Hitachi SJ700D-110L, SJ700D-055L, SJ700D-150L, SJ700D-185L, SJ700D-220L Instruction Manual

...
HITACHI INVERTER
SJ700D-3 SERIES
INSTRUCTION MANUAL
Read through this Instruction Manual, and keep it handy for future reference.
Introduction
Introduction
Thank you for purchasing Hitachi SJ700D-3 Series Inverter. This Instruction Manual describes the contents of planning the installation, installing, commissioning, using and servicing the Hitachi SJ700D-3 Series Inverter. Please read this document before operation to perfectly understand proper handling and safety precautions for the product to ensure safety and proper usage. Before attempting installation, operation and maintenance work, you should understand the knowledge of equipment, information of safety, caution and how to use and service the inverter. You should also use the inverter by observing specifications described this guide and prevent risks by performing maintenance.
If you use the inverter with optional products, also you should read the manuals for those products. Note that this instruction manual and the manual for each optional product to be used should be delivered to the end user of the inverter.
Handling of this Instruction Manual (bundled CD)
- The contents of the Instruction Manual are subject to change without prior notice.
- Even if you lose the Instruction Manual, it will not be resupplied, so please keep it carefully.
- No part of the Instruction Manual may be reproduced in any form without the publisher’s permission.
- If you find any incorrect description, missing description or have a question concerning the contents of these
manuals, please contact the publisher.
Revision History
No.
Revision content
Date of issue
Manual code
1
First edition
June, 2014
NT231X
- The current edition of this the Instruction Manual also includes some corrections of simple misprints, missing letters, misdescriptions and certain added explanations other than those listed in the above Revision History table.
Safety Instructions
i
Safety Instructions
Be sure to read this Quick Reference Guide and appended documents thoroughly before installing, operating, maintaining, or inspecting the inverter. In this Quick Reference Guide, safety instructions are classified into two levels, namely WARNING and CAUTION.
: Indicates that incorrect handling may cause hazardous situations, which may result in serious
personal injury or death.
: Indicates that incorrect handling may cause hazardous situations, which may result in moderate
or slight personal injury or physical damage alone. Note that even a level situation may lead to a serious consequence according to circumstances. Be sure to follow every safety instruction, which contains important safety information. Also focus on and observe the items and instructions described under "Notes" in the text.
CAUTION
- Many of the drawings in the Quick Reference Guide show the inverter with covers and/or parts blocking your view as removed. Do not operate the inverter in the status shown in those drawings. If you have removed the covers and/or parts, be sure to reinstall them in their original positions before starting operation, and follow all instructions in this Instruction Manual when operating the inverter.
1. Installation
CAUTION
- Install the inverter on a non-flammable surface, e.g., metal. Otherwise, you run the risk of fire.
- Do not place flammable materials near the installed inverter. Otherwise, you run the risk of fire.
- When carrying the inverter, do not hold its top cover. Otherwise, you run the risk of injury by dropping the inverter.
- Prevent foreign matter (e.g., cut pieces of wire, sputtering welding materials, iron chips, wire, and dust) from entering the inverter. Otherwise, you run the risk of fire.
- Install the inverter on a structure able to bear the weight specified in this Instruction Manual. Otherwise, you run the risk of injury due to the inverter falling.
- Install the inverter on a vertical wall that is free of vibrations. Otherwise, you run the risk of injury due to the inverter falling.
- Do not install and operate the inverter if it is damaged or its parts are missing. Otherwise, you run the risk of injury.
- Install the inverter in a well-ventilated indoor site not exposed to direct sunlight. Avoid places where the inverter is exposed to high temperature, high humidity, condensation, dust, explosive gases, corrosive gases, flammable gases, grinding fluid mist, or salt water. Otherwise, you run the risk of fire.
- The inverter is precision equipment. Do not allow it to fall or be subject to high impacts, step on it, or place a heavy load on it. Doing so may cause the inverter to fail.
2. Wiring
WARNING
- Be sure to ground the inverter. Otherwise, you run the risk of electric shock or fire.
- Commit wiring work to a qualified electrician. Otherwise, you run the risk of electric shock or fire.
- Before wiring, make sure that the power supply is off. Otherwise, you run the risk of electric shock or fire.
- Perform wiring only after installing the inverter. Otherwise, you run the risk of electric shock or injury.
- Do not remove rubber bushings from the wiring section. Otherwise, the edges of the wiring cover may damage the wire, resulting in a short circuit or ground fault.
CAUTION
- Make sure that the voltage of AC power supply matches the rated voltage of your inverter. Otherwise, you run the risk of injury or fire.
- Do not input single-phase power into the inverter. Otherwise, you run the risk of fire.
- Do not connect AC power supply to any of the output terminals (U, V, and W). Otherwise, you run the risk of injury or fire.
- Do not connect a resistor directly to any of the DC terminals (PD, P, and N). Otherwise, you run the risk of fire.
- Connect an earth-leakage breaker to the power input circuit. Otherwise, you run the risk of fire.
- Use only the power cables, earth-leakage breaker, and magnetic contactors that have the specified capacity (ratings). Otherwise, you run the risk of fire.
- Do not use the magnetic contactor installed on the primary and secondary sides of the inverter to stop its operation.
- Tighten each screw to the specified torque. No screws must be left loose. Otherwise, you run the risk of fire.
- Before operating, slide switch SW1 in the inverter, be sure to turn off the power supply. Otherwise, you run the risk of electric shock and injury.
- Since the inverter supports two modes of cooling-fan operation, the inverter power is not always off, even when the cooling fan is stopped. Therefore, be sure to confirm that the power supply is off before wiring. Otherwise, you run the risk of electric shock and injury.
CAUTION
WARNING
CAUTION
Safety Instructions
ii
3. Operation
WARNING
- While power is supplied to the inverter, do not touch any terminal or internal part of the inverter, check signals, or connect or disconnect any wire or connector. Otherwise, you run the risk of electric shock or fire.
- Be sure to close the terminal block cover before turning on the inverter power. Do not open the terminal block cover while power is being supplied to the inverter or voltage remains inside. Otherwise, you run the risk of electric shock.
- Do not operate switches with wet hands. Otherwise, you run the risk of electric shock.
- While power is supplied to the inverter, do not touch the terminal of the inverter, even if it has stopped. Otherwise, you run the risk of injury or fire.
- If the retry mode has been selected, the inverter will restart suddenly after a break in the tripping status. Stay away from the machine controlled by the inverter when the inverter is under such circumstances. (Design the machine so that human safety can be ensured, even when the inverter restarts suddenly.) Otherwise, you run the risk of injury.
- Do not select the retry mode for controlling an elevating or traveling device because output free-running status occurs in retry mode. Otherwise, you run the risk of injury or damage to the machine controlled by the inverter.
- If an operation command has been input to the inverter before a short-term power failure, the inverter may restart operation after the power recovery. If such a restart may put persons in danger, design a control circuit that disables the inverter from restarting after power recovery. Otherwise, you run the risk of injury.
- The [STOP] key is effective only when its function is enabled by setting. Prepare an emergency stop switch separately. Otherwise, you run the risk of injury.
- If an operation command has been input to the inverter before the inverter enters alarm status, the inverter will restart suddenly when the alarm status is reset. Before resetting the alarm status, make sure that no operation command has been input.
- While power is supplied to the inverter, do not touch any internal part of the inverter or insert a bar in it. Otherwise, you run the risk of electric shock or fire.
CAUTION
- Do not touch the heat sink, which heats up during the inverter operation. Otherwise, you run the risk of burn injury.
- The inverter allows you to easily control the speed of motor or machine operations. Before operating the inverter, confirm the capacity and ratings of the motor or machine controlled by the inverter. Otherwise, you run the risk of injury.
- Install an external brake system if needed. Otherwise, you run the risk of injury.
- When using the inverter to operate a standard motor at a frequency of over 60 Hz, check the allowable motor speeds with the manufacturers of the motor and the machine to be driven and obtain their consent before starting inverter operation. Otherwise, you run the risk of damage to the motor and machine.
