Hynix HMT112S6TFR8C, HMT125S6TFR8C User Manual

Page 1
Rev. 1.2 / Jul. 2010 1
204pin DDR3 SDRAM SODIMM
*Hynix Semiconductor reserves the right to change products or specifications without notice.
DDR3 SDRAM
Unbuffered SODIMMs
HMT112S6TFR8C HMT125S6TFR8C
Page 2
Rev. 1.2 / Jul. 2010 2
Revision History
Revision No. History Draft Date Remark
0.1 Initial Release Sep.2009 Preliminary
1.0 JEDEC Update Nov. 2009 Web posting
1.1 Add supported CL5 Jun. 2010 Web posting
1.2 DIMM Outline Corrected Jul. 2010 Web posting
Page 3
Rev. 1.2 / Jul. 2010 3
Description
Hynix Unbuffered Small Outline DDR3 SDRAM DIMMs (Unbuffered Small Outline Double Data Rate Syn­chronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules that use Hynix DDR3 SDRAM devices. These Unbuffered DDR3 SDRAM SODIMMs are intended for use as main memory when installed in systems such as mobile personal computers.
Features
* This product is in compliance with the RoHS directive.
Ordering Information
Part Number Density Organization Component Composition
# of
ranks
HMT112S6TFR8C-G7/H9 1GB 128Mx64 128Mx8(H5TQ1G83TFR)*8 1
HMT125S6TFR8C-G7/H9 2GB 256Mx64 128Mx8(H5TQ1G83TFR)*16 2
• VDD=1.5V +/- 0.075V
• VDDQ=1.5V +/- 0.075V
• VDDSPD=3.0V to 3.6V
• Functionality and operations comply with the DDR3 SDRAM datasheet
• 8 internal banks
• Data transfer rates: PC3-10600, PC3-8500, or PC3-6400
• Bi-directional Differential Data Strobe
• 8 bit pre-fetch
• Burst Length (BL) switch on-the-fly: BL 8 or BC (Burst Chop) 4
• On Die Termination (ODT) supported
• RoHS compliant
Page 4
Rev. 1.2 / Jul. 2010 4
Key Parameters
Speed Grade
Address Table
MT/s Grade
tCK
(ns)
CAS
Latency
(tCK)
tRCD
(ns)
tRP
(ns)
tRAS
(ns)
tRC
(ns)
CL-tRCD-tRP
DDR3-1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 DDR3-1333 -H9 1.5 9 13.5 13.5 36 49.5 9-9-9
Grade
Frequency [MHz]
Remark
CL5 CL6 CL7 CL8 CL9 CL10
-G7 667 800 1066 1066
-H9 667 800 1066 1066 1333 1333
1GB(1Rx8) 2GB(2Rx8)
Refresh Method 8K/64ms 8K/64ms
Row Address A0-A13 A0-A13
Column Address A0-A9 A0-A9
Bank Address BA0-BA2 BA0-BA2
Page Size 1KB 1KB
Page 5
Rev. 1.2 / Jul. 2010 5
Pin Descriptions
Pin Name Description
Num ber
Pin Name Description
Num ber
CK[1:0] Clock Input, positive line 2 DQ[63:0] Data Input/Output 64 CK
[1:0] Clock Input, negative line 2 DM[7:0] Data Masks 8
CKE[1:0] Clock Enables 2 DQS[7:0] Data strobes 8
RAS Row Address Strobe 1 DQS[7:0] Data strobes, negative line 8 CAS
Column Address Strobe 1 EVENT Temperature event pin 1
WE
Write Enable 1 TEST
Logic Analyzer specific test pin (No connect on SODIMM)
1
S
[1:0] Chip Selects 2 RESET Reset Pin 1
A[9:0],A11,
A[15:13]
Address Inputs 14
V
DD
Core and I/O Power 18
A10/AP Address Input/Autoprecharge 1
V
SS
Ground 52
A12/BC
Address Input/Burst chop 1
BA[2:0] SDRAM Bank Addresses 3
V
REFDQ
Input/Output Reference
1
ODT[1:0] On Die Termination Inputs 2
V
REFCA
1
SCL
Serial Presence Detect (SPD) Clock Input
1
V
TT
Termination Voltage 2
SDA SPD Data Input/Output 1
V
DDSPD
SPD Power 1
SA[1:0] SPD Address Inputs 2 NC Reserved for future use 2
Total:
204
Page 6
Rev. 1.2 / Jul. 2010 6
Input/Output Functional Descriptions
Symbol Type Polarity Function
CK0/CK0 CK1/CK1
IN Cross Point
The system clock inputs. All address and command lines are sampl ed on the cr oss point of the rising edge of CK and falling edge of CK
. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock.
CKE[1:0] IN
Active
High
Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refresh mode.
S
[1:0] IN
Active
Low
Enables the associated DDR3 SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabl ed, new commands are ignored but previous operations continue. Rank 0 is selected by S0
; Rank 1 is
selected by S1
.
ODT[1:0] IN
Active
High
Asserts on-die termination for DQ, DM, DQS, and DQS
signals if enabled via the DDR3
SDRAM mode register.
R
AS, CAS, WE IN
Active
Low
When sampled at the cross point of the rising edge of CK, signals CAS
, RAS, and WE
define the operation to be executed by the SDRAM.
V
REFDQ
V
REFCA
Supply Reference voltage for SSTL15 inputs.
BA[2:0] IN Selects which SDRAM internal bank of eight is activated.
A[9:0],
A10/AP,
A11,
A12/BC
A[15:13]
IN
During a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK
. During a Read of Write com­mand cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK
. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high autoprecharge is selected and BA0-BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be pre­charged regardless of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge. A12(BC
) is samples during READ and WRITE com­mands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop: LOW, burst chopped).
DQ[63:0] I/O Data Input/Output pins.
DM[7:0] IN
Active
High
The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect.
V
DD
, V
DDSPD
V
SS
Supply Power supplies for core, I/O, Serial Presence Detect, and ground for the module.
DQS[7:0],
DQS[7:0]
I/O Cross Point
The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is sourced by the controller and is centered in the data window. In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent at the lead­ing edge of the data window. DQS
signals are complements, and timing is relative to the
crosspoint of respective DQS and DQS
.
SA[1:0] IN
These signals are tied at the system planar to either V
SS
or V
DDSPD
to configure the
serial SPD EEPROM address range.
Page 7
Rev. 1.2 / Jul. 2010 7
SDA I/O
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to V
DDSPD
on the system planar to act as a
pullup.
SCL IN
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be con­nected from the SCL bus time to V
DDSPD
on the system planar to act as a pullup.
