFTL_ERR_EN in the “PCIe Device Control and Status Register”
COR_ERR_EN in the “PCIe Device Control and Status Register”
ERR_FATAL PCIe messages are enabled for transmission if either of the following bits is set: SERR_EN in “PCI Control and Status Register”, or FTL_ERR_EN in “PCIe Device Control and Status
Register”.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 80
9. Error Handling > Overview66
ERR_NONFATAL messages are enabled for transmission if either of the following bits is set: SERR_EN in “PCI Control and Status Register”, or NFTL_ERR_EN in “PCIe Device Control and
Status Register”.
ERR_COR messages are enabled for transmission if COR_ERR_EN is set in “PCIe Device Control
and Status Register”.
FTL_ERR_DTD, NFTL_ERR_DTD, and COR_ERR_DTD bits in “PCIe Device Control and Status
Register” are set for the corresponding errors on the PCIe Interface, regardless of the error reporting
enable bits. The PEB383 also supports Advisory Non-Fatal error messages in the case where a TLP Error detected
is a Advisory Non-Fatal Error and the Advisory Non-Fatal Error mask bit, ANFE, in the “PCIe
Correctable Error Mask Register” is not masked then a Correctable error message is generated instead
of a Non-Fatal error message.
Figure 22 depicts the high-level flowchart for error handling on PCIe. This is taken from Table 6-2 of
the PCI Express Base Specification (Revision 1.1), and includes advanced error handling. Additional error handling requirements for a PCIe bridge are described in subsequent sections of the specification.
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 81
9. Error Handling > Overview 67
Figure 22: PCIe Flowchart of Device Error Signaling and Logging Operations
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 82

9.2 PCIe as Originating Interface

This section describes how the PEB383 handles error support for transactions that flow downstream from PCIe to PCI (see Figure 23).
In the case of reception of a Write Request or Read Completion with a Poisoned TLP, the entire data payload of the PCIe transaction is considered as corrupt and the parity is inverted on every data phase forwarded (see Table 13). In the case of reception of a request with ECRC error, the entire TLP is considered as corrupt and is dropped by the bridge.
Table 13: Error Forwarding Requirements (Step A to Step B) for Received PCIe Errors
9. Error Handling > PCIe as Originating Interface68
Received PCIe Error
(Step A)
Write Request or Read Completion
with Poisoned TLP
Request with ECRC (Optional
Support) Error
Forwarded PCI Error Mode 1
(Parity) (Step B)
Poisoned Data Parity
Do not forward
Figure 23: Transaction Error Forwarding with PCIe as Originating Interface
PC I
Immediate
Requestor or Delay ed
Transaction
Compl eter
PCI e
(Origi nating I nterface)
St ep A St ep B
Step D St ep C
( D estina ti on I n t e rface)
PEB38x
Completer
Table 14 provides the translation a bridge has to perform when it forwards a non-posted PCIe request
(read or write) to PCI and the request is completed immediately on PCI, either normally or with an error condition.
Table 14: Bridge Requirements for Transactions Requiring a Completion (Immediate Response)
Data transfer with uncorrectable data
Data transfer with uncorrectable data
PEB383 User Manual July 25, 2011
Immediate PCI Termination PCIe Completion Status
Successful (Poisoned TLP)
error (reads)
Unsupported Request
error (non-posted writes)
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 83
9. Error Handling > PCIe as Originating Interface 69
Table 14: Bridge Requirements for Transactions Requiring a Completion (Immediate Response)
Immediate PCI Termination PCIe Completion Status
Master-Abort Unsupported Request
Target-Abort Completer Abort
In the case of an Advisory Non-Fatal Error detection, the following actions are taken by the PEB383:
1. If the severity of the TLP Error detected in “PCIe Uncorrectable Error Severity Register” is
Non-Fatal then:
a. COR_ERR_DTD is set in the “PCIe Device Control and Status Register” b. ANFE is set in the “PCIe Correctable Error Status Register”
2. And if the ANFE bit is not masked in the “PCIe Correctable Error Mask Register” then: a. TLP Error Status bit is set in the “PCIe Uncorrectable Error Status Register” b. If the corresponding TLP Error Mask bit is clear in the “PCIe Uncorrectable Error Mask
Register” and ERR_PTR is not valid in the “PCIe Advanced Error Capabilities and Control Register”, then the TLP header is logged in the “PCIe Header Log 1 Register” and ERR_PTR
is updated in the “PCIe Advanced Error Capabilities and Control Register”.
c. If COR_ERR_EN is set in the “PCIe Device Control and Status Register” then it sends a
Correctable error message.