- During inverter operation, check the motor for the direction of rotation, abnormal sound, and vibrations. Otherwise, you run the risk of damage to the machine driven by the motor.
4. Maintenance, inspection, and parts replacement
WARNING
- Before inspecting the inverter, be sure to turn off the power supply and wait for 10 minutes or more. Otherwise, you run the risk of electric shock. (Before inspection, confirm that the Charge lamp on the inverter is off and the DC voltage between terminals P and N is 45 V or less.)
- Commit only a designated person to maintenance, inspection, and the replacement of parts. (Be sure to remove wristwatches and metal accessories, e.g., bracelets, before maintenance and inspection work and to use insulated tools for the work.) Otherwise, you run the risk of electric shock and injury.
5. Others
WARNING
- Never modify the inverter. Otherwise, you run the risk of electric shock and injury.
CAUTION
- Do not discard the inverter with household waste. Contact an industrial waste management company in your area who can treat industrial waste without polluting the environment.
Safety Instructions
iii
Caution for EMC (Electromagnetic Compatibility) (0.4kW-150kW)
The SJ700D series inverter conforms to the requirements of Electromagnetic Compatibility (EMC) Directive (2004/108/EC). However, when using the inverter in Europe, you must comply with the following specifications and requirements to meet the EMC Directive and other standards in Europe:
1. Power supply requirements a. Voltage fluctuation must be -15% to +10% or less. b. Voltage imbalance must be ±3% or less. c. Frequency variation must be ±4% or less. d. Total harmonic distortion (THD) of voltage must be ±10% or less.
2. Installation requirement a. The integrated filter in the SJ700D series inverter must be enabled. (See chapter 2 Installation andWiring)
* When using the specific external filter for the SJ700D series inverter, please refer to the instruction
described in the dedicated guide book for the filter.
3. Wiring requirements
a. A shielded wire (screened cable) must be used for motor wiring, and the length of the cable must be
according to the following table (Table 1). b. The carrier frequency must be set according to the following table to meet an EMC requirement (Table 1). c. The main circuit wiring must be separated from the control circuit wiring.
4. Environmental requirements (to be met when a filter is used) a. Ambient temperature must be within the range -10°C to +50°C. b. Relative humidity must be within the range 20% to 90% (non-condensing). c. Vibrations must be 5.9 m/s2 (0.6 G) (10 to 55 Hz) or less. (0.4 to 22kW)
2.94 m/s2 (0.3 G) (10 to 55Hz) or less. (30 to 150kW) d. The inverter must be installed indoors (not exposed to corrosive gases and dust) at an altitude of 1,000 m or
less.
WARNING: This equipment must be installed, adjusted, and maintained by qualified engineers who have
expert knowledge of electric work, inverter operation, and the hazardous circumstances that can occur. Otherwise, personal injury may result.
Safety Instructions
iv
Table 1
model
cat.
cable
length(m)
carrier
frequency(kHz)
model
cat.
cable
length(m)
carrier
frequency(kHz)
SJ700D-004L
C3 5 2.5
SJ700D-007L
C3 5 2.5
SJ700D-007H
C3 5 2.5
SJ700D-015L
C3 5 2.5
SJ700D-015H
C3 5 2.5
SJ700D-022L
C3 5 2.5
SJ700D-022H
C3 5 2.5
SJ700D-037L
C3 5 2.5
SJ700D-037H SJ700D-040H
C3 5 2.5
SJ700D-055L
C3 1 1
SJ700D-055H
C3 1 2.5
SJ700D-075L
C3 1 1
SJ700D-075H
C3 1 2.5
SJ700D-110L
C3 1 1
SJ700D-110H
C3 1 2.5
SJ700D-150L
C3 1 1
SJ700D-150H
C3 1 2.5
SJ700D-185L
C3 1 1
SJ700D-185H
C3 1 2.5
SJ700D-220L
C3 5 2.5
SJ700D-220H
C3 1 2.5
SJ700D-300L
C3 5 2.5
SJ700D-300H
C3 1 2.5
SJ700D-370L
C3 5 2.5
SJ700D-370H
C3 1 2.5
SJ700D-450L
C3 5 2.5
SJ700D-450H
C3 5 2.5
SJ700D-550L
C3 5 2.5
SJ700D-550H
C3 5 2.5
SJ700D-750H
C3
10
2.5
SJ700D-900H
C3
10
2.5
SJ700D-1100H
C3
10
2.5
SJ700D-1320H SJ700D-1500H
C3
10
2.5
Safety Instructions
v
Cautions for UL and cUL (0.4kW-150kW)
(Standard to comply with: UL508C, CSA C22.2 No14-5) Warning Markings
GENERAL: These devices are open type and/or Enclosed Type 1 (when employing accessory Type 1 Chassis Kit) AC Inverters with three phase input and three phase output. They are intended to be used in an enclosure. They are used to provide both an adjustable voltage and adjustable frequency to the ac motor. The inverter automatically maintains the required volts-Hz ration allowing the capability through the motor speed range.
(1) “Use 60/75C CU wire only” or equivalent.
For models SJ700D-055H, SJ700D-075H, SJ700D-110H.
(2) “Use 75C CU wire only” or equivalent.
For models SJ700D series except for SJ700D-055H, SJ700D-075H, SJ700D-110H.
(3) “Suitable for use on a circuit capable of delivering not more than 100,000rms symmetrical amperes,
240V maximum”. For models with suffix L.
(4) “Suitable for use on a circuit capable of delivering not more than 100,000rms symmetrical amperes,
480V maximum”. For models with suffix H. (5) “Install device in pollution degree 2 environment” (6) “Maximum Surrounding Air Temperature 45C (only for Models SJ700D-550L VT Amps) or 50C (for Models
SJ700D series without SJ700D-550L VT Amps)” for without Type 1 kits or “Maximum Ambient Temperature 45C
(only for Models SJ700D-550L VT Amps) or 50C (for Models SJ700D series without SJ700D-550L VT Amps)” for
with Type 1 kits or equivalent.
(7) “CAUTION - Risk of Electric Shock - Capacitor discharge time is at least 10 min.” (8) ”Integral solid state short circuit protection does not provide branch circuit protection.
Branch circuit protection must be provided in accordance with the NEC and any additional local codes” (9) “Solid State motor overload protection reacts with max. 120% of FLA”.
(10) Tightening torque and wire range for field wiring terminals are in the table below:
Model No.
Required Torque (N.m)
Wire Range (AWG)
SJ700D-004L
1.8
14(Stranded only)
SJ700D-007L
1.8
14(Stranded only)
SJ700D-015L
1.8
14(Stranded only)
SJ700D-022L
1.8
14(Stranded only)
SJ700D-037L
1.8
10(Stranded only)
SJ700D-050L
3.0
8
SJ700D-055L
4.0
8
SJ700D-075L
4.0
6
SJ700D-110L
4.0
6-4
SJ700D-150L
4.9
2
SJ700D-185L
4.9
1
SJ700D-220L
8.8
1 or 1/0
SJ700D-300L
8.8
2/0 or Parallel of 1/0
SJ700D-370L
20.0
4/0 (Prepared wire only) or Parallel of 1/0
SJ700D-450L
20.0
4/0 (Prepared wire only) or Parallel of 1/0
SJ700D-550L
19.6
350 kcmil
(Prepared wire only) or Parallel of 2/0 (Prepared wire only)
Safety Instructions
vi
(11) Distribution fuse / circuit breaker size marking is included in the manual to indicate that the unit shall be
connected with a listed inverse time circuit breaker, rated 600 V with the current ratings as shown in the table below:
Model No.
Fuse Size (Maximum A)
Circuit Breaker (Maximum A)
Type
Rating
Type
Rating
SJ700D-004L
J
30 A - -
SJ700D-007L
J
30 A - -
SJ700D-015L
J
30 A - -
SJ700D-022L
J
30 A - -
SJ700D-037L
J
30 A - -
SJ700D-050L
J
30 A - -
SJ700D-055L
J
100 A
Inverse time
100 A
SJ700D-075L
J
100 A
Inverse time
100 A
SJ700D-110L
J
100 A
Inverse time
100 A
SJ700D-150L
J
125 A
Inverse time
125 A
SJ700D-185L
J
125 A
Inverse time
125 A
SJ700D-220L
J
125 A
Inverse time
225 A
SJ700D-300L
J
225 A
Inverse time
225 A
SJ700D-370L
J
225 A
Inverse time
225 A
SJ700D-450L
J
250 A
Inverse time
250 A
SJ700D-550L
J
300 A
Inverse time
300 A
Model No.