EVENT
OUT (open drain)
Active Low
This signal indicates that a thermal event has been d e tected in the thermal sensing device.The system should guarantee the electrical level requirement is met for the EVENT
pin on TS/SPD part.
No pull-up resister is provided on DIMM.
V
DDSPD
Supply
Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.
RESET
IN
The RESET
pin is connected to the RESET pin on the register and to the RESET pin on
the DRAM.
TEST Used by memory bus analysis tools (unused (NC) on memory DIMMs)
Symbol Type Polarity Function
Page 8
Rev. 1.2 / Jul. 2010 8
Pin Assignments
Pin #Front
Side
Pin #Back
Side
Pin #Front
Side
Pin #Back
Side
Pin #Front
Side
Pin #Back
Side
Pin #Front
Side
Pin #Back
Side
1
V
REF
DQ
2
V
SS
53 DQ19 54
V
SS
105
V
DD
106
V
DD
157 DQ42 158 DQ46
3
V
SS
4
DQ4
55
V
SS
56
DQ28
107
A10/AP
108
BA1
159
DQ43
160
DQ47
5 DQ0 6 DQ5 57 DQ24 58 DQ29 109 BA0 110 RAS 161
V
SS
162
V
SS
7DQ18
V
SS
59 DQ25 60
V
SS
111
V
DD
112
V
DD
163 DQ48 164 DQ52
9
V
SS
10
DQS0
61
V
SS
62
DQS3
113
WE
114
S0
165
DQ49
166
DQ53
11 DM0 12 DQS0 63 DM3 64 DQS3 115 CAS 116 ODT0 167
V
SS
168
V
SS
13
V
SS
14
V
SS
65
V
SS
66
V
SS
117
V
DD
118
V
DD
169
DQS6
170 DM6
15 DQ2 16 DQ6 67 DQ26 68 DQ30 119
A13
2
120 ODT1 171 DQS6 172
V
SS
17
DQ3
18
DQ7
69
DQ27
70
DQ31
121
S1
122
NC
173
V
SS
174
DQ54
19
V
SS
20
V
SS
71
V
SS
72
V
SS
123
V
DD
124
V
DD
175 DQ50 176 DQ55
21 DQ8 22 DQ12 73 CKE0 74 CKE1 125 TEST 126
V
REF
CA
177 DQ51 178
V
SS
23
DQ9
24
DQ13
75
V
DD
76
V
DD
127
V
SS
128
V
SS
179
V
SS
180
DQ60
25
V
SS
26
V
SS
77 NC 78
A15
2
129 DQ32 130 DQ36 181 DQ56 182 DQ61
27
DQS1
28 DM1 79 BA2 80
A14
2
131 DQ33 132 DQ37 183 DQ57 184
V
SS
29
DQS1
30
RESET
81
V
DD
82
V
DD
133
V
SS
134
V
SS
185
V
SS
186
DQS7
31
V
SS
32
V
SS
83 A12/BC 84 A11 135
DQS4
136 DM4 187 DM7 188 DQS7
33 DQ10 34 DQ14 85 A9 86 A7 137 DQS4 138
V
SS
189
V
SS
190
V
SS
35
DQ11
36
DQ15
87
V
DD
88
V
DD
139
V
SS
140
DQ38
191
DQ58
192
DQ62
37
V
SS
38
V
SS
89 A8 90 A6 141 DQ34 142 DQ39 193 DQ59 194 DQ63
39 DQ16 40 DQ20 91 A5 92 A4 143 DQ35 144
V
SS
195
V
SS
196
V
SS
41
DQ17
42
DQ21
93
V
DD
94
V
DD
145
V
SS
146
DQ44
197
SA0
198
EVENT
43
V
SS
44
V
SS
95 A3 96 A2 147 DQ40 148 DQ45 199
VDD
SPD
200 SDA
45
DQS2
46 DM2 97 A1 98 A0 149 DQ41 150
V
SS
201 SA1 202 SCL
47
DQS2
48
V
SS
99
V
DD
100
V
DD
151
V
SS
152
DQS5
203
V
TT
204
V
TT
49
V
SS
50 DQ22 101 CK0 102 CK1 153 DM5 154 DQS5
51 DQ18 52 DQ23 103 CK0 104 CK1 155
V
SS
156
V
SS
NC = No Connect; RFU = Reserved Future Use
1. TEST (pin 125) is reserved for bus analysis probes and is NC on normal memory modules.
2. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be con­nected to the termination resistor.
Page 9
Rev. 1.2 / Jul. 2010 9
Functional Block Diagram
1GB, 128Mx64 Module(1Rank of x8)
DQS0 DQS0
DM0
DQ[0:7]
DQS DQS DM DQ [0:7]
D0
RAS
CAS
S0
WE
CK0
CK0
CKE0
ODT0
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS DQS DM DQ [0:7]
D4
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS2 DQS2
DM2
DQS DQS DM DQ [0:7]
D1
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS DQS DM DQ [0:7]
D5
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS4 DQS4
DM4
DQS DQS DM DQ [0:7]
D2
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
LDQS LDQS LDM DQ [0:7]
D6
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS3 DQS3
DM3
DQS DQS DM DQ [0:7]
D3
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
LDQS LDQS LDM DQ [0:7]
D7
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS1 DQS1
DM1
DQ[8:15]
DQS3 DQS3
DM3
DQ[24:31]
DQS5 DQS5
DM5
DQ[40:47]
DQS7 DQS7
DM7
DQ[56:63]
A2
Temp Sensor
SDA
D0–D7
VDDSPD
SPD/TS D0–D7
V
REF
CA
SCL
V
tt
D0–D7
V
DD
EVENT
A1
A0
SCL SA0 SA1
(with SPD)
EVENT
A2
SDA
SCL
WP
A1
A0
SCL SA0 SA1
(SPD)
Vtt
V
REF
DQ
V
SS
CK0
CK1
CK0
CK1
S1
ODT1
D0–D7, SPD, Temp sensor D0–D7 D0–D7
NC NC
NOTES
1. DQ wiring may differ from that
shown however, DQ, DM, DQS, and DQS
relationships are maintained as
shown
Address and Control Lines
Rank 0
The SPD may be integrated with the Temp Sensor or may be a separate component
D0 D1 D2 D3
Vtt
D4 D5 D6 D7
Vtt
V1
V2 V4V3
V1
V2 V4V3
CKE1 EVENT RESET
Temp Sensor D0-D7
NC
Terminated near card edge
Page 10
Rev. 1.2 / Jul. 2010 10
2GB, 256Mx64 Module(2Rank of x8)
DQS3 DQS3 DM3 DQ[24:31]
DQS DQS DM DQ [0:7]
D11
RAS
CAS
S1
WE
CK1
CK1
CKE1
ODT1
A[O:N]/BA[O:N]
240ohm
ZQ
+/-1%
Vtt
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
LDQS LDQS LDM DQ [0:7]
D3
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
CK0
CK0
CKE0
ODT0
S0
A2
Temp S ens or
SDA
D0–D15
VDDSPD
SPD/TS D0–D15
V
REF
CA
SCL
V
tt
D0–D15
V
DD
EVENT
A1
A0
SCL SA0 SA1
(with SPD)
EVENT
A2
SDA
SCL
WP
A1
A0
SCL SA0 SA1
(SPD)
V
tt
V
REF
DQ
V
SS
CK0
CK0
CK1
CK1 CKE0 CKE1
D0–D15, SPD, Temp sensor D0–D7 D8–D15
