SR20 manual v1713 25/43
6.4.1 Evaluation of measurement uncertainty under outdoor conditions
Hukseflux actively participates in the discussions about pyranometer measurement
uncertainty; we also provide spreadsheets, reflecting the latest state of the art, to assist
our users in making their own evaluation. The input to t he assessment is summarised :
1) The formal evaluation of uncertainty should be performed in accordance with ISO 98-3
Guide to the Expression of Uncertainty in Measurement, GUM.
2) The spe cifications of the instrument according to t he list of ISO 9060 classification of
pyranometers and pyrheliometers are entered as limiting values of possible errors, to be
analysed as type B evaluation of standar d uncerta inty per paragraph 4.3.7. of GUM. A
priori distributions are chosen as rectangular.
3) A separate estimate has to be entered to allow for estimated uncertainty due to the
instrument maintenance level.
4) The calibration uncertainty has to be entered. Please note that Hukseflux calibration
uncertainties are lower than those of alternative equipment. These uncertainties are
entered in measurement equation (equation is usually Formula 0.1: E = U/S), either as
an uncertainty in E (zero offsets, directional response) in U (voltage readout errors) or
in S (tilt error, temperature dependence, calibration uncertainty).
5) In uncertainty analysis for pyranometers, the location and date of interest is entered.
The course of the sun is then calculated, and the direct and diffuse components are
estimated, based on a model; the angle of incidenc e of direct radiation is a major factor
in the uncertainty.
6) In uncertainty analysis for modern pyrheliometers: tilt dependence often is so low that
one single typ ical observation may be sufficient.
7) In cas e of special measurement conditions, typical specification values are chosen.
These should for instance account for the measurement conditions (shaded / unshaded,
ventilated/ unventilated, horizontal / tilted) and environmental conditions (clear sky /
cloudy, working temperature range).
8) Among the various sources of uncertainty, some are “correlated”; i.e. present during
the entire measurement process, and not cancelling or converging to zero when
averaged over time; the off-diagonal elements of the covariance matrix are not zero.
Paragraph 5.2 of GUM.
9) Among the various sources of uncertainty, some are “uncorrelated”; cancelling or
converging to zero when averaged over time; the off-diagonal elements of the covariance
matrix are zero. Paragraph 5.1 of GUM.
10) Among the various sources of uncertainty, some are “not included in analysis”; this
applies for instance to non-linearity for pyranometers, because it is already included in
the directional error, and the spectral response for pyranometers and pyrheliometers
because it is already taken into account in the calibration process.