Required Torque (N.m)
Wire Range (AWG)
SJ700D-007H
1.8
14(Stranded only)
SJ700D-015H
1.8
14(Stranded only)
SJ700D-022H
1.8
14(Stranded only)
SJ700D-037H
1.8
14(Stranded only)
SJ700D-040H
1.8
14(Stranded only)
SJ700D-055H
4.0
12
SJ700D-075H
4.0
10
SJ700D-110H
4.0
8
SJ700D-150H
4.9
6
SJ700D-185H
4.9
6
SJ700D-220H
4.9
6 or 4
SJ700D-300H
4.9
3
SJ700D-370H
20.0
1
SJ700D-450H
20.0
1
SJ700D-550H
20.0
2/0
SJ700D-750H
20.0
Parallel of 1/0
SJ700D-900H
20.0
Parallel of 1/0
SJ700D-1100H
35.0
Parallel of 3/0
SJ700D-1320H
35.0
Parallel of 3/0
SJ700D-1500H
35.0
Parallel of 3/0
Safety Instructions
vii
Model No.
Fuse Size (Maximum A)
Circuit Breaker (Maximum A)
Type
Rating
Type
Rating
SJ700D-007H
J
20 A - -
SJ700D-015H
J
20 A - -
SJ700D-022H
J
20 A - -
SJ700D-037H
J
20 A - -
SJ700D-040H
J
20 A - -
SJ700D-055H
J
40 A
Inverse time
40 A
SJ700D-075H
J
40 A
Inverse time
40 A
SJ700D-110H
J
40 A
Inverse time
40 A
SJ700D-150H
J
75 A
Inverse time
75 A
SJ700D-185H
J
75 A
Inverse time
75 A
SJ700D-220H
J
75 A
Inverse time
75 A
SJ700D-300H
J
100 A
Inverse time
100 A
SJ700D-370H
J
100 A
Inverse time
100 A
SJ700D-450H
J
150 A
Inverse time
150 A
SJ700D-550H
J
150 A
Inverse time
150 A
SJ700D-750H
J
225 A
Inverse time
225 A
SJ700D-900H
J
225 A
Inverse time
225 A
SJ700D-1100H
J
300 A
Inverse time
300 A
SJ700D-1320H
J
350 A
Inverse time
350 A
SJ700D-1500H
J
350 A
Inverse time
350 A
Note) Please select an appropriate fuse or an appropriate circuit breaker for a system.
(12) “Field wiring connection must be made by a UL Listed and CN closed-loop terminal connector sized for the wire
gauge involved. Connector must be fixed using the crimp tool specified by the connector manufacturer.”
(13) “Motor over temperature protection is not provided by the drive.”
DANGER! RISQUE DE BLESSURE OU DE CHOC ELECTRIQUE
- Lire attentivement le manuel avant l’installation et suivre les instructions
- Avant d’intervenir dans le variateur, couper le circuit de puissance et attendre 10 minutes avant d’ouvrir le capot
SJ700-2 to SJ700D-3
The Hitachi SJ700D-3 series succeed the SJ700-2 series with the additional and enhanced features.
The table below is a belief summary of the major improved features.
Subject
SJ700-2
SJ700D-3
Point!
Dual rating Constant torque/
Variable torque
N/A
Selectable
If the inverter drives the light load application (e.g. fan pump application), you can choose the one size smaller capacity inverter than the motor capacity.
Easy sequence (EzSQ) – Drive program function
Process with 1 task.
Supporting 5 tasks processing with improved user friendliness.
The inverter processes 5 tasks at the same time, which allows you to realize 5 times faster EzSQ processing in maximum.
Optional LCD Operator
SRW operator (2-line LCD) WOP operator (2-line LCD)
Full compatibility with WOP operator (5-line LCD and multi-language)
WOP, the optional LCD Operator, provides several user friendliness;
- Multi data monitoring
- Parameter configuration as monitoring data
- Multi-language display
- Parameter / Program copy
SJ700-2 to SJ700D-3:available partially SJ700D-3 to SJ700-2:un available
RS-485 serial communications
19.2kbps (maximum)
115.2kbps (maximum),
and so on.
Approx. 6 times faster communication in comparison with the former model are supported. In addition, some communication commands are newly supported.
Initialization
After setting b084 (initialization selection), press some keys.
In addition to the conventional method, executing initialization by a parameter is possible. (Select b084 and b180=01 : enable the initializing)
You can initialize easily only by setting the parameter and no special procedure is required
Phase loss protection
Input phase loss protection
Input phase loss protection Output phase loss protection
Protection function expands to not only input side but output side, which provides more reliable protection against the phase loss.
Contents
Chapter 1 Overview
1.1 Inspection of the Purchased Product ····································································································· 1 - 1
1.1.1 Inspecting the product ············································································································· 1 - 1
1.1.2 Instruction manual (this manual) ····························································································· 1 - 1
1.2 Method of Inquiry and Product Warranty ······························································································ 1 - 2
1.2.1 Method of inquiry ···················································································································· 1 - 2
1.2.2 Product warranty ····················································································································· 1 - 2
1.2.3 Warranty Terms ························································································································ 1 - 2
1.3 Exterior Views and Names of Parts ········································································································ 1 - 3
Chapter 2 Installation and Wiring
2.1 Installation ·············································································································································· 2 - 1
2.1.1 Precautions for installation ······································································································ 2 - 2
2.1.2 Backing plate ···························································································································· 2 - 4
2.2 Wiring ····················································································································································· 2 - 5
2.2.1 Terminal connection diagram and explanation of terminals and switch settings ···················· 2 - 6
2.2.2 Wiring of the main circuit ········································································································ 2 - 11
2.2.3 Wiring of the control circuit ····································································································· 2 - 20
2.2.4 Wiring of the digital operator ·································································································· 2 - 21
2.2.5 Selection and wiring of regenerative braking resistor (on 5.5 kW to 22 kW models) ··········· 2 - 22
Chapter 3 Operation
3.1 Operating Methods ································································································································ 3 - 1
3.2 How To Operate the Digital Operator (OPE-SBK) ···················································································· 3 - 3
3.2.1 Names and functions of components ···························································································· 3 - 3
3.2.2 Code display system and key operations ······················································································· 3 - 4
3.3 How To Make a Test Run ························································································································· 3 - 10
3.4 Example of I/O connections ··················································································································· 3 - 13
3.5 Basic Paramerter Setting to Drive Motor ······························································································· 3 - 17
3.5.1 Setting Frequency command source and Run command source ············································· 3 - 17
3.5.2 Frequency command source selection ···················································································· 3 - 18
3.5.3 Run command source selection ······························································································· 3 - 20
3.6 Dual rating selection(b049) ···················································································································· 3 - 22
Chapter 4 Explanation of Functions
4.1 Monitor Mode ········································································································································ 4 - 1
4.1.1 Output frequency monitoring (d001) ······················································································· 4 - 1
4.1.2 Output current monitoring (d002) ··························································································· 4 - 1
4.1.3 Rotation direction minitoring (d003) ······················································································· 4 - 1
4.1.4 Process variable (PV), PID feedback monitoring (d004, A071, A075) ······································ 4 - 1
4.1.5 Intelligent input terminal status (d005) ··················································································· 4 - 2
4.1.6 Intelligent output terminal status (d006) ················································································· 4 - 2
4.1.7 Scaled output frequency monitoring (d007, b086) ·································································· 4 - 2
4.1.8 Actual-frequency monitoring (d008, P011, H004, H204) ························································· 4 - 3
4.1.9 Torque command monitoring (d009, P033, P034) ··································································· 4 - 3
4.1.10 Torque bias monitoring (d010, P036 to P038) ········································································· 4 - 3
Contents
4.1.11 Torque monitoring (d012) ········································································································ 4 - 3
4.1.12 Output voltage monitoring (d013) ··························································································· 4 - 3
4.1.13 Power monitoring (d014) ········································································································· 4 - 3
4.1.14 Cumulative power monitoring (d015, b078, b079) ·································································· 4 - 4
4.1.15 Cumulative operation RUN time monitoring (d016) ································································ 4 - 4
4.1.16 Cumulative power-on time monitoring (d017) ········································································ 4 - 4
4.1.17 Heat sink temperature monitoring (d018) ··············································································· 4 - 4
4.1.18 Motor temperature monitoring (d019, b98) ············································································ 4 - 4
4.1.19 Life-check monitoring (d022) ··································································································· 4 - 4
4.1.20 Program counter display (easy sequence function) (d023) ······················································ 4 - 5
4.1.21 Program number monitoring (easy sequence function) (d024) ··············································· 4 - 5
4.1.22 User monitors 0 to 2 (easy sequence function)(d025 to d027) ················································ 4 - 5
4.1.23 Pulse counter monitor(d028) ··································································································· 4 - 5
4.1.24 Position command monitor (in absolute position control mode)(d029) ································· 4 - 5
4.1.25 Current position monitor (in absolute position control mode)(d030) ····································· 4 - 5
4.1.26 Inverter modemonitor (d060) ·································································································· 4 - 5
4.1.27 Trip Counter (d080) ·················································································································· 4 - 5
