Only qualified service technicians should attempt to service or maintain this icemaker.
No service or maintenance should be undertaken until the technician has thoroughly
read this Service Manual.
HOSHIZAKI provides this manual primarily to assist qualified service technicians in the
service and maintenance of the icemaker.
Should the reader have any questions or concerns which have not been satisfactorily
addressed, please call or write to the HOSHIZAKI Technical Support Department for
assistance.
HOSHIZAKI AMERICA, INC.
618 Highway 74 South
Peachtree City , GA 30269
Attn: HOSHIZAKI T echnical Support Department
Phone: 1-800-233-1940 T echnical Service
(770) 487-2331
Fax:(770) 487-3360
NOTE: T o expedite assistance, all correspondence/communication MUST include the following
information:
• Model Number
• Serial Number
• Complete and detailed explanation of the problem
2
Please review this manual. It should be read carefully before the icemaker is serviced or
maintenance operations are performed. Only qualified service technicians should service and
maintain the icemaker. This manual should be made available to the technician prior to
service or maintenance.
CONTENTS
PAGE
I. SPECIFICATIONS .............................................................................................................5
We reserve the right to make changes in specifications and design without prior notice.
6
3. KM-1600SWF3
AC SUP P LY VOLTAGE208-230/60/3
AM P E RA GE9.5 A ( 5 M in. Freeze A T 104°F / WT 80°F)
MINIMUM CIRCUIT AMPACITY20 A
MAXIMUM FUSE SIZE20 A
APPROXIMATE ICE PRODUCTIONAmbientWATER TEMP. (°F)
PE R 24 HR.Temp.(°F)507090
lbs . /day ( k g/ day )70*1500 (680)1495 (678)1451 (658)
Reference without *m ark s801496 (679)1489 (675)1423 (646)
901495 (678)*1484 (673)1426 (647)
1001473 (668)1470 (667)1373 (623)
SHAPE OF ICECrescent Cube
ICE PRODUCTION PER CYCLE30.9 lbs. ( 14 k g ) 1440 pc s.
APPROXIMATE STORAGE CAPACITYN/A
ELE CTRIC & WATER CONSUMP TION90/70°F70/50°F
ELECTRIC W (kWH/100 lbs.)2597 (4.2)2563 (4.1)
POTABLE WATER 463 (31.2)887 (59.1)
WATER COOLED CONDENSER1914 (129.0)1005 (67.0)
gal./24HR (gal./100 lbs.)
EXTERIOR DIMENSIONS (WxDx H)48" x 27-3/ 8" x 27 3/ 8" (1219 x 695 x 695 mm)
EXTERIOR FINISHSt ai nless Steel, G alvanized Steel (Rear)
WEIGHTNet 310 lbs . ( 141 kg ), S hippi ng 360 lbs. ( 163 k g )
CONNECTIONS - ELECTRICPermanent - Connec t i on
- WATER SUPPLYInlet 1/2" FPTCond. Inlet 1/2" FPT
- DRAINOutlet 3/4" FPTCond. Outlet 1/2" FPT
3/8" OD P i pe
CUBE CONTROL SYSTEMFloat S wi tc h
HARVESTING CONTROL SYSTEMHot Gas and Wat er, Thermis tor and Timer
ICE MAK ING W ATER CONTROLTimer Controlled. Overfl ow P i pe
COOLING WATER CONTROLWater Regulator
BIN CO NTROL SYSTEMThermost a t
COMPRE SSO RHermetic, Model CS20K 6 E-P F V
CONDENSERWater-cooled, Tube in tube t ype
EV A PORATORVert ical t ype, S t ai nless S teel and Copper
REFRIGERA NT CONTROLThermostat i c Ex pansion Val ve
REFRIGERA NT CHARGER-404A,3 lb. 1 oz. ( 1400 g )
DESIGN PRESSUREHigh 427 PSIG, Low 230 PSIG
P.C. BOA RD CIRCUIT PRO TE CTIONHigh Voltage Cu t-out ( Internal )
COMPRE S SOR PROTECTIONAut o-res et O verload Prot ector ( Internal )
REF R IGERANT CIRCUIT PROTE CTIONAu to-reset Hi g h Pres sure Co ntrol Switch
LOW W ATER PROTECTIONFloat Switch
ACCESSORIES -SUPPLIEDN/A
-REQUIREDIce Storage Bin
OPE RA TING CONDITIONSVOLTAGE RA NGE187 - 253 V
AM B IENT TEM P.45 -100° F
WATER SUPPLY TEMP.45 - 90° F
WATER SUPPLY PRESSURE10 - 113 PSIG
We reserve t he right to mak e c hanges in specific at i ons and design without pri or not i c e.