D0-D7 D8-D15
NOTES
1. DQ wiring may differ from that shown however, DQ, DM, DQS, and DQS
rela-
tionships are maintained as shown
Rank 0
D0–D7 D8–D15
Rank 1
DQS1 DQS1 DM1 DQ[8:15]
DQS DQS DM DQ [0:7]
D1
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
LDQS LDQS LDM DQ [0:7]
D9
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS0 DQS0 DM0 DQ[0:7]
DQS DQS DM DQ [0:7]
D0
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
LDQS LDQS LDM DQ [0:7]
D8
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS4 DQS4
DM4
DQ[32:39]
DQS6 DQS6
DM6
DQ[48:55]
DQS7 DQS7
DM7
DQ[56:43]
DQS5 DQS5
DM5
DQ[40:47]
Vtt Vtt
VDD VDD
Cterm Cterm
D12
D4
DQS DQS DM DQ [0:7]
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS DQS DM DQ [0:7]
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
D6
D14
DQS DQS DM DQ [0:7]
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS DQS DM DQ [0:7]
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
240ohm 240ohm
D7
D15
DQS DQS DM DQ [0:7]
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS DQS DM DQ [0:7]
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
240ohm 240ohm
DQS2 DQS2 DM2 DQ[6:23]
DQS DQS DM DQ [0:7]
D2
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
LDQS LDQS LDM DQ [0:7]
D10
240ohm
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
D5
D13
DQS DQS DM DQ [0:7]
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
DQS DQS DM DQ [0:7]
ZQ
+/-1%
RAS
CAS
CS
WE
CK
CK
CKE
ODT
A[O:N]/BA[O:N]
240ohm 240ohm
S0
ODT0
S1
ODT1 EVENT RESET
D0–D7 D8–D15
Temp Sensor D0-D15
D0–D7 D8–D15
The SPD may be integrated with the Temp Sensor or may be a separate component
D0
V1
V9
D1 D11
D2 D13
D4 D14
D15
D9
D8 D10
D3 D12
D5 D7
D6
Vtt
V1V2
V3
V4 V5 V6
V8
V7
V6
V8
V7
V5
V9V1
V4
V3
V2
Page 11
Rev. 1.2 / Jul. 2010 11
Absolute Maximum Ratings
Absolute Maximum DC Ratings
Notes:
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat
-
ing conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.
DRAM Component Operating Temperature Range
Notes:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea­surement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur­ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use
the Manual Self-Refr esh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). Hynix DDR3 SDRAMs sup
­port Auto Self-Refresh and Extended Temperature Range and please refer to Hynix component datasheet and/or the DIMM SPD for tREFI requirements in the Extended Temperature Range.
Absolute Maximum DC Ratings
Symbol Parameter Rating Units Notes
VDD
Voltage on VDD pin relative to Vss
- 0.4 V ~ 1.975 V V 1,
VDDQ
Voltage on VDDQ pin relative to Vss
- 0.4 V ~ 1.975 V V 1,
V
IN
, V
OUT
Voltage on any pin relative to Vss
- 0.4 V ~ 1.975 V V 1
T
STG
Storage Temperature
-55 to +100
o
C1, 2
Temperature Range
Symbol Parameter Rating Units Notes
T
OPER
Normal Operating Temperature Range
0 to 85
o
C 1,2
Extended Temperature Range
85 to 95
o
C1,3
Page 12
Rev. 1.2 / Jul. 2010 12
AC & DC Operating Conditions
Recommended DC Operating Conditions
Notes:
1. Under all conditions, VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
AC & DC Input Measurement Levels
AC and DC Logic Input Levels for Single-Ended Signals AC and DC Input Levels for Single-Ended Command and Address Signals
Notes:
1. For input only pins except RESET
, Vref = VrefCA (DC).
2. Refer to “Overshoot and Undershoot Specifications” on page 25.
3. The ac peak noise on V
Ref
may not allow V
Ref
to deviate from V
RefCA(DC)
by more than +/-1% VDD (for
reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
Recommended DC Operating Conditions
Symbol Parameter
Rating
Units Notes
Min. Typ. Max.
VDD
Supply Voltage
1.425 1.500 1.575 V 1,2
VDDQ
Supply Voltage for Output
1.425 1.500 1.575 V 1,2
Single Ended AC and DC Input Levels for Command and ADDress
Symbol Parameter
DDR3-800/1066/1333
Unit Notes
Min Max
VIH.CA(DC100) DC input logic high Vref + 0.100 VDD V 1
VIL.CA(DC100) DC input logic low VSS Vref - 0.100 V 1
VIH.CA(AC175) AC input logic high Vref + 0.175 Note2 V 1, 2
VIL.CA(AC175) AC input logic lo w Note2 Vref - 0.175 V 1, 2
VIH.CA(AC150) AC Input logic high Vref + 0.150 Note2 V 1, 2
VIL.CA(AC150) AC input logic lo w Note2 Vref - 0.150 V 1, 2
V
RefCA(DC
)
Reference Voltage for ADD, CMD inputs 0.49 * VDD 0.51 * VDD V 3, 4
Page 13
Rev. 1.2 / Jul. 2010 13
AC and DC Input Levels for Single-Ended Signals
DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066 as specified in the table below. DDR3 SDRAM will also support corresponding tDS values (Table 41 and Table 47 in “ DDR3 Device Operation”) as well as derating tables in Table 44 of “DDR3 Device Operation” depending on Vih/Vil AC lev-
els.