4.1.28 Trip monitoring 1 to 6 (d081, d082 to d086) ············································································ 4 - 6
4.1.29 Programming error monitoring (d090) ···················································································· 4 - 6
4.1.30 DC voltage monitoring (d102) ·································································································· 4 - 6
4.1.31 BRD load factor monitoring (d103, b090) ················································································ 4 - 6
4.1.32 Electronic thermal overload monitoring (d104) ······································································· 4 - 6
4.2 Function Mode ······································································································································· 4 - 7
4.2.1 Output frequency setting (F001, A001, A020, C001 to C008) ·················································· 4 - 7
4.2.2 Keypad Run key routing (F004) ································································································ 4 - 7
4.2.3 Rotational direction restriction (b035) ····················································································· 4 - 7
4.2.4 Frequency source setting (A001) ····························································································· 4 - 8
4.2.5 Run command source setting (A002, C001 to C008, C019, F004) ············································ 4 - 8
4.2.6 Stop mode selection (b091, F003, b003, b007, b088) ····························································· 4 - 9
4.2.7 STOP key enable (b087) ············································································································ 4 - 9
4.2.8 Acceleration/deceleration time setting (F002, F003, A004, P031, C001 to C008) ··················· 4 - 10
4.2.9 Base frequency setting (A003, A081, A082) ············································································· 4 - 11
4.2.10 Maximum frequency setting (A004) ························································································ 4 - 11
4.2.11 External analog input setting (O, O2, and OI) (A005, A006, C001 to C008) ····························· 4 - 12
4.2.12 Frequency operation function (A141 to A143, A001, A076) ···················································· 4 - 13
4.2.13 Frequency addition function (A145, A146, C001 to C008) ······················································· 4 - 14
4.2.14 Start/end frequency setting for external analog input (A011 to A015, A101 to A105, A111 to A114) ·························································································································· 4 - 14
4.2.15 External analog input (O/OI/O2) filter setting (A016) ······························································ 4 - 15
4.2.16 V/f gain setting (A045, A082) ··································································································· 4 - 15
4.2.17 V/F characteristic curve selection (A044, b100, b101) ····························································· 4 - 16
4.2.18 Torque boost setting (A041, A042, A043, H003, H004)···························································· 4 - 18
4.2.19 DC braking (DB) setting (A051 to A059, C001 to C008) ···························································· 4 - 20
4.2.20 Frequency upper limit setting (A061, A062) ············································································ 4 - 24
4.2.21 Jump frequency function (A063 to A068) ················································································ 4 - 25
4.2.22 Acceleration stop frequency setting (A069, A070, A097) ························································· 4 - 25
4.2.23 PID function (A001, A005, A071 to A076, d004, C001 to C008, C021 to C025, C044) ·································· 4 - 26
4.2.24 Two-stage acceleration/deceleration function (2CH) (F002, F003, A092 to A096, C001 to C008) ·············································································· 4 - 30
4.2.25 Acceleration/deceleration curve selection (A097, A098, A131, A132) ···································· 4 - 31
4.2.26 Energy-saver operation (A085, A086) ······················································································ 4 - 32
4.2.27 Retry or trip after instantaneous power failure (b001 to b005, b007, b008, C021 to C026) ··· 4 - 33
Contents
4.2.28 Input/Output phase loss protection (b006 / b141,b142) ························································· 4 - 36
4.2.29 Electronic thermal protection (b012, b013, b015, b016, C021 to C026, C061) ······················· 4 - 37
4.2.30 Overload restriction/overload notice (b021 to b026, C001 to C008, C021 to C026, C040, C041, C111) ···················································································································· 4 - 39
4.2.31 Overcurrent restraint (b027) ···································································································· 4 - 40
4.2.32 Overvoltage supression (b130 to b134) ··················································································· 4 - 41
4.2.33 Start frequency setting (b082) ································································································· 4 - 42
4.2.34 Reduced voltage start function (b036, b082) ··········································································· 4 - 42
4.2.35 Carrier frequency setting ········································································································· 4 - 43
4.2.36 Automatic carrier frequency reducation ·················································································· 4 - 44
4.2.37 Dynamic braking (BRD) function (b090, b095, b096) ······························································· 4 - 45
4.2.38 Cooling-fan operation setting (b092) ······················································································· 4 - 45
4.2.39 Intelligent input terminal setting (SET, SET3) (C001 to C008) ·················································· 4 - 46
4.2.40 Input terminal a/b (NO/NC) selection (C011 to C018, C019) ··················································· 4 - 47
4.2.41 Multispeed select setting (CF1 to CF4 and SF1 to SF7) (A019, A020 to A035, C001 toC008) ···························································································································· 4 - 47
4.2.42 Jogging (JG) command setting (A038, A039, C001 to C008) ···················································· 4 - 49
4.2.43 2nd/3rd motor control function (SET and SET3) ······································································· 4 - 50
4.2.44 Software lock (SFT) function (b031, C001 to C008) ·································································· 4 - 51
4.2.45 Forcible-operation from digital operation (OPE) function (A001, A002, C001 to C008) ··························································································································· 4 - 51
4.2.46 Forcible-operation from terminal (F-TM) function (A001, A002, C001 to C008) ····················· 4 - 51
4.2.47 Free-run stop (FRS) function (b088, b003, b007, b028 to b030, C001 to C008) ······················ 4 - 52
4.2.48 Commercial power source switching (CS) function (b003, b007, C001 to C008) ····················· 4 - 53
4.2.49 Reset (RS) function (b003, b007, C102, C103, C001 to C008) ·················································· 4 - 54
4.2.50 Unattended start protection (USP) function (C001 to C008) ··················································· 4 - 56
4.2.51 Remote control function (UP and DWN) (C101, C001 to C008) ··············································· 4 - 56
4.2.52 External trip (EXT) function (C001 to C008) ············································································· 4 - 57
4.2.53 3-wire interface operation function (STA, STP, and F/R) (C001 to C008) ·································· 4 - 57
4.2.54 Control gain switching function (CAS) (A044, C001 to C008, H005, H050 to H052, H070 to H072) ·························································································································· 4 - 58
4.2.55 P/PI switching function (PPI) (A044, C001 to C008, H005, H050 to H052, H070 to H072) ·························································································································· 4 - 58
4.2.56 Analog command holding function (AHD) (C001 to C008) ······················································· 4 - 59
4.2.57 Intelligent pulse counter (PCNT and PCC) ················································································ 4 - 59
4.2.58 Intelligent output terminal setting (C021 to C026) ·································································· 4 - 60
4.2.59 Intelligent output terminal a/b (NO/NC) selection (C031 to C036) ········································· 4 - 61
4.2.60 Running signal (RUN) (C021 to C025) ······················································································· 4 - 62
4.2.61 Frequency arrival signals (FA1, FA2, FA3, FA4, and FA5) (C021 to C025, C042, C043, C045, C046) ···················································································································· 4 - 62
4.2.62 Running time over and power-on time over signals (RNT and ONT) (b034, C021to C026, d016, d017)····························································································· 4 - 64
4.2.63 0 Hz speed detection signal (ZS) (A044, C021 to C025, C063)·················································· 4 - 64
4.2.64 Over-torque signal (OTQ) (A044, C021 to C025, C055 to C058) ··············································· 4 - 65
4.2.65 Alarm code output function (AC0 to AC3) (C021 to C025, C062) ············································· 4 - 65
4.2.66 Logical output signal operation function (LOG1 to LOG6) (C021 to C026, C142 to C159) ··························································································································· 4 - 66
4.2.67 Capacitor life warning signal (WAC) (C021 to C026) ································································ 4 - 67
4.2.68 Communication line disconnection signal (NDc) (C021 to C026, C077) ··································· 4 - 67
4.2.69 Cooling-fan speed drop signal (WAF) (C021 to C026, b092 to d022) ······································· 4 - 68
4.2.70 Starting contact signal (FR) (C021 to C026) ·············································································· 4 - 68
4.2.71 Heat sink overheat warning signal (OHF) (C021 to C026, C064) ·············································· 4 - 68
4.2.72 Low-current indication (LOC) signal (C021 to C026, C038, C039) ············································· 4 - 69
Contents
4.2.73 Inverter ready signal (IRDY) (C021 to C026) ············································································· 4 - 69
4.2.74 Forward rotation signal (FWR) (C021 to C026) ········································································· 4 - 69
4.2.75 Reverse rotation signal (RVR) (C021 to C026) ·········································································· 4 - 70
4.2.76 Major failure signal (MJA) (C021 to C026) ··············································································· 4 - 70
4.2.77 Window comparators (WCO/WCOI/WCO2) (detection of terminal disconnection: ODc/OIDc/O2Dc) ······················· 4 - 71