46 - 3/8" x 15 - 11/16" x 25 - 15/16"
(1178 x 398 x 659 mm)
R404A 7 lbs.11 oz. (3500 g)
Net 104 lbs. (47 kg)
Shipping 150 lbs. (52 kg)
One Shot Couplings (Aeroquip)
Permanent Connection
Air-cooled
Condensing Pressure Regulator
Min. -20°F - Max. +122°F
(-29°C to +50°C)
Outdoor use
10
II. GENERAL INFORMATION
1. CONSTRUCTION
[a] KM-1600SWF, KM-1600SWF3
Evaporator Spray Tube Water Valve
Water Supply Inlet
Expansion Valve
Hot Gas Valve
Junction Box
Water-cooled
Condenser
Check Valve
Control Box
Water Regulator
Water Pump
Float SwitchDrier
Cleaning ValveLine Valve
CompressorTransformer Box
(KM-1600SWF3)
Control SwitchBin Control ThermostatCapacitor Box
(KM-1600SWF)
11
[b] KM-1600SRF, KM-1600SRF3
Evaporator Spray Tube Water Valve
Expansion Valve
Water Supply Inlet
Hot Gas Valve
Junction Box
Check Valve
Control Box
Receiver Tank
Water Pump
Float SwitchDrier
Cleaning ValveLine Valve
CompressorTransformer Box
(KM-1600SRF3)
Control Switch Bin Control ThermostatCapacitor Box
(KM-1600SRF)
12
2. CONTROLLER BOARD
[a] SOLID-STATE CONTROL
1) A HOSHIZAKI exclusive solid-state control is employed in KM-2000SWF3 and
KM-2000MRF3 Stackable Crescent Cubers.
2) A Printed Circuit Board (hereafter called “Controller Board”) includes a stable and high
quality control system.
3) All models are pretested and factory-adjusted.
[b] CONTROLLER BOARD
CAUTION
1. Fragile, handle very carefully.
2. A controller board contains integrated circuits, which are susceptible to
failure due to static discharge. It is especially important to touch the metal
part of the unit when handling or replacing the board.
3. Do not touch the electronic devices on the board or the back of the board to
prevent damage to the board.
4. Do not change wiring and connections. Do not misconnect K3, K4 and K5,
because the same connector is used for the Thermistor and Float Switch.
K4 is not connected.
5. Always replace the whole board assembly when it goes bad.
6. Do not short out power supply to test for voltage.
PART NUMBERTYPE
2A0836-01 HOSIZAKI-001 (Control Products - 8 Pin)
or 2A1410-01 HOS-001A (Control Products - 10 Pin)
Features of Control Products “E” Controller Board
1) Maximum Water Supply Period - 6 minutes
Water Solenoid Valve opening, in the Defrost (Harvest) Cycle, is limited by the defrost
timer. The Water Valve cannot remain open longer than the maximum period. The Water Valve can close in less than six minutes if the defrost cycle is completed.
13
2) Defrost Timer
The defrost cycle starts when the Float Switch opens and completes the freeze cycle. But
the Defrost Timer does not start counting until the Thermistor senses 48°F at the Evaporator outlet. The period from the end of the freeze cycle up to the point of the Thermistor's
sensing varies depending on the ambient and water temperatures.
3) High Temperature Safety - 127 ± 7°F
The temperature of the suction line in the refrigerant circuit is limited by the High Tempera-
ture Safety.
During the defrost cycle the Evaporator temperature rises. The Thermistor senses 48°F
and starts the Defrost Timer. After the Defrost Timer counts down to zero, the normal
freeze cycle begins. If the Evaporator temperature continues to rise, the Thermistor will
sense the rise in temperature and at 127 ± 7°F the Thermistor operates the High Temperature Safety.
This High Temperature Safety shuts down the circuit and the icemaker automatically
stops. To reset the safety, turn the power off and back on again.