9.2.1 Received Poisoned TLPs

When the bridge receives a poisoned TLP it completes the following while forwarding it to the PCI Interface:
1. If the severity of the PTLP in the “PCIe Uncorrectable Error Severity Register” is Non-Fatal and
the ANFE Mask bit is clear in “PCIe Correctable Error Mask Register” then:
A Correctable error message is generated if the COR_ERR_EN bit is set in the “PCIe Device
Control and Status Register”
ANFE bit is set in the “PCIe Correctable Error Status Register”
COR_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
PTLP bit is set in the “PCIe Uncorrectable Error Status Register”
TLP header is logged in the Header Log register and ERR_PTR is updated if the PTLP Mask
bit in “PCIe Uncorrectable Error Mask Register” is clear and the ERR_PTR is not valid
2. If the severity of the PTLP bit in “PCIe Uncorrectable Error Severity Register” is Non-Fatal and
the ANFE Mask bit is set in “PCIe Correctable Error Mask Register” then:
No error message is generated
COR_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
ANFE bit is set in the “PCIe Correctable Error Status Register”
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 84
9. Error Handling > PCIe as Originating Interface70
3. If it is not an AFNE then:
Fatal error message is generated if PTLP Mask bit is clear in the “PCIe Uncorrectable Error
Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or
FTL_ERR_EN bit is set in the “PCIe Device Control and Status Register”
FTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
PTLP bit is set in the “PCIe Uncorrectable Error Status Register”
TLP header is logged in the Header Log register and ERR_PTR is updated if the PTLP Mask bit is clear and the ERR_PTR is not valid.
S_SERR bit is set in the “PCI Control and Status Register” if Fatal error message is generated and the SERR_EN bit is set in the “PCI Control and Status Register”.
4. In all three of the previous cases the following actions are also taken by the PEB383:
D_PE bit is set in “PCI Control and Status Register”
MDP_D bit set in “PCI Control and Status Register” if the poisoned TLP is a read completion and the PERESP bit is set in the “PCI Control and Status Register”
Parity bit is inverted on the PCI bus with each associated data Dword
MDP_D bit is set in the “PCI Secondary Status and I/O Limit and Base Register” if the S_PERESP bit is set in the “PCI Bridge Control and Interrupt Register”, and the bridge sees the PCI_PERRn pin asserted when forwarding a write request transaction with bad parity to the PCI bus. The PERR_AD bit in the “PCIe Secondary Uncorrectable Error Status Register” is set, Secondary Header is Logged and Secondary First Error Pointer is updated if enabled. No error message is generated when PCI_PERRn is seen asserted by the bridge when forwarding a Poisoned TLP transaction from PCIe to PCI with bad parity.

9.2.2 Received ECRC Errors

When the PEB383 receives a TLP with ECRC error, it does the following:
1. Drops the transaction
2. D_PE is set in the “PCI Control and Status Register”
3. ECRC bit is set in the “PCIe Uncorrectable Error Status Register”
4. Header is logged in the “PCIe Header Log 1 Register” and the ERR_PTR field is updated in the
“PCIe Advanced Error Capabilities and Control Register” if ECRC Error Mask bit is clear in the “PCIe Uncorrectable Error Mask Register” and ERR_PTR is not valid.
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of ECRC bit in
“PCIe Uncorrectable Error Severity Register” if the ECRC Mask bit is clear in “PCIe Uncorrectable Error Mask Register”, and either SERR_EN bit is set in the “PCI Control and S tatus Register” or FTL_ERR_EN/NFTL_ERR_EN is set in the “PCIe Device Control and Status Register”
6. S_SERR bit is set in the “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and SERR_EN bit is set in the “PCI Control and Status Register”
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 85
9. Error Handling > PCIe as Originating Interface 71

9.2.3 PCI Uncorrectable Data Errors

This section describes the bridge requirements for error handling when forwarding downstream a.non-poisoned PCIe transaction to PCI and the bridge detects an uncorrectable data error. The error is detected on the PCI Interface.
9.2.3.1 Immediate Reads
When the PEB383 forwards a read request (I/O, Memory, or Configuration) downstream, it does the following when it detects an uncorrectable data error on the destination interface while receiving an immediate response from the completer:
1. MDP_D bit is set in the “PCI Secondary S tatus and I/O Limit and Base Register”
if the S_PERESP
bit is set in the “PCI Bridge Control and Interrupt Register”
2. D_PE in the “PCI Control and Status Register” is set
3. PCI_PERRn is asserted on the PCI Interface if the S_PERESP bit is set in the “PCI Bridge Control
and Interrupt Register”
4. UDERR bit is set in “PCIe Secondary Uncorrectable Error Status Register”
5. Header is logged in the “PCIe Secondary Header Log 1 Register” and the SUFEP field is updated in the “PCIe Secondary Error Capabilities and Control Register” if UDERR Mask bit is clear in the
“PCIe Secondary Uncorrectable Error Mask Register” and SUFEP is not valid
6. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of UDERR bit in
“PCIe Secondary Uncorrectable Error Severity Register” if the UDERR Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in the “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in the “PCIe Device Control and Status Register”
7. S_SERR bit is set in the “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and S_SERR bit is set in the “PCI Control and Status Register”
8. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
For an immediate read transaction, if the PEB383 detects an uncorrectable data error on the destination bus it continues to fetch data until the byte count is satisfied, or the target on the destination bus ends the transaction. When the bridge creates the PCIe completion, it forwards it with successful completion status and poisons the TLP.
9.2.3.2 Non-Posted Writes
When the PEB383 detects PCI_PERRn asserted on the PCI Interface while forwarding a non-poisoned non-posted write transaction from PCIe, it does the following:
1. If the target completes the transaction immediately with a data transfer, the PEB383 generates a PCIe completion with Unsupported Request status to report the error to the requester
2. PERR_AD bit is set in the “PCIe Secondary Uncorrectable Error Status Register”
3. MDP_D bit in the “PCI Secondary Status and I/O Limit and Base Register” is set if S_PERESP bit is set in the “PCI Bridge Control and Interrupt Register”
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 86
4. Header is logged in the “PCIe Secondary Header Log 1 Register” and the SUFEP field is updated in the “PCIe Secondary Error Capabilities and Control Register” if PERR_AD Mask bit is clear in the “PCIe Secondary Uncorrectable Error Mask Register” and SUFEP is not valid
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of PERR_AD bit in
“PCIe Secondary Uncorrectable Error Severity Register” if the PERR_AD Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in the “PCI Control and Status Register” or FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
6. S_SERR bit is set in the “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and SERR_EN bit is set in the “PCI Control and Status Register”
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
9.2.3.3 Posted Writes
When the PEB383 detects PCI_PERRn asserted on the PCI Interface while forwarding a non-poisoned posted write transaction from PCIe, it does the following:
1. Continues to forward the remainder of the transaction
2. MDP_D bit in the “PCI Secondary Status and I/O Limit and Base Register” is set if S_PERESP bit is set in the “PCI Bridge Control and Interrupt Register”
9. Error Handling > PCIe as Originating Interface72
3. PERRn Assertion Detected Status bit is set in the “PCIe Secondary Uncorrectable Error Status
Register”
4. Header is logged in the “PCIe Secondary Header Log 1 Register” and the SUFEP field is updated in the “PCIe Secondary Error Capabilities and Control Register” if PERR_AD Mask bit is clear in the “PCIe Secondary Uncorrectable Error Mask Register” and SUFEP is not valid
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of PERR_AD bit in
“PCIe Secondary Uncorrectable Error Severity Register” if the PERR_AD Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register”, and either SERR_EN bit is set in the “PCI Control and Status Register” or FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
6. S_SERR bit is set in the “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and SERR_EN bit is set in the “PCI Control and Status Register”
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”