4.2.78 Output signal delay/hold function (C130 to C141) ·································································· 4 - 72
4.2.79 Input terminal response time ·································································································· 4 - 72
4.2.80 External thermistor function (TH) (b098, b099, C085) ····························································· 4 - 72
4.2.81 FM terminal (C027, b081) ········································································································ 4 - 73
4.2.82 AM and AMI terminals (C028, C029, C106, C108 to C110) ······················································ 4 - 74
4.2.83 Initialization setting (b084, b085) ···························································································· 4 - 75
4.2.84 Function code display restriction (b037, U001 to U012) ·························································· 4 - 76
4.2.85 Initial-screen selection (selection of the initial screen to be displayed after power-on) (b038) ····················································································································· 4 - 78
4.2.86 Automatic user-parameter setting (b039, U001 to U012) ······················································· 4 - 79
4.2.87 Stabilization constant setting (H006) ······················································································· 4 - 79
4.2.88 Selection of operation at option board error (P001, P002) ····················································· 4 - 79
4.2.89 Optimum accel/decal operation function (A044, A085, b021, b022) ······································ 4 - 80
4.2.90 Brake control function (b120 to b127, C001 to C008, C021, C025) ·········································· 4 - 81
4.2.91 Deceleration and stopping at power failure (nonstop deceleration at instantaneous power failure) (b050 to b054) ·································································································· 4 - 83
4.2.92 Offline auto-tuning function (H001 to H004, H030 to H034, A003, A051, A082) ···················· 4 - 85
4.2.93 Online auto-tuning function ····································································································· 4 - 87
4.2.94 Secondary resistance compensation (temperature compensation) function (P025, b098) ····························································································································· 4 - 87
4.2.95 Motor constants selection ······································································································· 4 - 88
4.2.96 Sensorless vector control (A001, A044, F001, b040 to b044, H002 to H005, H020 to H024,H050 to H052) ··································································································· 4 - 89
4.2.97 Sensorless vector, 0 Hz domain control (A001, A044, F001, b040 to b044, H002 to H005, H020to H024, H050 to H052, H060, H061) ······················································ 4 - 90
4.2.98 Torque monitoring function (A044, C027 to C029, H003, H004) ············································· 4 - 91
4.2.99 Forcing function (FOC) (A044, C001 to C008)··········································································· 4 - 91
4.2.100 Torque limitation function (A044, b040 to b044, C001 to C008, C021 to C025) ······················ 4 - 92
4.2.101 Reverse Run protection function (A044, b046) ········································································ 4 - 93
4.2.102 Torque LAD stop function (A044, b040 to b045) ······································································ 4 - 94
4.2.103 High-torque multi-motor operation (A044, F001, b040 to b044, H002 to H005, H020 to H024,H050 to H052) ··································································································· 4 - 94
4.2.104 Easy sequence function (A017, P100 to P131) ········································································· 4 - 95
4.2.105 Data read/write selection (b166) ····························································································· 4 - 95
4.3 Functions Available When the Feedback Option Board (SJ-FB) Is Mounted ·········································· 4 - 96
4.3.1 Functions requiring the SJ-FB ··································································································· 4 - 96
4.3.2 V2 control pulse setting ··········································································································· 4 - 96
4.3.3 Vector control with encoder feedback ····················································································· 4 - 97
4.3.4 Torque biasing function ············································································································ 4 - 98
4.3.5 Torque control function············································································································ 4 - 98
4.3.6 Pulse train position control mode ···························································································· 4 - 99
4.3.7 Electronic gear function(Synchronous operation) ··································································· 4 - 101
4.3.8 Motor gear ratio setting function····························································································· 4 - 103
4.3.9 Position biasing function ·········································································································· 4 - 103
4.3.10 Speed biasing function ············································································································· 4 - 103
4.3.11 Home search function ·············································································································· 4 - 104
Contents
4.3.12 Absolute position control mode ······························································································· 4 - 106
4.3.13 Operation in absolute position control mode ·········································································· 4 - 107
4.3.14 Multistage position switching function (CP1/CP2/CP3) ···························································· 4 - 108
4.3.15 Speed/position switching function (SPD) ················································································· 4 - 108
4.3.16 Zero-return function ················································································································ 4 - 109
4.3.17 Forward/reverse drive stop function (FOT/ROT) ······································································ 4 - 110
4.3.18 Position range specification function ······················································································· 4 - 110
4.3.19 Teaching function ····················································································································· 4 - 110
4.3.20 Servo-on function····················································································································· 4 - 111
4.3.21 Pulse train frequency input ······································································································ 4 - 112
4.4 Communication Functions ······················································································································ 4 - 113
4.4.1 Communication in ASCII mode ································································································· 4 - 116
4.4.2 Communication in Modbus-RTU mode ···················································································· 4 - 129
Chapter 5 Error Codes
5.1 Error Codes and Troubleshooting ··········································································································· 5 - 1
5.1.1 Error codes ······························································································································· 5 - 1
5.1.2 Option boards error codes ······································································································· 5 - 5
5.1.3 Trip conditions monitoring ······································································································· 5 - 9
5.2 Warning Codes ······································································································································· 5 - 10
Chapter 6 Maintenance and Inspection
6.1 Precautions for Maintenance and Inspection ························································································ 6 - 1
6.1.1 Daily inspection ························································································································ 6 - 1
6.1.2 Cleaning ···································································································································· 6 - 1
6.1.3 Periodic inspection ··················································································································· 6 - 1
6.2 Daily and Periodic Inspections················································································································ 6 - 2
6.3 Ground Resistance Test with a Megger ·································································································· 6 - 3
6.4 Withstand Voltage Test··························································································································· 6 - 3
6.5 Method of Checking the Inverter and Converter Circuits······································································· 6 - 4
6.6 DC-Bus Capacitor Life Curve ··················································································································· 6 - 5
6.7 Output of Life Warning ··························································································································· 6 - 5
6.8 Methods of Measuring the Input/Output Voltages, Current, and Power··············································· 6 - 6
Chapter 7 Specification
7.1 Specifications ·········································································································································· 7 - 1
7.2 External dimensions ······························································································································· 7 - 4
Chapter 8 List of Data Settings
8.1 Precautions for Data Setting ··················································································································· 8 - 1
8.2 Monitoring Mode ··································································································································· 8 - 1
8.3 Function Mode ······································································································································· 8 - 2
8.4 Extended Function Mode ······················································································································· 8 - 3
Contents
Appendix
Appendix ··························································································································································· A - 1
Index
Index ································································ ·······················································Index - 1
Chapter 1 Overview
This chapter describes the inspection of the purchased product, the product warranty, and the
names of parts.