Notes:
1. Vref = VrefDQ (DC).
2. Refer to “Overshoot and Undershoot Specifications” on page 25.
3. The ac peak noise on V
Ref
may not allow V
Ref
to deviate from V
RefDQ(DC)
by more than +/-1% VDD (for
reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
Single Ended AC and DC Input Levels for DQ and DM
Symbol Parameter
DDR3-800/1066 DDR3-1333
Unit Notes
Min Max Min Max
VIH.CA(DC100) DC input logic high Vref + 0.100 VDD Vref + 0.100 VDD V 1
VIL.CA(DC100) DC input logic low VSS Vref - 0.100 VSS Vref - 0.100 V 1
VIH.CA(AC175) AC input logic high Vref + 0.175 Note2 - - V 1, 2
VIL.CA(AC175) AC input logic low Note2 Vref - 0.175 - - V 1, 2
VIH.CA(AC150) AC Input logic high Vref + 0.150 Note2 Vref + 0.150 Note2 V 1, 2
VIL.CA(AC150) AC input logic low Note2 Vref - 0.150 Note2 Vref - 0.150 V 1, 2
V
RefDQ(DC
)
Reference Voltage for DQ,
DM inputs
0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V 3, 4
Page 14
Rev. 1.2 / Jul. 2010 14
Vref Tolerances
The dc-tolerance limits and ac-noise limits for the reference voltages
VRefCA
and V
RefDQ
are illustrated in
figure below. It shows a valid reference voltage V
Ref
(t) as a function of time. (V
Ref
stands for V
RefCA
and
V
RefDQ
likewise).
V
Ref
(DC) is the linear average of V
Ref
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in the table “Differential Input Slew Rate Definition” on page 20. Further­more V
Ref
(t) may temporarily deviate from V
Ref (DC)
by no more than +/- 1% VDD.
Illustration of V
Ref(DC)
tolerance and V
Ref
ac-noise limits
The voltage levels for setup and hold time measurements V
IH(AC)
, V
IH(DC)
, V
IL(AC)
, and V
IL(DC)
are depen-
dent on V
Ref
.
“V
Ref
” shall be understood as V
Ref(DC)
, as defined in figure above. This clarifies that dc-variations of V
Ref
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage
budgets need to account for V
Ref(DC)
deviations from the optimum position within the data-eye of the input
signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and
voltage associated with V
Ref
ac-noise. Timing and voltage effects due to ac-noise on V
Ref
up to the speci-
fied limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings.
VDD
VSS
VDD/2
V
Ref(DC)
V
Ref
ac-noise
voltage
time
V
Ref(DC)max
V
Ref(DC)min
V
Ref
(t)
Page 15
Rev. 1.2 / Jul. 2010 15
AC and DC Logic Input Levels for Differential Signals
Differential signal definition
Definition of differential ac-swing and “time above ac-level” t
DVAC
time
Differential Input Voltage(i.e.DQS - DQS#, CK - CK#)
V
IL.DIFF.AC.MAX
V
IL.DIFF.MAX
0
V
IL.DIFF.MIN
V
IL.DIFF.AC.MIN
t
DVAC
half cycle
t
DVAC
Page 16
Rev. 1.2 / Jul. 2010 16
Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)
Notes:
1. Used to define a differential signal slew-rate.
2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; f or DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL (ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS , DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita
-
tions for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 25.
Differential AC and DC Input Levels
Symbol Parameter
DDR3-800, 1066, 1333
Unit Notes
Min Max
VIHdiff Differential input high + 0.200 Note 3 V 1
VILdiff Differential input logic low Note 3 - 0.200 V 1 VIHdiff (ac) Differential input high ac 2 x (VIH (ac) - Vref) Note 3 V 2 VILdiff (ac) Differential input low ac Note 3 2 x (VIL (ac) - Vref) V 2
Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS
Slew Rate [V/ns]
tDVAC [ps]
@ |VIH/Ldiff (ac)| = 350mV
tDVAC [ps]
@ |VIH/Ldiff (ac)| = 300mV
min max min max
> 4.0 75 - 175 -
4.0 57 - 170 -
3.0 50 - 167 -
2.0 38 - 163
1.8 34 - 162 -
1.6 29 - 161 -
1.4 22 - 159 -
1.2 13 - 155 -
1.0 0 - 150 -
< 1.0 0 - 150 -
Page 17
Rev. 1.2 / Jul. 2010 17
Single-ended requirements for differential signals
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH (ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle.
DQS, DQSL, DQSU, DQS
, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac)
/ VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if
VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the single­ended signals CK and CK
.
Single-ended requirements for differential signals.
Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended compo­nents of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin ha s no bearing on timing, but adds a restriction on the common mode characteristics of these signals.
VDD or VDDQ
VSEHmin
VDD/2 or VDDQ/2
VSEH
VSELmax
VSS or VSSQ
CK or DQS
VSEL
time
Page 18
Rev. 1.2 / Jul. 2010 18
Notes:
1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac) of DQs.
2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS , DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita­tions for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 25.
Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK
and DQS, DQS) must meet the requirements in the table below . The diff erential inpu t cross point v oltage VIX is me asured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS
Vix Definition
Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU
Symbol Parameter
DDR3-800, 1066, 1333
Unit Notes
Min Max
VSEH
Single-ended high level for strobes (VDD / 2) + 0.175 Note 3 V 1,2
Single-ended high level for Ck, CK (VDD /2) + 0.175 Note 3 V 1,2
VSEL
Single-ended low level for strobes Note 3 (VDD / 2) = 0.175 V 1,2 Single-ended low level for CK, CK Note 3 (VDD / 2) = 0.175 V 1,2
VDD
VSS
VDD/2
V
IX
V
IX
V
IX
CK, DQS
CK, DQS
Page 19
Rev. 1.2 / Jul. 2010 19
Notes:
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential
slew rate of CK - CK
is larger than 3 V/ns.
2. Refer to the table “Single-ended levels for CK, DQ S, DQSL, DQSU, CK, DQS , DQSL or DQSU” on page 18 for VSEL and VSEH standard values.
Slew Rate Definitions for Single-Ended Input Signals
See 7.5 “Address / Command Setup, Hold and Derating” on page 137 in “DDR3 Device Operation” for sin­gle-ended slew rate definitions for address and command signals.
See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 144 in “DDR3 Device Operation” for single­ended slew rate definition for data signals.
Cross point voltage for differential input signals (CK, DQS)
Symbol Parameter
DDR3-800, 1066, 1333
Unit Notes
Min Max
V
IX
Differential Input Cross Point Voltage
relative to VDD/2 for CK, CK
-150 150 mV
-175 175 mV 1
V
IX
Differential Input Cross Point Voltage
relative to VDD/2 for DQS, DQS
-150 150 mV
Page 20
Rev. 1.2 / Jul. 2010 20
Slew Rate Definitions for Differential Input Signals
Input slew rate for differ ential signals (CK, CK and DQS, DQS) are defined and measur ed as shown in table and figure below.
Notes:
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.