9.2.4 PCI Uncorrectable Address/Attribute Errors

When the PEB383 forwards transactions from PCIe to PCI, address or attribute errors are reported through the PCI_SERRn pin. When the PEB383 detects PCI_SERRn asserted it does the following:
1. Continues forwarding transaction
2. S_SERR System bit is set in the “PCI Secondary Status and I/O Limit and Base Register”
3. SERR_AD bit is set in the “PCIe Secondary Uncorrectable Error Status Register”
4. In this case Header is not logged but the SUFEP is updated in the “PCIe Secondary Error
PEB383 User Manual July 25, 2011
Capabilities and Control Register” if the SUFEP bit is not valid and SERR_AD Mask bit is clear in
the “PCIe Secondary Uncorrectable Error Mask Register”
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 87
9. Error Handling > PCIe as Originating Interface 73
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of SERR_AD bit in
“PCIe Secondary Uncorrectable Error Severity Register” if SERR_AD Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” or SERR_EN bit is set in “PCI Bridge Control and Interrupt Register”, and either SERR_EN bit is set in “PCI Control and Status Register” or
FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
6. S_SERR bit is set in the “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and SERR_EN bit is set in the “PCI Control and Status Register”
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”

9.2.5 Received Master-Abort on PCI Interface

This section describes the actions taken by the PEB383 when a Master-Abort is received on the PCI Interface.
9.2.5.1 Master Abort on a Posted Transaction
When the PEB383 receives a Master-Abort on the PCI bus while forwarding a posted write transa ction from PCIe, it does the following:
1. Discards the entire transaction
2. R_MA bit is set in “PCI Secondary Status and I/O Limit and Base Register”
3. R_MA bit is set in the “PCIe Secondary Uncorrectable Error Status Register”
4. Header is logged in the “PCIe Secondary Header Log 1 Register” and SUFEP is updated in the
“PCIe Secondary Error Capabilities and Control Register” if R_MA Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of R_MA bit in
“PCIe Secondary Uncorrectable Error Severity Register” if R_MA Mask bit is clear in the “PCIe Secondary Uncorrectable Error Mask Register” or MA_ERR bit is set in “PCI Bridge Control and Interrupt Register”, and either SERR_EN bit is set in “PCI Control and Status Register” or
FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
6. S_SERR bit is set in “PCI Control and Status Register” if the R_MA Mask bit is clear in “PCIe
Secondary Uncorrectable Error Mask Register” or MA_ERR bit is set in “PCI Bridge Control and Interrupt Register” and the SERR_EN bit is set
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in the “PCIe Device Control and Status Register”
9.2.5.2 Master-Abort On PCI Interface for Non-Posted Transaction
When the PEB383 receives a Master-Abort on the PCI bus while forwarding a non-posted PCIe request, it does the following:
1. Returns a completion with Unsupported Request status on the PCIe
2. R_MA bit is set in “PCI Secondary Status and I/O Limit and Base Register”
3. R_MA bit is set in “PCIe Secondary Uncorrectable Error Status Register”
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 88
4. Header is logged in the “PCIe Secondary Header Log 4 Register” and ERR_PTR is updated in the
“PCIe Secondary Error Capabilities and Control Register” if R_MA Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of R_MA bit in
“PCIe Secondary Uncorrectable Error Severity Register” if R_MA Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
6. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR Enable bit is set in “PCI Control and Status Register”
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”