1.1 Inspection of the Purchased Product ········· 1 - 1
1.2 Method of Inquiry and Product Warranty · 1 - 2
1.3 Exterior Views and Names of Parts ············ 1 - 3
Chapter 1 Overview
1-1
1.1 Inspection of the Purchased Product
1.1.1 Inspecting the product
After unpacking, inspect the product as described below.
If you find the product is abnormal or defective, contact your supplier or local Hitachi Distributor.
(1) Check the product for damage (including falling of parts and dents in the inverter body) caused during
transportation.
(2) Check that the product package contains an inverter set, this Quick Reference Guide and a CD (including the
SJ700D-3 Instruction Manual).
(3) Check the specification label to confirm that the product is the one you have ordered.
1.1.2 Instruction Manual (this manual)
This manual describes how to handle and maintain the Hitachi SJ700D-3 Series Inverter. Read these manuals carefully before using the inverter, and then keep it handy for those who operate, maintain, and inspect the inverter. When using the inverter together with optional products, also read the manuals for those products.
Note that these manuals and the manual for each optional product to be used should be delivered to the end user of the inverter.
Specification label
Figure 1 Location of the specifications label
Figure 1-2 Contents of the specifications label
Inverter model
Input ratings
Output ratings
Serial number
Model: SJ700D-150HFF3
50Hz,60Hz 380-480V 3 Ph 35/41A
Output/Sortie: 0 - 400Hz 380-480V 3 Ph 32/37A
Input/Entree: 50Hz,60Hz V 1 Ph A
MFGNo. 44A T12345AA 001 Date: 1404
Hitachi Industrial Equipment
Systems Co.,Ltd.
MADE IN JAPAN
NE18238-29
INVERTER
Chapter 1 Overview
1-2
1.2 Method of Inquiry and Product Warranty
1.2.1 Method of inquiry
For an inquiry about product damage or faults or a question about the product, notify your supplier of the following information: (1) Model of your inverter (2) Serial number (MFG No.) (3) Date of purchase (4) Content of inquiry
- Location and condition of damage
- Content of your question
1.2.2 Product warranty
The product will be warranted under the term described in the next section “1.2.3 Warranty Terms”. Even within the warranty period, repair of a product fault will not be covered by the warranty (but the repair will be at your own cost) if: (1) the fault has resulted from incorrect usage not conforming to the instructions given in this Instruction Manual or
the repair or modification of the product carried out by an unqualified person, (2) the fault has resulted from a cause not attributable to the delivered product, (3) the fault has resulted from use beyond the limits of the product specifications, or (4) the fault has resulted from disaster or other unavoidable events.
The warranty will only apply to the delivered inverter and excludes all damage to other equipment and facilities induced by any fault of the inverter.
Repair at the user's charge : Following the warranty period, any examination and repair of the product will be accepted at your charge. Even during the warranty period, examination and repairs of faults, subject to the above scope of the warranty disclaimer, will be available at charge. To request a repair at your charge, contact your supplier or local Hitachi Distributor.
1.2.3 Warranty Terms
The warranty period under normal installation and handling conditions shall be two (2) years from the date of
manufacture (“DATE” on product nameplate), or one (1) year from the date of installation, whichever occurs first. The warranty shall cover the repair or replacement, at Hitachi’s sole discretion, of ONLY the inverter that was installed.
(1) Service in the following cases, even within the warranty period, shall be charged to the purchaser:
a. Malfunction or damage caused by mis-operation or modification or improper repair b. Malfunction or damage caused by a drop after purchase and transportation c. Malfunction or damage caused by fire, earthquake, flood, lightening, abnormal input voltage,
contamination, or other natural disasters
(2) When service is required for the product at your work site, all expenses associated with field repair shall be
charged to the purchaser.
(3) Always keep this manual handy; please do not lose it. Please contact your Hitachi distributor to purchase
replacement or additional manuals.
Chapter 1 Overview
1-3
1.3 Exterior Views and Names of Parts
The figure below shows an exterior view of the inverter.
Exterior view of inverter
For the wiring of the main circuit and control circuit terminals, open the terminal block cover.
For mounting optional circuit boards, open the front cover.
Exterior view of inverter with the removed front and terminal block covers
Option slot 1
Main circuit terminals
Backing plate
Control circuit terminals
Option slot 2
POWER lamp
ALARM lamp
Digital operator
Spacer cover
Specification label
Terminal block cover
Front cover
Chapter 2 Installation and Wiring
This chapter describes how to install the inverter and the wiring of main circuit and control signal
terminals with typical examples of wiring.
2.1 Installation ·················································· 2 - 1
2.2 Wiring ························································· 2 - 5
Chapter 2 Installation and Wiring
2-1
2.1 Installation
CAUTION
- Install the inverter on a non-flammable surface, e.g., metal. Otherwise, you run the risk of fire.
- Do not place flammable materials near the installed inverter. Otherwise, you run the risk of fire.
- When carrying the inverter, do not hold its top cover. Otherwise, you run the risk of injury by dropping the inverter.
- Prevent foreign matter (e.g., cut pieces of wire, sputtering welding materials, iron chips, wire, and dust) from
entering the inverter. Otherwise, you run the risk of fire.
- Install the inverter on a structure able to bear the weight specified in this Instruction Manual. Otherwise, you
run the risk of injury due to the inverter falling.
- Install the inverter on a vertical wall that is free of vibrations. Otherwise, you run the risk of injury due to the
inverter falling.
- Do not install and operate the inverter if it is damaged or its parts are missing. Otherwise, you run the risk of
injury.
- Install the inverter in a well-ventilated indoor site not exposed to direct sunlight. Avoid places where the
inverter is exposed to high temperature, high humidity, condensation, dust, explosive gases, corrosive gases, flammable gases, grinding fluid mist, or salt water. Otherwise, you run the risk of fire.
- The inverter is precision equipment. Do not allow it to fall or be subject to high impacts, step on it, or place a
heavy load on it. Doing so may cause the inverter to fail.
Chapter 2 Installation and Wiring
2-2
2.1.1 Precautions for installation
(1) Transportation
The inverter uses plastic parts. When carrying the inverter, handle it carefully to prevent damage to the parts. Do not carry the inverter by holding the front or terminal block cover. Doing so may cause the inverter to fall. Do not install and operate the inverter if it is damaged or its parts are missing.
(2) Surface on which to install the inverter
The inverter will reach a high temperature (up to about 150°C) during operation. Install the inverter on a vertical wall surface made of nonflammable material (e.g., metal) to avoid the risk of fire. Leave sufficient space around the inverter. In particular, keep sufficient distance between the inverter and other heat sources (e.g., braking resistors and reactors) if they are installed in the vicinity.
(3) Ambient temperature
Avoid installing the inverter in a place where the ambient temperature goes above or below the allowable range (-10°C to +50°C), as defined by the standard inverter specification. Measure the temperature in a position about 5 cm distant from the bottom-center point of the inverter, and check that the measured temperature is within the allowable range. Operating the inverter at a temperature outside this range will shorten the inverter life (especially the capacitor life).
(4) Humidity
Avoid installing the inverter in a place where the relative humidity goes above or below the allowable range (20% to 90% RH), as defined by the standard inverter specification. Avoid a place where the inverter is subject to condensation. Condensation inside the inverter will result in short circuits and malfunctioning of electronic parts. Also avoid places where the inverter is exposed to direct sunlight.