Differential Input Slew Rate Definition for DQS, DQS and CK, CK
Differential Input Slew Rate Definition
Description
Measured
Defined by
Min
Max
Differential input slew rate for rising edge (CK-CK
and DQS-DQS)
VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff
Differential input slew rate for falling edge (CK-CK
and DQS-DQS)
VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff
Delta TFdiff
Delta TRdiff
vIHdiffmin
vILdiffm a x
0
Differential Input Voltage (i.e. DQS-DQS; CK-CK)
Differential Input Slew Rate Definition for DQS, DQS# and CK, CK#
Page 21
Rev. 1.2 / Jul. 2010 21
AC & DC Output Measurement Levels
Single Ended AC and DC Output Levels
Table below shows the output levels used for measurements of single ended signals.
Notes:
1. The swing of ±0.1 x V
DDQ
is based on approximately 50% of the static single ended output high or low
swing with a driver impedance of 40 and an effective test load of 25 to V
TT
= V
DDQ
/ 2.
Differential AC and DC Output Levels
Table below shows the output levels used for measurements of single ended signals.
Notes:
1. The swing of ±0.2 x V
DDQ
is based on approximately 50% of the static differential output high or low
swing with a driver impedance of 40 and an effective test load of 25 to V
TT
= V
DDQ
/2 at each of the
differential outputs.
Single-ended AC and DC Output Levels
Symbol Parameter
DDR3-800, 1066,
1333
Unit Notes
V
OH(DC)
DC output high measurement level (for IV curve linearity)
0.8 x V
DDQ
V
V
OM(DC)
DC output mid measurement level (for IV curve linearity)
0.5 x V
DDQ
V
V
OL(DC)
DC output low measurement level (for IV curve linearity)
0.2 x V
DDQ
V
V
OH(AC)
AC output high measurement level (for output SR)
V
TT
+ 0.1 x V
DDQ
V1
V
OL(AC)
AC output low measurement level (for output SR)
V
TT
- 0.1 x V
DDQ
V1
Differential AC and DC Output Levels
Symbol Parameter
DDR3-800, 1066,
1333
Unit Notes
V
OHdiff (AC)
AC differential output high measurement level (for output SR)
+ 0.2 x V
DDQ
V1
V
OLdiff (AC)
AC differential output low measurement level (for output SR)
- 0.2 x V
DDQ
V1
Page 22
Rev. 1.2 / Jul. 2010 22
Single Ended Output Slew Rate
When the Reference load for timing measurements, output slew rate for f alling and rising edges is defined and measured between V
OL(AC)
and V
OH(AC)
for single ended signals are shown in table and figure below.
Notes:
1. Output slew rate is verified by design and characterisation, and may not be subject to production test.
Single Ended Output slew Rate Definition
Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting
Single-ended Output slew Rate Definition
Description
Measured
Defined by
From To
Single-ended output slew rate for rising edge
V
OL(AC)
V
OH(AC)
[V
OH(AC)-VOL(AC)
] / DeltaTRse
Single-ended output slew rate for falling edge
V
OH(AC)
V
OL(AC)
[V
OH(AC)-VOL(AC)
] / DeltaTFse
Output Slew Rate (single-ended)
DDR3-800 DDR3-1066 DDR3-1333
Units
Parameter Symbol Min Max Min Max Min Max
Single-ended Output Slew Rate SRQse 2.5 5 2.5 5 2.5 5 V/ns
Delta TFse
Delta TRse
vOH(AC)
vOl(AC)
V
Single Ended Output Voltage(l.e.DQ)
Single Ended Output Slew Rate D e finition
Page 23
Rev. 1.2 / Jul. 2010 23
Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure
below.
Differential Output slew Rate Definition
Differential Output Slew Rate Definition
Description
Measured
Defined by
From To
Differential output slew rate for rising edge
V
OLdiff (AC)
V
OHdiff (AC)
[V
OHdiff (AC)-VOLdiff (AC)
] / DeltaTRdiff
Differential output slew rate for falling edge
V
OHdiff (AC)
V
OLdiff (AC)
[V
OHdiff (AC)-VOLdiff (AC)
] / DeltaTFdiff
Notes:
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Differential Output Slew Rate
DDR3-800 DDR3-1066 DDR3-1333
Units
Parameter Symbol Min Max Min Max Min Max
Differential Output Slew RateSRQdiff510510510V/ns
Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting
Delta
TFdiff
Delta
TRdiff
vOHdiff(AC)
vOLdiff(AC)
O
Differential Output Voltage(i.e. DQS-DQS)
Differential Output Slew Rate Definition
Page 24
Rev. 1.2 / Jul. 2010 24
Reference Load for AC Timing and Output Slew Rate
Figure below represents the effecti ve reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
Reference Load for AC Timing and Output Slew Rate
DUT
DQ
DQS DQS
VDDQ
25 Ohm
VTT = VDDQ/2
CK, CK
Page 25
Rev. 1.2 / Jul. 2010 25
Overshoot and Undershoot Specifications
Address and Control Overshoot and Undershoot Specifications
Address and Control Overshoot and Undershoot Definition
AC Overshoot/Undershoot Specification for Address and Control Pins
Parameter DDR3-800 DDR3-1066DDR3-1333 Units
Maximum peak amplitude allowed for overshoot area. (See figure below) 0.4 0.4 0.4 V Maximum peak amplitude allowed for undershoot area. (See figure below) 0.4 0.4 0.4 V Maximum overshoot area above VDD (See figure below) 0.67 0.5 0.4 V-ns Maximum undershoot area below VSS (See figure below) 0.67 0.5 0.4 V-ns
(A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT)
See figure below for each parameter definition
Maximum Amplitude
Overshoot Area
VDD
VSS
M a x imum Amplit u d e
Undershoot Area
Time (ns)
Address and Control Overshoot and Undershoot Definition
Volts
(V)
Page 26
Rev. 1.2 / Jul. 2010 26
Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
Clock, Data, Strobe and Mask Overshoot and Undershoot Definition
AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask
Parameter DDR3-800 DDR3-1066DDR3-1333 Units
Maximum peak amplitude allowed for overshoot area (See figure below) 0.4 0.4 0.4 V Maximum peak amplitude allowed for undershoot area (See figure below) 0.4 0.4 0.4 V Maximum overshoot area above VDD (See figure below) 0.25 0.19 0.15 V-ns Maximum undershoot area below VSS (See figure below) 0.25 0.19 0.15 V-ns
(CK, CK, DQ, DQS, DQS, DM)
See figure below for each parameter definition
Maxim um Amplitude
Overshoot Area
VDDQ
VSSQ
M a x imu m Am p lit u d e
Undershoot Area
Time (ns)
Clock, Data Strobe and Mask Overshoot and Undershoot Definition
Volts
(V)
Page 27
Rev. 1.2 / Jul. 2010 27
Refresh parameters by device density
Refresh parameters by device density
Parameter RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb Units
REF command ACT or
REF command time
tRFC 90 110 160 300 350 ns
Average periodic refresh interval
tREFI
0
C T
CASE
85 C 7.8 7.8 7.8 7.8 7.8 us
85
C T
CASE
95 C 3.9 3.9 3.9 3.9 3.9 us
Page 28
Rev. 1.2 / Jul. 2010 28
Standard Speed Bins
DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
DDR3-800 Speed Bins
For specific Notes See “Speed Bin Table Notes” on page 31.
