LP02 manual v1606 24/47
6.4 Uncertainty evaluation
The uncertainty of a mea surement under outdoor or indoor co nditions depends on many
factors, see paragraph 1 of this chapter. It is not possible to give one figure for
pyranometer measurement uncertainty. The work on uncertainty evaluation is “in
progress”. There are several groups around the world participating in standardisation of
the method of calculation. The effort aims to work according to the guidelines for
uncertainty evaluation (according to the “G uide to Expression of Uncertainty in
Measurement” or GUM).
6.4.1 Evaluation of measurement uncertainty under outdoor conditions
Hukseflux actively participates in the discussions about pyranometer measurement
uncertainty; we also provide spreadsheets, reflecting the latest state of the art, to assist
our users in making their own evaluation. The input to the assessment is summarised:
1) The formal evaluation of uncertainty should be performed in accordance with ISO 98-3
Guide to the Expression of Uncertainty in Measurement, GUM.
2) The spe cifications of the instrument according to the list of ISO 9060 classification of
pyranometers and pyrheliometers are entered as limiting values of possible errors, to be
analysed as type B evaluation of standar d uncerta inty per paragraph 4.3.7. of GUM. A
priori distributions are chosen as rectangular.
3) A separate estimate has to be entered to allow for estimated uncertainty due to the
instrument maintenance level.
4) The calibration uncertainty has to be entered. Please note that Hukseflux calibration
uncertainties are lower than those of alternative equipment. These uncertainties are
entered in measurement equation (equation is usually Formula 0.1: E = U/S), either as
an uncertainty in E (zero offsets, direc t ional response) in U (voltage readout errors)
or in S (tilt error, temperature dependence, calibration uncertainty).
5) In uncertainty analysis for pyranometers, the location and date of interest is entered.
The course of the sun is then calculated, and the direct and diffuse components are
estimated, based on a model; the angle of incidenc e of direct radiation is a major factor
in the uncertainty.
6) In uncertainty analysis for modern pyrheliometers: tilt dependence often is so low that
one single typical observat ion may be sufficient.
7) In cas e of specia l measurement conditions, typical specification values are chosen.
These should for instance account for the measurement conditions (shaded / unshaded,
ventilated/ unventilated, horizontal / tilted) and environmental conditions (clear sky /
cloudy, working temperature range).
8) Among the various sources of uncertainty, some are “correlated”; i.e. present during
the entire measurement process, and not cancelling or converging to zero when
averaged over time; the off-diagonal elements of the covariance matrix are not zero.
Paragraph 5.2 of GUM.
9) Among the various sources of uncertainty, some are “uncorrelated”; cancelling or
converging to zero when averaged over time; the off-diagonal elements of the covariance
matrix are zero. Paragraph 5.1 of GUM.