9.2.6 Received Target-Abort On PCI Interface

This section describes the functionality of the PEB383 when a Target-Abort is received on the PCI Interface in response to posted, and non-posted transactions.
9.2.6.1 Target Abort On A Posted Transaction
9. Error Handling > PCIe as Originating Interface74
When the PEB383 receives Target-Abort on the PCI Interface for posted requests, it takes the following actions:
1. Drops the entire transaction
2. R_TA bit is set in “PCI Secondary Status and I/O Limit and Base Register”
3. R_TA bit is set in “PCIe Secondary Uncorrectable Error Status Register”
4. Header is logged in the “PCIe Secondary Header Log 1 Register” and ERR_PTR is updated in the
“PCIe Secondary Error Capabilities and Control Register” if R_TA Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of R_TA bit in the
“PCIe Secondary Uncorrectable Error Severity Register” if R_TA Mask bit is clear in the “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in the “PCI Control and Status Register”
or FTL_ERR_EN/NFTL_ERR_EN bit is set in the “PCIe Device Control and
Status Register”
6. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR_EN bit is set
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”
9.2.6.2 Target-Abort On PCI Interface For Non-Posted Transaction
When the PEB383 receives a Target-Abort while forwarding a PCIe non-posted request to the PCI Interface, it takes the following actions:
1. Returns a completion with Completer Abort status on the PCIe link
2. R_TA bit is set in “PCI Secondary Status and I/O Limit and Base Register”
3. R_TA bit is set in “PCIe Secondary Uncorrectable Error Status Register”
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 89
9. Error Handling > PCI as Originating Interface 75
4. Header is logged in the “PCIe Secondary Header Log 1 Register” and ERR_PTR is updated in the
“PCIe Secondary Error Capabilities and Control Register” if R_TA Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
5. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of R_TA bit in
“PCIe Secondary Uncorrectable Error Severity Register” if R_TA Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
6. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR_EN bit is set in “PCI Control and Status Register”
7. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”

9.3 PCI as Originating Interface

This section describes how the PEB383 handles errors for upstream transactions fr om PCI to PCIe (see
Figure 24). The bridge supports TLP poisoning as a Transmitter to permit proper forwarding of parity
errors that occur on the PCI Interface.
Figure 24: Transaction Error Forwarding with PCI as Originating Interface
PCIe
(Destination
Interface)
Requestor
or Delayed
Transact ion
completer
PCI
(Originating
Interface)
PEB38x Completer
Table 15 provides the error forwarding requirements for Uncorrectable data errors detected by the
PEB383 when a transaction targets the PCIe Interface. Posted and non-posted write data received on the secondary PCI Interface with bad parity are forwarded to PCIe as Poisoned TLPs.
Table 15: Error Forwarding Requirements for Received PCI Errors
Received PCI Error Forwarded PCIe Error
Write with Uncorrectable Data Error Write request with Poisoned TLP
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 90
9. Error Handling > PCI as Originating Interface76
Table 16 describes the PEB383 behavior on a PCI Delayed transaction that is forwarded by a bridge to
PCIe as a Memory Read request or an I/O Read/Write request, and the PCIe Interface returns a completion with Unsupported Request or Completer Abort Completion status for the request.
Table 16: Error Forwarding Requirements for PCI Delayed Transaction
PCI Immediate Response
PCIe Completion Status
Unsupported Request (on Memory or I/O Read)
Unsupported Request (on I/O Write)
Completer Abort Target Abort Target Abort
Master-Abort Mode = 1
Target Abort Normal Completion, return
Target Abort Normal Completion
PCI Immediate Response
Master-Abort Mode = 0
0xFFFF_FFFF