Speed Bin DDR3-800E
Unit Notes
CL - nRCD - nRP 6-6-6
Parameter
Symbol min max
Internal read command to first data
t
AA
15 20 ns
ACT to internal read or write delay time
t
RCD
15 ns
PRE command period
t
RP
15 ns
ACT to ACT or REF command period
t
RC
52.5 ns
ACT to PRE command period
t
RAS
37.5 9 * tREFI ns
CL = 5 CWL = 5
t
CK(AVG)
3.0 3.3 ns
1, 2, 3, 4, 10
CL = 6 CWL = 5
t
CK(AVG)
2.5 3.3 ns
1, 2, 3
Supported CL Settings
5, 6
n
CK
10
Supported CWL Settings
5
n
CK
Page 29
Rev. 1.2 / Jul. 2010 29
DDR3-1066 Speed Bins
For specific Notes See “Speed Bin Table Notes” on page 31.
Speed Bin DDR3-1066F
Unit Note
CL - nRCD - nRP 7-7-7
Parameter Symbol min max
Internal read command to
first data
t
AA
13.125 20 ns
ACT to internal read or
write delay time
t
RCD
13.125 ns
PRE command period
t
RP
13.125 ns
ACT to ACT or REF
command period
t
RC
50.625 ns
ACT to PRE command
period
t
RAS
37.5 9 * tREFI ns
CL = 5
CWL = 5
t
CK(AVG)
3.0 3.3 ns 1, 2, 3, 4, 6, 10
CWL = 6
t
CK(AVG)
Reserved ns 4
CL = 6
CWL = 5
t
CK(AVG)
2.5 3.3 ns 1, 2, 3, 6
CWL = 6
t
CK(AVG)
Reserved ns 1, 2, 3, 4
CL = 7
CWL = 5
t
CK(AVG)
Reserved ns 4
CWL = 6
t
CK(AVG)
1.875 < 2.5 ns 1, 2, 3, 4
CL = 8
CWL = 5
t
CK(AVG)
Reserved ns 4
CWL = 6
t
CK(AVG)
1.875 < 2.5 ns 1, 2, 3
Supported CL Settings 5, 6, 7, 8
n
CK
10
Supported CWL Settings 5, 6
n
CK
Page 30
Rev. 1.2 / Jul. 2010 30
DDR3-1333 Speed Bins
For specific Notes See “Speed Bin Table Notes” on page 31.
Speed Bin DDR3-1333H
Unit Note
CL - nRCD - nRP 9-9-9
Parameter Symbol min max
Internal read
command to first data
t
AA
13.5
(13.125)
8
20 ns
ACT to internal read or
write delay time
t
RCD
13.5
(13.125)
8
—ns
PRE command period
t
RP
13.5
(13.125)
8
—ns
ACT to ACT or REF
command period
t
RC
49.5
(49.125)
8
—ns
ACT to PRE command
period
t
RAS
36 9 * tREFI ns
CL = 5
CWL = 5
t
CK(AVG)
3.0 3.3 ns 1, 2, 3, 4, 7, 10
CWL = 6, 7
t
CK(AVG)
Reserved ns 4
CL = 6
CWL = 5
t
CK(AVG)
2.5 3.3 ns 1, 2, 3, 7
CWL = 6
t
CK(AVG)
Reserved ns 1, 2, 3, 4, 7
CWL = 7
t
CK(AVG)
Reserved ns 4
CL = 7
CWL = 5
t
CK(AVG)
Reserved ns 4
CWL = 6
t
CK(AVG)
1.875 < 2.5 ns 1, 2, 3, 4, 7
(Optional)
5
CWL = 7
t
CK(AVG)
Reserved ns 1, 2, 3, 4
CL = 8
CWL = 5
t
CK(AVG)
Reserved ns 4
CWL = 6
t
CK(AVG)
1.875 < 2.5 ns 1, 2, 3, 7
CWL = 7
t
CK(AVG)
Reserved ns 1, 2, 3, 4
CL = 9
CWL = 5, 6
t
CK(AVG)
Reserved ns 4
CWL = 7
t
CK(AVG)
1.5 <1.875 ns 1, 2, 3, 4
CL = 10
CWL = 5, 6
t
CK(AVG)
Reserved ns 4
CWL = 7
t
CK(AVG)
1.5 <1.875 ns 1, 2, 3 (Optional) ns 5
Supported CL Settings 5, 6, 8, (7), 9, (10)
n
CK
Supported CWL Settings 5, 6, 7
n
CK
Page 31
Rev. 1.2 / Jul. 2010 31
Speed Bin Table Notes
Absolute Specification (T
OPER
; V
DDQ
= VDD = 1.5V +/- 0.075 V);
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When mak­ing a selection of tCK(AVG), both need to be fulfilled: R equir ements f rom CL set ting as well as requir e­ments from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchro­nized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculat
-
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) =
3.0 ns should only be used for CL = 5 calculation.
3. tCK(AVG).MAX limits: Calculate tCK(A VG) = tAA.MAX / CL SELECTED and round the resulting tCK(A VG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a man­datory feature. Refer to Hynix DIMM data sheet and/or the DIMM SPD information if and how this set­ting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
9. Hynix DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.
10. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not manda­tory in SPD coding.
Page 32
Rev. 1.2 / Jul. 2010 32
Environmental Parameters
Note:
1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only,
and device functional operation at or above the conditions indicated is not implied. Expousure to absolute maximum rating conditions for extended periods may affect reliablility.