(5) Ambient air
Avoid installing the inverter in a place where the inverter is subject to dust, corrosive gases, combustible gases, flammable gases, grinding fluid mist, or salt water. Foreign particles or dust entering the inverter will cause it to fail. If you use the inverter in a considerably dusty environment, install the inverter inside a totally enclosed panel.
5 cm or more
5 cm or more
(*1)
(*2)
Inverter
Keep enough clearance between the inverter and the wiring ducts located above and below the inverter to prevent the latter from obstructing the ventilation of the inverter.
(*1) 10 cm or more : up to 55kW
30cm or more : 75kW or more
(*2) 10 cm or more : up to 55kW
30cm or more : 75kW or more But for exchanging the DC bus capacitor, take a distance. 22cm or more : up to 55kW 30cm or more : 75kW or more
Inverter
Air flow
Wall
Chapter 2 Installation and Wiring
2-3
(6) Installation method and position
Install the inverter vertically and securely with screws or bolts on a surface that is free from vibrations and that can bear the inverter weight. If the inverter is not installed vertically, its cooling performance may be degraded and tripping or inverter damage may result.
(7) When mounting multiple inverters in an enclosure with a ventilation fan, carefully design the layout of the
ventilation fan, air intake port, and inverters. An inappropriate layout will reduce the inverter-cooling effect and raise the ambient temperature. Plan the layout so that the inverter ambient temperature will remain within the allowable range.
Position of ventilation fan
(8) Mounting in an enclosure
The internal fan releases the heat generated by the inverter from the upper part of the inverter. When it is necessary to install a device above the inverter, please ensure that the device is protected against this heat. When several inverters are mounted in the same cabinet the standard arrangement of the inverters is side-by-side with certain space as shown in the figure on the left below. If the inverters must be mounted one above the other in order to save the cabinet space or similar, the heat from the lower inverter may lead to temperature rise and breakdown of the higher inverter. Please ensure that the heat generated by the lower inverter does not affect the one above by installing a mechanical separation or similar (e.g. guide plate between the inverters as shown in the figure below right).
When mounting several inverters in the same cabinet, design the cabinet so that the temperature inside the cabinet does not exceed the allowable specific range for the inverter (by using increased ventilation and/or enlarging the size of cabinet etc.)
Inverter
Inverter Enclosure
Horizontal mounting
Inverter
Inverter
Enclosure
Guide
Plate
Vertical mounting
(Unacceptable)
Ventilation fan
Inverter (Acceptable)
Ventilation fan
Inverter
Chapter 2 Installation and Wiring
2-4
Section to be cut off
Joint
(9) Reduction of enclosure size
If you mount the inverter inside an enclosure such that the heat sink of the inverter is positioned outside the enclosure, the amount of heat produced inside the enclosure can be reduced and likewise the size of the enclosure. Mounting the inverter in an enclosure with the heat sink positioned outside requires an optional dedicated special metal fitting. To mount the inverter in an enclosure with the heat sink positioned outside, cut out the enclosure panel according to the specified cutting dimensions. The cooling section (including the heat sink) positioned outside the enclosure has a cooling fan. Therefore, do not place the enclosure in any environment where it is exposed to waterdrops, oil mist, or dust.
(10) Approximate loss by inverter capacity
Inverter capacity (kW)
0.4
0.75
1.5
2.2
3.7/4.0
5.5
7.5
11
15
18.5
Loss with 70% load (W)
64
76
102
127
179
242
312
435
575
698
Loss with 100% load (W)
70
88
125
160
235
325
425
600
800
975
Efficiency at rated output (%)
85.1
89.5
92.3
93.2
94.0
94.4
94.6
94.8
94.9
95.0
Inverter capacity (kW)
22
30
37
45
55
75
90
110
132/150
Loss with 70% load (W)
820
1100
1345
1625
1975
2675
3375
3900
4670
Loss with 100% load (W)
1150
1550
1900
2300
2800
3800
4800
5550
6650
Efficiency at rated output (%)
95.0
95.0
95.1
95.1
95.1
95.2
95.2
95.2
95.2
2.1.2 Backing plate
(1) For models with 30 kW or less capacity
On the backing plate, cut the joints around each section to be cut off with cutting pliers or a cutter, remove them, and then perform the wiring.
(2) For the models with 37 kW to 75kW
1) For wiring without using conduits Cut an X in each rubber bushing of the backing plate with cutting pliers or a cutter, and then perform the wiring.
2) For wiring using conduits Remove the rubber bushings from the holes to be used for wiring with conduits, and then fit conduits into the holes.
Note: Do not remove the rubber bushing from holes that are not used for wiring with a conduit.
If a cable is connected through the plate hole without a rubber bushing and conduit, the cable insulation may be damaged by the edge of the hole, resulting in a short circuit or ground fault.
Backing plate Rubber bushing
Chapter 2 Installation and Wiring
2-5
2.2 Wiring
WARNING
- Be sure to ground the inverter. Otherwise, you run the risk of electric shock or fire.
- Commit wiring work to a qualified electrician. Otherwise, you run the risk of electric shock or fire.
- Before wiring, make sure that the power supply is off. Otherwise, you run the risk of electric shock or fire.
- Perform wiring only after installing the inverter. Otherwise, you run the risk of electric shock or injury.
- Do not remove rubber bushings from the wiring section. Otherwise, the edges of the wiring cover may damage the wire, resulting in a short circuit or ground fault.
CAUTION
- Make sure that the voltage of AC power supply matches the rated voltage of your inverter. Otherwise, you run the risk of injury or fire.
- Do not input single-phase power into the inverter. Otherwise, you run the risk of fire.
- Do not connect AC power supply to any of the output terminals (U, V, and W). Otherwise, you run the risk of injury or fire.
- Do not connect a resistor directly to any of the DC terminals (PD, P, and N). Otherwise, you run the risk of fire.
- Connect an earth-leakage breaker to the power input circuit. Otherwise, you run the risk of fire.
- Use only the power cables, earth-leakage breaker, and magnetic contactors that have the specified capacity (ratings). Otherwise, you run the risk of fire.
- Do not use the magnetic contactor installed on the primary and secondary sides of the inverter to stop its operation.
- Tighten each screw to the specified torque. No screws must be left loose. Otherwise, you run the risk of fire.
- Before operating, slide switch SW1 in the inverter, be sure to turn off the power supply. Otherwise, you run the risk of electric shock and injury.
- Since the inverter supports two modes of cooling-fan operation, the inverter power is not always off, even when the cooling fan is stopped. Therefore, be sure to confirm that the power supply is off before wiring. Otherwise, you run the risk of electric shock and injury.
Chapter 2 Installation and Wiring
2-6
2.2.1 Terminal connection diagram and explanation of terminals and switch settings
DCL (without jumper bar)
BRD
3-phase power supply
200 V class: 200 to 240 V +10%, -15% (50/60 Hz ±5%)
400 V class: 380 to 480 V +10%, -15% (50/60 Hz ±5%)
Jumper
When connecting separate power supplies to main and control circuits, remove J51 connector cables beforehand. (Refer to page 2-19.)
Power supply for control circuit
Forward rotation command
Intelligent input (8 contacts)
Digital monitor output (PWM output)
Thermistor
Frequency setting circuit 500 to 2,000Ω
0 to 10 VDC (12 bits)
-10 to +10 VDC (12 bits)
4 to 20 mA (12 bits)
Analog monitor output (voltage output)
Analog monitor output (current output)
0 to 10 V (10 bits)
4 to 20 mA (10 bits)
Motor
Jumper bar
Braking resistor (Models with 22kW or less capacity )
The dotted line indicates the detachable control terminal board.
Intelligent relay output contact (default: alarm output)
Intelligent output (5 terminals)
For terminating resistor
Option 1
Option 2
Type-D grounding (for 200 V class model) Type-C grounding (for 400 V class model) (Refer to page 2-12.)