9.3.1 Received PCI Errors

This section describes how the PEB383 handles PCI errors.
9.3.1.1 Uncorrectable Data Error on a Non-Posted Write Transaction PCI Mode
When the PEB383 receives non-posted write transaction that is addressed such that it crosses the bridge, and the bridge detects an uncorrectable data error on its PCI Interface, it does the following:
1. D_PE bit is set in “PCI Secondary Status and I/O Limit and Base Register”
2. If S_PERESP bit is set in the “PCI Bridge Control and Interrupt Register”, then the transaction is discarded and is not forwarded to PCIe and the PERR# pin is asserted on the PCI bus
3. If S_PERESP bit is not set in “PCI Bridge Control and Interrupt Register”, then the data is forwarded to PCIe as a Poisoned TLP. M_DPE bit is set in “PCI Control and Status Register” if the S_PERESP bit is set. The PERR# pin is not asserted on the PCI bus
4. UDERR bit is set in “PCIe Secondary Uncorrectable Error Status Register”
5. Header is logged in the “PCIe Secondary Header Log 1 Register” and ERR_PTR is updated in the
6. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of Uncorrectable
7. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is
8. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”
PEB383 User Manual July 25, 2011
“PCIe Secondary Error Capabilities and Control Register” if UDERR Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
Data Error bit in “PCIe Secondary Uncorrectable Error Severity Register”, if UDERR Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in
“PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
generated and the SERR_EN bit is set
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 91
9. Error Handling > PCI as Originating Interface 77
9.3.1.2 Uncorrectable Data Error on a Posted Write
When the PEB383 receives posted write transaction that is addressed such that it crosses the bridge and the bridge detects an uncorrectable data error on its secondary PCI Interface, it does the following:
1. D_PE bit is set in “PCI Secondary Status and I/O Limit and Base Register”
2. If S_PERESP bit is set in “PCI Bridge Control and Interrupt Register”, PERR# signal is asserted
3. MDP_D bit is set in “PCI Secondary Status and I/O Limit and Base Register” if S_PERESP bit is set in the “PCI Bridge Control and Interrupt Register”
4. UDERR bit is set in “PCIe Secondary Uncorrectable Error Status Register”
5. Header is logged in the “PCIe Secondary Header Log 1 Register” and ERR_PTR is updated in the
“PCIe Secondary Error Capabilities and Control Register” if UDERR Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
6. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of UDERR bit in
“PCIe Secondary Uncorrectable Error Severity Register” if UDERR Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
7. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR_EN bit is set in “PCI Control and Status Register”
8. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”
9.3.1.3 Uncorrectable Data Error on PCI Delayed Read Completions
When the PEB383 detects PERR# asserted by the initiating PCI master while forwarding a non-poisoned read completion from PCIe to PCI, it does the following:
1. Forwards the remainder of completion
2. PERR_AD bit is set in “PCIe Secondary Uncorrectable Error Status Register”
3. Header is logged in the “PCIe Secondary Header Log 1 Register” and ERR_PTR is updated in the
“PCIe Secondary Error Capabilities and Control Register” if, PERR_AD Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
4. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of PERR_AD bit in
“PCIe Secondary Uncorrectable Error Severity Register”, if PERR_AD Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
5. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR_EN bit is set in “PCI Control and Status Register”
6. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”
When the PEB383 detects PERR# asserted by the initiating PCI master while forwarding a poisoned read completion from PCIe to PCI, it does the above mentioned actions but no error message is generated.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 92
9.3.1.4 Uncorrectable Address Error
When the PEB383 detects an Uncorrectable Address Error, and parity error detection is enabled using the S_PERESP bit in “PCI Bridge Control and Interrupt Register”, the bridge takes the following actions:
1. Transaction is terminated with a Target Abort and discarded
2. D_PE bit is set in “PCI Secondary Status and I/O Limit and Base Register” independent of S_PERESP bit in “PCI Bridge Control and Interrupt Register”
3. S_TA bit is set in “PCI Secondary Status and I/O Limit and Base Register”
4. UADD_ERR bit is set in “PCIe Secondary Uncorrectable Error Status Register”
5. Header is logged in the Secondary Header Log register and ERR_PTR is updated in the “PCIe
Secondary Error Capabilities and Control Register” if UADD_ERR Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
6. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of UADD_ERR bit in “PCIe Secondary Uncorrectable Error Severity Register” if UADD_ERR Mask bit is clear in
“PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
9. Error Handling > PCI as Originating Interface78
7. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR_EN bit is set in “PCI Control and Status Register”
8. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”
9.3.1.5 Uncorrectable Attribute Error
When the PEB383 detects an Uncorrectable Attribute Error and parity error detection is enabled via the Parity Error Response Enable bit in “PCI Bridge Control and Interrupt Register” then the bridge takes the following actions:
1. Transaction is terminated with a Target Abort and discarded
2. D_PE bit is set in “PCI Secondary Status and I/O Limit and Base Register” independent of S_PERESP bit in “PCI Bridge Control and Interrupt Register”
3. S_TA bit is set in “PCI Secondary Status and I/O Limit and Base Register”
4. UATT_ERR bit is set in “PCIe Secondary Uncorrectable Error Status Register”
5. Header is logged in the Secondary Header Log register and ERR_PTR is updated in the “PCIe
Secondary Error Capabilities and Control Register” if UATT_ERR Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” and ERR_PTR is not valid
6. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of UATT_ERR bit in “PCIe Secondary Uncorrectable Error Severity Register” if UATT_ERR Mask bi t is clear in
“PCIe Secondary Uncorrectable Error Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 93
9. Error Handling > Timeout Errors 79
7. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR_EN bit is set in “PCI Control and Status Register”
8. FTL_ERR_DTD/NFTL_ERR_DTD bit is set in “PCIe Device Control and Status Register”

9.3.2 Unsupported Request Completion Status

The PEB383 provides two methods for handling a PCIe completion received with Unsupported Request status in response to a request originated by a secondary interface in PCI mode. The bridge’s response to this completion is controlled by the MA_ERR bit in “PCI Bridge Control and Interrupt
Register”:
MA_ERR bit set – When MA_ERR is set the PEB383 signals a Target-Abort to the originating master of an upstream read or a non-posted write transaction if the corresponding request on the PCIe link results in a completion with Unsupported Request status. The PEB383 also sets the S_TA bit in the “PCI Secondary Status and I/O Limit and Base Register”.
MA_ERR bit is cleared – This is the default PCI compatible mode where an Unsupported Request Error is not considered an error. When a Read transaction initiated on the secondary interface results in a completion with Unsupported Request status, the PEB383 returns 0xFFFF_FFFFto the originating master and normally terminates the read transaction on the originating interface (by asserting TRDY#). When a non-posted write transaction results in a completion with Unsupported Request status, the PEB383 normally completes the write transaction on the originating bus (by asserting TRDY#) and discards the write data.
In all cases of receiving Unsupported Request completion status on PCIe in response to a PCI request initiated on the secondary interface, the PEB383 sets the R_MA in the “PCI Control and Status
Register”.