2. Up to 9850 ft.
3. The designer must meet the case temperature specifications for individual module components.
Symbol Parameter Rating Units Notes
T
OPR
Operating temperature
0 to 65
o
C1, 3
H
OPR
Operating humidity (relative) 10 to 90 % 1
T
STG
Storage temperature -50 to +100
o
C
1
H
STG
Storage humidity (without condensation) 5 to 95 % 1
P
BAR
Barometric Pressure (operating & storage) 105 to 69 K Pascal 1, 2
Page 33
Rev. 1.2 / Jul. 2010 33
Pin Capacitance (VDD=1.5V, VDDQ=1.5V)
1GB: HMT112S6TFR8C
2GB: HMT125S6TFR8C
Note:
1. Pins not under test are tied to GND.
2. These value are guaranteed by design and tested on a sample basis only.
Pin
Symbol Min Max Unit
CK0, CK0
C
CK
TBD TBD
pF
CKE, ODT, CS
C
CTRL
TBD TBD
pF
Address, RAS, CAS, WE
C
I
TBD TBD
pF
DQ, DM, DQS, DQS
C
IO
TBD TBD
pF
Pin
Symbol Min Max Unit
CK0, CK0
C
CK
TBD TBD
pF
CKE, ODT, CS
C
CTRL
TBD TBD
pF
Address, RAS, CAS, WE
C
I
TBD TBD
pF
DQ, DM, DQS, DQS
C
IO
TBD TBD
pF
Page 34
Rev. 1.2 / Jul. 2010 34
IDD and IDDQ Specification Parameters and Test Conditions
IDD and IDDQ Measurement Conditions
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure
1. shows the setup and test load for IDD and IDDQ measurements.
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD cur
-
rents.
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ cur
­rents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB.
For IDD and IDDQ measurements, the following definitions apply:
”0” and “LOW” is defined as VIN <= V
ILAC(max).
”1” and “HIGH” is defined as VIN >= V
IHAC(max).
“MID_LEVEL” is defined as inputs are VREF = VDD/2.
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.
Basic IDD and IDDQ Measurement Conditions are described in Table 2.
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not lim­ited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}
Page 35
Rev. 1.2 / Jul. 2010 35
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements
[Note: DIMM level Output test load condition may be different from above
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported
by IDDQ Measurement
VDD
DDR3
SDRAM
VDDQ
RESET CK/CK
DQS, DQS CS RAS, CAS, WE
A, BA ODT ZQ
VSS VSSQ
DQ, DM,
TDQS, TDQS
CKE
RTT = 25 Ohm
VDDQ/2
IDD
IDDQ (optional)
Application specific
memory channel
environment
Channel
IO Power
Simulation
IDDQ
Simulation
IDDQ
Simulation
Channel IO Power
Number
IDDQ
Test Load
Correction
Page 36
Rev. 1.2 / Jul. 2010 36
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns
Table 2 -Basic IDD and IDDQ Measurement Conditions
Symbol
DDR3-1066 DDR3-1333
Unit
7-7-7 9-9-9
t
CK
1.875 1.5 ns
CL 7 9 nCK
n
RCD
79nCK
n
RC
27 33 nCK
n
RAS
20 24 nCK
n
RP
79nCK
n
FAW
1KB page size 20 20 nCK 2KB page size 27 30 nCK
n
RRD
1KB page size 4 4 nCK 2KB page size 6 5 nCK
n
RFC
-512Mb 48 60 nCK
n
RFC
-1 Gb 59 74 nCK
n
RFC
- 2 Gb 86 107 nCK
n
RFC
- 4 Gb 160 200 nCK
n
RFC
- 8 Gb 187 234 nCK
Symbol Description
I
DD0
Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and
PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output
Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 3.
I
DD1
Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT,
RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and
RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 4.
Page 37
Rev. 1.2 / Jul. 2010 37
I
DD2N
Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details:
see Table 5.
I
DD2NT
Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: toggling according to Table 6;
Pattern Details: see Table 6.
I
DD2P0
Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Precharge Power Down Mode: Slow
Exit
c)
I
DD2P1
Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RT T: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit
c)
I
DD2Q
Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0
I
DD3N
Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see
Table 5.
I
DD3P
Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0
Symbol Description
Page 38
Rev. 1.2 / Jul. 2010 38
I
DD4R
Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see T able 1; BL: 8
a)
; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode
Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 7.
I
DD4W
Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see T able 1; BL: 8
a)
; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode
Registers
b)
; ODT Signal: stable at HIGH; Pattern Details: see Table 8.
I
DD5B
Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8
a)
; AL: 0; CS: High between REF; Command,
Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registers
b)
;
ODT Signal: stable at 0; Pattern Details: see Table 9.
I
DD6
Self-Refresh Current: Normal Temperature Range
T
CASE
: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer
and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID_LEVEL
I
DD6ET
Self-Refresh Current: Extended Temperature Range
T
CASE
: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede);
CKE: Low; External clock: Off; CK and CK
: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID_LEVEL
Symbol Description
Page 39
Rev. 1.2 / Jul. 2010 39
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2]
= 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature
range f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B
I
DD6TC
Auto Self-Refresh Current
T
CASE
: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:
Low; External clock: Off; CK and CK: LOW; CL: see Ta ble 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Auto Self-Refresh operation; Output
Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID_LEVEL
I
DD7
Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8
a,f)
; AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table 10; Data IO: read data burst with different data between one burst and the next one according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different address-
ing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern
Details: see Table 10.
Symbol Description
Page 40
Rev. 1.2 / Jul. 2010 40
Table 3 - IDD0 Measurement-Loop Pattern
a)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0
0
ACT 0 0 1 1 0 0 00 0 0 0 0 ­1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 ­3,4 D, D 1111000000 0 0 ­... repeat pattern 1...4 until nRAS - 1, truncate if necessary nRAS PRE 0 0 1 0 0 0 00 0 0 0 0 ­... repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 ­1*nRC+1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 ­1*nRC+3, 4 D
, D 1111000000 F0 ­... repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary 1*nRC+nRAS PRE 0 0 1 0 0 0 00 0 0 F 0 ­... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary
1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead
Page 41
Rev. 1.2 / Jul. 2010 41
Table 4 - IDD1 Measurement-Loop Pattern
a)
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID­LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0
0
ACT001100000000 ­1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 ­3,4 D, D 111100000000 ­... repeat pattern 1...4 until nRCD - 1, truncate if necessary nRCD RD 0 1 0 1 0 0 00 0 0 0 0 00000000 ... repeat pattern 1...4 until nRAS - 1, truncate if necessary nRAS PRE001000000000 ­... repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 ­1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 ­1*nRC+3,4 D
, D 1111000000F0 ­... repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary 1*nRC+nRCD RD 0 1 0 1 0 0 00 0 0 F 0 00110011 ... repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary 1*nRC+nRAS PRE 0 0 1 0 0 0 00 0 0 F 0 ­... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary
1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead
Page 42
Rev. 1.2 / Jul. 2010 42
Table 5 - IDD2N and IDD3N Measurement-Loop Pattern
a)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL.