This High Temperature Safety protects the unit from excessive temperature. The Control
Board will Beep every 3 seconds. The white Reset Button on the Control Board must be
pressed with power on to reset the Safety.
4) Low Water Safety
If the Pump Motor is operated without water, the mechanical seal can fail. To prevent this
type of failure, the Controller Board checks the position of the Float Switch at the end of
the initial one minute water fill cycle and at the end of each defrost cycle.
If the Float Switch is in the up position (electrical circuit closed), the Controller Board
changes to the ice making cycle. If the Float Switch is in the down position (electrical
circuit open), the Controller Board changes to a one minute water fill cycle before starting
the ice making cycle. This method allows for a Low Water Safety shut down to protect the
Water Pump from mechanical seal failure.
For water-cooled model, if the water is shut off, the unit is protected by the High Pressure
Switch.
5) High Voltage Cut-out
The maximum allowable supply voltage of this icemaker is limited by the High Voltage
Cut-out.
If miswiring (especially on single phase 3 wire models) causes excessive voltage on the
Controller Board, the High Voltage Cut-out shuts down the circuit in 3 seconds and the
icemaker automatically stops. When the proper supply voltage is resumed, the icemaker
automatically starts running again. The Control Board will signal this problem using 7
Beeps every 3 seconds.
6) LED Lights and Audible Alarm Safeties
The red LED indicates proper control voltage and will remain on unless a control voltage
14
problem occurs. At startup a 5 second delay occurs while the board conducts an internal
timer check. A short beep occurs when the power switch is turned ON or OFF.
The green LED’s 1-4 represent the corresponding relays and energize and sequence 5
seconds from initial startup as follows:
Sequence StepLED’s on Length:Min.Max.Avg.
1 Minute Fill CycleLED460 sec.
Harvest CycleLED1, 4, & 22 min.20 min.3-5 min.
Freeze CycleLED15 min.60 min.30-35 min.
Reverse Pump OutLED1, 3, & 210 sec.20 sec.Factory set.
{LED 1 – Comp; LED 2 - HGV/CFM; LED 3 – PM; LED 4 - WV}
The built in safeties shut down the unit and have alarms as follows:
1 beep every 3 sec. = High Evaporator Temperature >127 ° F.
Check for defrost problem (stuck HGV or relay), hot water entering unit, stuck headmaster,
or shorted thermistor.
2 beeps every 3 sec. = Defrost Back Up Timer. Defrost >20 minutes.
Orange LED marked 20 MIN energizes.
Check for open thermistor, HGV not opening, TXV leaking by, low charge, or inefficient
compressor.
3 beeps every 3 sec. = Freeze Back Up Timer. Freeze > 60 minutes.
Yellow LED marked 60 MIN energizes.
Check for F/S stuck closed (up), WV leaking by, HGV leaking by, TXV not feeding properly, low charge, or inefficient compressor.
To manually reset the above safeties, depress white alarm reset button with the power
supply ON.
6 beeps every 3 sec. = Low Voltage. Voltage is 92 Vac or less.
7 beeps every 3 sec. = High Voltage. Control voltage > 147Vac ±5%.
The red LED will de-energize if voltage protection operates.
The voltage safety automatically resets when voltage is corrected.
The Output Test switch “S3” provides a relay sequence test. With power OFF, place S3
ON and switch power to ICE. The correct lighting sequence should be none, 2, 3, 4, 1, & 4,
normal sequence every 5 seconds. S3 should remain in the “OFF” position for normal
operation.
The application switch located between relay X3 & X4 must be set to match the original
board application. Place this switch in the ALP position if there is no white wire supplied
15
to the K1 connector. If there is a white wire, place the switch in the C position. If this
switch is placed in the wrong position either the compressor contactor will remain energized with the control switch OFF or the unit will not start.
The dip switches should be adjusted per the adjustment chart published in the Tech
Specs book. 7 & 8 must remain in the OFF position.
(Control Products HOSHIZAKI001 Board)
16
(Control Products HOS-001A Board)
17
[c] SEQUENCE
1st Cycle [KM-1600SWF, KM-1600SWF3, KM-1600SRF and KM-1600SRF3]
1. Unit energized and Control Switch to “ICE”
position. Water supply cycle starts.