9.3.3 Completer Abort Completion Status

When the PEB383 receives a completion with Completer Abort status on the PCIe link in response to a forwarded non-posted PCI transaction, it sets the R_TA bit in the “PCI Secondary Status and I/O Limit
and Base Register”.
A Completer Abort response on PCIe translates to a Delayed Transaction Ta rget-Abort if the secondary interface is in PCI mode. The PEB383 provides data to the requesting agent up to the point where data was successfully returned from the PCIe interface, and then signals Target-Abort. R_TA is set in “PCI
Control and Status Register” when signaling a Target-Abort to a PCI agent.

9.4 Timeout Errors

This section discusses how the PEB383 handles PCIe and PCI timeout errors.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 94

9.4.1 PCIe Completion Timeout Errors

The PCIe Completion Timeout function allows requestors to abort a non-posted request if the completion does not arrive within a reasonable period of time. When bridges act as initiators on PCIe on behalf of internally generated requests, and requests forwarded from a secondary interface in PCI mode, they act as endpoints for requests that they take ownership. When the PEB383 detects a completion timeout it responds as if a completion with Unsupported Req uest status has been received and follows the rules for handling Unsupported Request Completions as described in “Unsupported
Request Completion Status”. In addition, the bridge takes the following actions:
1. CTO bit is set in “PCIe Uncorrectable Error Status Register”
2. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of the CTO bit in
“PCIe Uncorrectable Error Severity Register” if CTO Mask bit is clear in “PCIe Correctable Error Mask Register” and either SERR_EN bit is set in “PCI Control and Status Register” or
FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
3. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and the SERR_EN bit is set in “PCI Control and Status Register”

9.4.2 PCI Delayed Transaction Timeout Errors

9. Error Handling > Other Errors80
If a delayed transaction timeout is detected the PEB383 does the following:
1. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of DTDTE bit in
“PCIe Secondary Uncorrectable Error Severity Register”, if DTDTE Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” or DISCARD_SERR bit is set “PCI Bridge Control and Interrupt Register” and either SERR_EN bit is set in “PCI Control and Status Register” or FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
2. No Header is logged
3. S_SERR bit is set in “PCI Control and Status Register” if an error message (Fatal/Non-Fatal) is generated and SERR_EN bit is set in “PCI Control and Status Register”

9.5 Other Errors

PCI devices can assert SERR# when detecting errors that compromise system integrity. When the PEB383 detects SERR# on the secondary interface, it does the following:
1. S_SERR bit is set in “PCI Secondary Status and I/O Limit and Base Register”
2. Error Fatal or Non-Fatal message is generated on PCIe as per the severity level of SERR_AD bit in
“PCIe Secondary Uncorrectable Error Severity Register” if SERR_AD Mask bit is clear in “PCIe Secondary Uncorrectable Error Mask Register” or SERR_EN bit is set in “PCI Bridge Control and Interrupt Register” and either SERR_EN bit is set in “PCI Control and Status Register” or
FTL_ERR_EN/NFTL_ERR_EN bit is set in “PCIe Device Control and Status Register”
3. SERR_AD bit is set in “PCIe Secondary Uncorrectable Error Status Register”
4. SUFEP field is updated in “PCIe Secondary Error Capabilities and Control Register”
5. No Header is Logged for SERR# assertion
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 95
9. Error Handling > Error Handling Tables 81