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern
a)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0
0
D10000000000 ­1D10000000000­2D1111 000 00 F0 ­3D
1111 000 00 F0 ­1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0
0
D10000000000 ­1D10000000000­2D1111000 0 0 F0 ­3D
1111000 0 0 F0 ­1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7
Page 43
Rev. 1.2 / Jul. 2010 43
Table 7 - IDD4R and IDDQ4R Measurement-Loop Pattern
a)
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
Table 8 - IDD4W Measurement-Loop Pattern
a)
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0
0
RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1D100000000000­2,3 D,D 1111000000 0 0 ­4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5D1000000000F0­6,7 D
,D 1111000000 F0 ­1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0
0
WR 0 1 0 0 1 0 00 0 0 0 0 00000000 1D100010000000­2,3 D
,D 1111100000 00 ­4 WR 0 1 0 0 1 0 00 0 0 F 0 00110011 5D1000100000F0­6,7 D
,D 1111100000 F0 -
1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7
Page 44
Rev. 1.2 / Jul. 2010 44
Table 9 - IDD5B Measurement-Loop Pattern
a)
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0
0
REF 0 0 0 1 0 0 0 0 0 0 0 -
11.2 D, D 1 0 0 0 0 0 00 0 0 0 0 ­3,4 D, D 1111000000 F0 -
5...8 repeat cycles 1...4, but BA[2:0] = 1
9...12 repeat cycles 1...4, but BA[2:0] = 2
13...16 repeat cycles 1...4, but BA[2:0] = 3
17...20 repeat cycles 1...4, but BA[2:0] = 4
21...24 repeat cycles 1...4, but BA[2:0] = 5
25...28 repeat cycles 1...4, but BA[2:0] = 6
29...32 repeat cycles 1...4, but BA[2:0] = 7
2 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.
Page 45
Rev. 1.2 / Jul. 2010 45
Table 10 - IDD7 Measurement-Loop Pattern
a)
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
CK, CK
CKE
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
toggling
Static High
0 0 ACT 0 0 1 1 0 0 00 0 0 0 0 -
1 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 2 D 1 0 0 0 0 0 00 0 0 0 0 ­... repeat above D Command until nRRD - 1
1
nRRD ACT 0 0 1 1 0 1 00 0 0 F 0 ­nRRD+1 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 nRRD+2 D 1 0 0 0 0 1 00 0 0 F 0 -
... repeat above D Command until 2* nRRD - 1 2 2*nRRD repeat Sub-Loop 0, but BA[2:0] = 2 3 3*nRRD repeat Sub-Loop 1, but BA[2:0] = 3
4
4*nRRD
D 1 0 0 0 0 3 00 0 0 F 0 -
Assert and repeat above D Command until nFAW - 1, if necessary 5 nFAW repeat Sub-Loop 0, but BA[2:0] = 4 6 nFAW+nRRD repeat Sub-Loop 1, but BA[2:0] = 5 7 nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6 8 nFAW+3*nRRD repeat Sub-Loop 1, but BA[2:0] = 7
9
nFAW+4*nRRD
D 1 0 0 0 0 7 00 0 0 F 0 -
Assert and repeat above D Command until 2* nFAW - 1, if necessary
10
2*nFAW+0 ACT 0 0 1 1 0 0 00 0 0 F 0 ­2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011
2&nFAW+2
D 1 0 0 0 0 0 00 0 0 F 0 -
Repeat above D Command until 2* nFAW + nRRD - 1
11
2*nFAW+nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 ­2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000
2&nFAW+nRRD+2
D 1 0 0 0 0 1 00 0 0 0 0 -
Repeat above D Command until 2* nFAW + 2* nRRD - 1
12 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2 13 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3
14 2*nFAW+4*nRRD
D 1 0 0 0 0 3 00 0 0 0 0 -
Assert and repeat above D Command until 3* nFAW - 1, if necessary
15 3*nFAW repeat Sub-Loop 10, but BA[2:0] = 4 16 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5 17 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6 18 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7
19 3*nFAW+4*nRRD
D 1 0 0 0 0 7 00 0 0 0 0 -
Assert and repeat above D Command until 4* nFAW - 1, if necessary
Page 46
Rev. 1.2 / Jul. 2010 46
IDD Specifications (Tcase: 0 to 95oC)
* Module IDD values in the datasheet are only a calculation based on the component IDD spec. The actual measurements may vary according to DQ loading cap.
1GB, 128M x 64 SO-DIMM: HMT112S6TFR8C
2GB, 256M x 64 SO-DIMM: HMT125S6TFR8C
Symbol DDR3 1066 DDR3 1333 Unit note
IDD0 360 400 mA IDD1 480 520 mA
IDD2N 240 280 mA
IDD2NT 280 320 mA
IDD2P0 80 80 mA IDD2P1 200 280 mA
IDD2Q 240 280 mA IDD3N 280 320 mA
IDD3P 160 200 mA
IDD4R 720 840 mA
IDD4W 720 840 mA
IDD5B 1080 1120 mA
IDD6 80 80 mA IDD6ET 96 96 mA IDD6TC 96 96 mA
IDD7 1040 1280 mA
Symbol DDR3 1066 DDR3 1333 Unit note
IDD0 600 680 mA
IDD1 720 800 mA
IDD2N 480 560 mA
IDD2NT 560 640 mA
IDD2P0 160 160 mA IDD2P1 400 560 mA
IDD2Q 480 560 mA IDD3N 560 640 mA
IDD3P 320 400 mA
IDD4R 960 1120 mA
IDD4W 960 1120 mA
IDD5B 1320 1400 mA
IDD6 160 160 mA IDD6ET 192 192 mA IDD6TC 192 192 mA
IDD7 1280 1560 mA
Page 47
Rev. 1.2 / Jul. 2010 47
Module Dimensions
128Mx64 - HMT112S6TFR8C
Front
Back
SPD
30.0mm
67.60mm
20.0mm
6.00
2.0
21.00 39.00
2.15
3.00
pin 1
pin 203
Detail-A
3.80mm max
4.00 0.10
1.65 0.10
1.00 mm
0.08
1.80 0.102
X
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
Side
2.55
1.00
Detail of Contacts A
0.3
0.3~1.0
0.15
0.05
0.45
0.03
4.00
0.10
0.60
Page 48
Rev. 1.2 / Jul. 2010 48
256Mx64 - HMT125S6TFR8C
Front
Back
30.0mm
67.60mm
20.0mm
6.00
2.0
21.00 39.00
2.15
3.00
pin 1
pin 203
Detail-
A
SPD
3.80mm max
Detail-B
4.00 0.10
1.65 0.10
1.00 mm
0.08
1.80 0.102
X
Side
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2.55
1.00
Detail of Contacts A
0.3
0.3~1.0
0.15
0.05
0.45
0.03
4.00
0.10
0.60
Loading...