9.6 Error Handling Tables

This section contains error handling information in a table format. Some of this information may overlap with error information discussed in previous sections of this chapter.
Table 17: ECRC Errors
Error Details Primary Reporting Mechanism
ECRC Error 1. “PCIe Uncorrectable Error Status Register” [ECRC].
2. “PCI Control and Status Register” [D_PE].
3. “PCI Control and Status Register” [S_SERR] if an error message is generated and [SERR_EN] bit is set in same register.
4. “PCIe Device Control and Status Register” [FTL_ERR_DTD/NFTL_ERR_DTD].
5. TLP is dropped.
Table 18: Poisoned TLP Errors
Error Details Primary Reporting Mechanism Secondary Reporting Mechanism
Poisoned TLP Error 1. “PCIe Device Control and Status
Register”[COR_ERR_DTD/FTL_ERR_DTD].
2. “PCIe Correctable Error Status Register” [ANFE] in case of Advisory Non-Fatal condition.
3. “PCIe Uncorrectable Error Status
Register” [PTLP].
4. “PCI Control and Status Register” [S_SERR] if a Fatal error message is sent and [SERR_EN] bit is set in same register.
5. “PCI Control and Status Register” [D_PE].
6. “PCI Control and Status Register” [MDP_D] is set if the Poisoned TLP is a read completion and [PERESP] is set in same register.
1. “PCI Secondary Status and I/O Limit and
Base Register” [MDP_D] if [S_PERESP] is
set in “PCI Bridge Control and Interrupt
Register” and PCI_PERRn pin asserted
when forwarding a write request transaction with bad parity to the PCI bus.
2. “PCIe Secondary Uncorrectable Error
Status Regist er” [PERR_AD].
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 96
Table 19: Malformed TLP Errors
Error Details Primary Reporting Mechanism
9. Error Handling > Error Handling Tables82
Payload exceeds max_payload_size Write TLP payload does not match length spec ified in Completion TLP payload does not match length Mismatch between TD and presence of ECRC Address/Length combination crosses 4KByte Received INTx message with TC > 0 Received Power Management message with TC > 0 Received Error message with TC > 0 Received Unlock message with TC > 0 TLP Type field uses undefined value
Illegal byte enables:
1. FBE = 0 when Length > 1DW.
2. LBE!= 0 when length = 1DW.
3. LBE = 0 when length > 1DW.
4. Non-contiguous byte enables when length = 2DW, and non-Quadword aligned address.
5. Non-contiguous byte enables when length > 2DW.
1. “PCIe Uncorrectable Error Status Register” [MAL_TLP]
2. Optional ERR_FATAL or ERR_NONFATAL message sent.
3. “PCIe Device Control and Status Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
4. “PCI Control and Status Register” [S_SERR] if error message is generated and [SERR_EN] is set in same register.
5. TLP discarded.
IO request with TC > 0, or Attribute > 0 or Length > 1DW or LBE > 0
Configuration request with TC>0, or Attribute > 0 or Length >1DW or LBE > 0
Violations of RCB rules CRS response to non-configuration request
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 97
9. Error Handling > Error Handling Tables 83
Table 20: Link and Flow Control Errors
Error Details Primary Reporting Mechanisms
Receiver Overflow on header or data 1. “PCIe Uncorrectable Error Status Register” [RXO].
2. “PCIe Device Control and Status Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
3. Optional ERR_FATAL or ERR_NONFATAL message sent.
4. “PCI Control and Status Register” [S_SERR] if error message is generated and [SERR_EN] is set in same
register. Initial credits advertised are less than minimum 1. “PCIe Uncorrectable Error Status Register” [FCPE]. Received data credits > 2047, or header credits > 127 Initial infinite credit advertised, but subsequent UpdateFC
contains non-zero credit value.
2. “PCIe Device Control and Status
Register”[FTL_ERR_DTD]/[NFTL_ERR_DTD].
3. Optional ERR_FATAL or ERR_NONFATAL message sent.
4. “PCI Control and Status Register” [S_SERR] if error
message is generated and [SERR_EN] is set in same
register. Invalid (that is, non-outstanding) AckNack_Seq_Num in
received Ack/Nak DLLP
TLP ends with EDB, but LCRC is not inverted 1. “PCIe Correctable Error Status Register” [B_TLP]. TLP ends with END, but LCRC is incorrect TLP ends with END, LCRC is correct, but has invalid DLLP has invalid CRC 1. “PCIe Correctable Error Status Register” [B_DLLP].
Replay number rolls over 1. “PCIe Correctable Error Status Register” [RN_RO].
Replay timer expires 1. “PCIe Correctable Error Status Register” [RT_TO].
1. “PCIe Uncorrectable Error Status Register” [DLPE].
2. “PCIe Device Control and Status Register”
[FTL_ERR_DTD]/[NFTL_ERR_DTD].
3. Optional ERR_FATAL or ERR_NONFATAL message sent.
4. “PCI Control and Status Register” [S_SERR] if error
message is generated and [SERR_EN] is set same register.
2. “PCIe Device Control and Status Register”
[COR_ERR_DTD].
3. Optional ERR_COR message sent.
2. “PCIe Device Control and Status Register”
[COR_ERR_DTD].
3. Optional ERR_COR message sent.
2. “PCIe Device Control and Status Register”
[COR_ERR_DTD].
3. Optional ERR_COR message sent.
2. “PCIe Device Control and Status Register”
[COR_ERR_DTD].
3. Optional ERR_COR message sent.
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 98
Table 21: Uncorrectable Data/Address Errors
Error Details Primary Reporting Mechanism Secondary Reporting Mechanism
PCIe as Originating Interface
9. Error Handling > Error Handling Tables84
Uncorrectable Data Error on the destination interface (PCI) while receiving an immediate response from the completer.
PCI_PERRn asserted on the PCI Interface while forwarding a non-posted write transaction from PCIe.
PCI_PERRn asserted on the PCI Interface while forwarding a posted write transaction from PCIe.
PCI_SERRn detected on the PCI interface while forwarding transactions from PCIe.
1. “PCI Control and Status Register” [D_PE].
2. PCI_PERRn is asserted on the PCI Interface if the [S_PERESP] is set in “PCI
Bridge Control and Interrupt Register”.
3. “PCIe Device Control and S t atus Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
4. “PCI Control and Status Register” [S_SERR] if an error message (Fatal/Non-Fatal) is generated and [S_SERR] is set in same register.
1. “PCIe Device Control and S t atus Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
2. “PCI Control and Status Register” [S_SERR] if error message is sent and [SERR_EN] is set in same register.
1. “PCI Secondary Status and I/O Limit and
Base Register” [MDP_D] if “PCI Bridge Control and Interrupt Register” [S_PERESP]
is set.
2. “PCIe Secondary Uncorrectable Error
Status Register” [UDERR].
1. “PCIe Secondary Uncorrectable Error
Status Register” [PERR_AD]
2. “PCI Secondary Status and I/O Limit and
Base Register” [MDP_D] if “PCI Bridge Control and Interrupt Register” [S_PERESP]
1. “PCI Secondary Status and I/O Limit and
Base Register” [MDP_D] if “PCI Bridge Control and Interrupt Register” [S_PERESP]
2. “PCIe Secondary Uncorrectable Error
Status Register” [PERR_AD]
1. “PCI Secondary Status and I/O Limit and
Base Register” [S_SERR].
2. “PCIe Secondary Uncorrectable Error
Status Register” [SERR_AD].
Uncorrectable data error on a non-posted write transaction PCI mode.
Uncorrectable data error on a posted write transaction.
PEB383 User Manual July 25, 2011
PCI as Originating Interface
1. “PCIe Device Control and S t atus Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
2. “PCI Control and Status Register” [S_SERR] if error message is sent and [SERR_EN] is set in same register.
1. If S_PERESP bit is set in “PCI Bridge
Control and Interrupt Register”
signal is asserted.
2. “PCIe Device Control and S t atus Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
3. “PCI Control and Status Register” [S_SERR] if error message is sent and [SERR_EN] is set in same register.
, PERR#
1. “PCI Secondary Status and I/O Limit and
Base Register” [D_PE].
2. “PCIe Secondary Uncorrectable Error
Status Register” [UDERR].
1. “PCI Secondary Status and I/O Limit and
Base Register” [D_PE].
2. “PCI Secondary Status and I/O Limit and
Base Register” [MDP_D] if [S_PERESP] bit
is set in the “PCI Bridge Control and Interrupt
Register”.
3. “PCIe Secondary Uncorrectable Error
Status Register” [UDERR].
Integrated Device Technology, Inc.
Confidential - NDA Required
Page 99
9. Error Handling > Error Handling Tables 85
Table 21: Uncorrectable Data/Address Errors (Continued)
Error Details Primary Reporting Mechanism Secondary Rep o r ting Mechanism
Uncorrectable data error on PCI delayed read completions.
Uncorrectable Address Error 1. “PCI Secondary Status and I/O Limit and
1. “PCIe Device Control and Status Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
2. “PCI Control and Status Register” [S_SERR] if error message is sent and [SERR_EN] is set in same register.
1. “PCIe Secondary Uncorrectable Error
Status Register” [PERR_AD]
Base Register” [D_PE].
2. “PCI Secondary Status and I/O Limit and
Base Register” [S_TA].
3. “PCIe Secondary Uncorrectable Error
Status Register” [UADD_ERR].
Table 22: Received Master/Target Abort Error
Error Details Primary Reporting Mechanism Secondary Reporting Mechanism
Master-Abort on the PCI bus while forwarding a posted write transaction from PCIe
1. “PCI Control and Status Register” [S_SERR] if R_MA Mask bit is clear in “PCIe
Secondary Uncorrectable Error Mask Register” or MA_ERR bit is set in “PCI Bridge Control and Interrupt Regis t er” and “PCI Control and Status Register”
[SERR_EN] is set.
2. “PCIe Device Control and Status Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
1. “PCI Secondary Status and I/O Limit and
Base Register” [R_MA].
2. “PCIe Secondary Uncorrectable Error
Status Regist er” [R_MA].
Master-Abort on the PCI bus while forwarding a non-posted write transaction from PCIe
Target-Abort on the PCI bus while forwarding a posted transaction from PCIe
Target-Abort on the PCI bus while forwarding a non-posted transaction from PCIe
1. “PCIe Device Control and Status Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
2. “PCI Control and Status Register” [S_SERR] if error message is sent and [SERR_EN] is set in same register.
1. “PCIe Device Control and Status Register” [FTL_ERR_DTD]/[NFTL_ERR_DTD].
2. “PCI Control and Status Register” [S_SERR] if error message is sent and [SERR_EN] is set in same register.
1. “PCI Secondary Status and I/O Limit and
Base Register” [R_TA].
2. “PCIe Secondary Uncorrectable Error
Status Regist er” [R_TA].
Integrated Device Technology, Inc.
Confidential - NDA Required
PEB383 User Manual
July 25, 2011
Page 100
Table 23: Completion Errors
Error Details Primary Reporting Mechanism Secondary Reporting Mechanism
9. Error Handling > Error Handling Tables86
Completion received with Unsupported Request in response to a request originated by a secondary interface in PCI mode.
Completion received with Completer Abort status on the PCIe link in response to a forwarded non-posted PCI transaction.
Received Unexpected Completion Error
Completion Timeout Error 1. “PCIe Uncorrectable Error Status
1. “PCI Control and Status Register” [R_MA]. 1. “PCI Secondary Status and I/O Limit and
1. “PCI Control and Status Register”[R_TA]. 1. “PCI Secondary Status and I/O Limit and
1. “PCIe Uncorrectable Error Status
Register” [UXC] if not masked.
2. “PCIe Device Control and Status Register” [COR_ERR_DTD] if ANFE.
Register” [CTO] if not masked.
2. “PCIe Device Control and Status Register” [COR_ERR_DTD] if ANFE.
Table 24: Request Errors
Base Register” [S_TA] is set if [MA_ERR] bit
in “PCI Bridge Control and Int errupt Register” is set.
Base Register” [S_TA].
N/A
N/A
Error Details Primary Reporting Mechanism Secondary Reporting Mechanism
Received vendor message (Type 0).
Non-configuration or message received while in D1, D2 or D3 hot.
Configuration Type 0 access with a non-zero function.
1. “PCIe Uncorrectable Error Status
Register” [UR] if not masked.
2. “PCIe Device Control and Status Register” [UNS_REQ_DTD].
3. “PCIe Device Control and Status Register” [COR_ERR_DTD] if ANFE.
N/A
PEB383 User Manual July 25, 2011
Integrated Device Technology, Inc.
Confidential - NDA Required
Loading...