Default jumper position (sinking type : FUF3/FF3)
Default jumper position (source type : FEF3)
PLC
P24
DC24V
CM1
R S T
R0
T0 U V
W
PD
P
RB N FW 7 6 1 8
FM
CM1
H
O
O2
OI
L
AM
AMI
SP
SN
RP
SN
RS485
AL0
AL1
AL2
1
2
HITACHI
POWER ALARM
Hz V A %
kW
RUN
PRG
RUN
FUNC
STR
DC10V
100Ω
10kΩ
10kΩ
15
11
CM2
R
T
TH J51
STOP/
RESET
M
100Ω
Chapter 2 Installation and Wiring
2-7
(1) Explanation of main circuit terminals
Symbol
Terminal name
Description
R, S, T
(L1, L2, L3)
Main power input
Connect to the AC power supply. Leave these terminals unconnected when using a regenerative converter (HS900 series).
U, V, W
(T1, T2, T3)
Inverter output
Connect a 3-phase motor.
PD, P
(+1, +)
DC reactor connection
Remove the jumper from terminals PD and P, and connect the optional power factor reactor (DCL).
P, RB
(+, RB)
External braking resistor connection
Connect the optional external braking resistor. (The RB terminal is provided on models with 30 kW or less capacity.)
P, N
(+, -)
Regenerative braking unit connection
Connect the optional regenerative braking unit (BRD).
G
Inverter ground
Connect to ground for grounding the inverter chassis by type-D grounding (for 200 V class models) or type-C grounding (for 400 V class models).
(2) Explanation of control circuit terminals
Symbol
Terminal name
Description
Electric property
Analog
Power
supply
L
Analog power
supply (common)
This common terminal supplies po wer to frequency command termi nals (O, O2, and OI) and analog output terminals (AM and AMI). Do not ground this terminal.
H Frequency setting
power supply
This terminal supplies 10 VDC power to the O, O2, OI terminals.
Allowable load current: 20 mA or less
Frequency setting input
O
Frequency
command
(voltage)
Input a voltage (0 to 10 VDC) as a frequency command. 10 V specifies the maximum frequency. To specify the maximum frequency with a voltage of 10 V or less, set the voltage using function "A014".
Input impedance: 10kΩ Allowable input voltages: -0.3 to +12 VDC
O2
Auxiliary frequency command
(voltage)
Input a voltage (0 to ±10 VDC) as a signal to be added to the frequency command input from the O or OI terminal. You can input an independent frequency command from this terminal (O2 terminal) alone by changing the setting.
Input impedance: 10kΩ Allowable input voltages: 0 to 12 VDC
OI
Frequency
command
(current)
Input a current (4 to 20 mA DC) as a frequency command. 20 mA specifies the maximum frequency. The OI signal is valid only when the AT signal is on. Assign the AT function to an intelligent input terminal.
Input impedance: 10kΩ Maximum allowable current: 24 mA
Monitor output
AM
Analog monitor
(voltage)
This terminal o utputs one of the selected "0 to 10 VDC voltage output" monitoring items. The monitoring items available for selection include output frequency, output current, output torque (signed or unsigned), output voltage, input power, electronic thermal overload, LAD frequency, motor temperature, heat sink temperature, and general output.
Maximum allowable current: 2 mA Output voltage accuracy ±20% (Ta=25±10 degrees C)
AMI
Analog monitor
(current)
This terminal outputs one of the selec ted "4 to 20 mA DC current output" monitoring items. The monitoring items available for selection include output frequency, output current, output torque (unsigned), output voltage, input power, electronic thermal overload, LAD frequency, motor temperature, heat sink temperature, and general output.
Allowable load impedance: 250Ω or less Output current accuracy ±20% (Ta=25±10 degrees C)
Digital (contact)
Monitor output
FM
Digital monitor
(voltage)
This terminal outputs one of the selected "0 to 10 VDC voltage output (PWM output mode)" monitoring items. The monitoring items available for selection include output frequency, output current, output torque (unsigned), output voltage, input power, e lectronic thermal overload, LAD frequency, motor temperature, heat sink temperature, general output, digital output frequency, and digital current monitor. For the items "digital output frequency" and "digital current monitor," this terminal outputs a digital pulse signal at 0/10 VDC with a duty ratio of 50%.
Maximum allowable current:
1.2 mA Maximum frequency:
3.6 kHz Power supply
P24
Interface power
supply
This terminal supplies 24 VDC power for contact input signals. If the source logic is selected, this terminal is used as a common contact input terminal.
Maximum allowable output current: 100 mA
CM1
Interface power
supply (common)
This common terminal supplies power to the interface power supply (P24), thermistor input (TH), and digital monitor (FM) terminals. If the sink logic is selected, this terminal is used as a common contact input terminal. Do not ground this terminal.
Contact input
Operation
command
FW
Forward rotation
command
Turn on this FW signal to start the forward rotation of the motor; turn it off to stop forward rotation after deceleration.
[Conditions for turning contact input on] Voltage across input and PLC: 18 VDC or more
Input impedance between input and PLC: 4.7kΩ
Maximum allowable voltage across input and PLC: 27 VDC
Load current with 27 VDC power: about 5.6 mA
Function selection and logic
switching
1 2 3 4 5 6 7 8
Intelligent input
Select eight of a total 70 functions, and assign these eight functions to terminals 1 to 8.
Note: If the emergency stop function is used, terminals 1 and 3 are used exclusively for the function. For details, see Item (3), “Explanation of switch “(on page 2-9).
Chapter 2 Installation and Wiring
2-8
Symbol
Terminal name
Description
Electric property
Digital (contact)
Contact input
Function selection and
logic switching
PLC
Intelligent input
(common)
To switch the control logic between sink logic and source logic, change the jumper connection of this (PLC) terminal to another terminal on the control circuit terminal block. Jumper terminals P24 and PLC for the sink logic; jumper terminals CM1 and PLC for the sink logic. To use an external power supply to drive the contact inputs, remove the jumper, and connect the PLC terminal to the external interface circuit.
Open collector
output
Status and factor
11 12 13 14 15
Intelligent output
Select five of a total 51 functions, and assign these five functions to terminals 11 to 15. If you have selected an alarm code using the function "C062", terminals 11 to 13 or 11 to 14 are used exclusively for the output of cause code for alarm (e.g., inverter trip). The control logic between each of these terminals and the CM2 terminal always follows the sink or source logic.
Voltage drop between each terminal and CM2 when output signal is on: 4 V or less
Maximum allowable voltage: 27 VDC
Maximum allowable current: 50 mA
CM2
Intelligent output
(common)
This terminal serves as the common terminal for intelligent output terminals [11] to [15].
Relay contact output
Status and alarm
AL0 AL1 AL2
Intelligent relay
output
Select functions from the 51 available, and assign the selected functions to these terminals, which serve as C contact output terminals.
In the initial setting, these terminals output an alarm indicating that the inverter protection function has operated to stop inverter output.
(Maximum contact capacity) AL1-AL0: 250 VAC, 2 A (resistance) or 0.2 A (inductive load) AL2-AL0: 250 VAC, 1 A (resistance) or 0.2 A (inductive load) (Minimum contact capacity) 100 VAC, 10 mA 5 VDC, 100 mA
Analog
Analog input
Sensor
TH
External
thermistor input
Connect to an external thermistor to make the inverter trip if an abnormal temperature is detected. The CM1 terminal serves as the common terminal for this terminal. [Recommended thermistor properties] Allowable rated power: 100 mW or more
Impedance at temperature error: 3kΩ The impedance to detect temperature errors can be adjusted within the range 0Ω to 9,999Ω.
Allowable range of input voltages 0 to 8 VDC [Input circuit]
(3) Explanation of switch
The internal slide switch (SW1) is used to enable or disable the emergency stop function (the function is disabled by factory setting).
* For the location of the slide switch, see page 2-10.
DC8V 10kΩ
1kΩ
CM1
TH
Thermistor
Chapter 2 Installation and Wiring
2-9
About the emergency stop function (disabled by the factory setting)
- The emergency stop function shuts off the inverter output (i.e. stops the switching operation of the main circuit elements) in response to a command from a hardware circuit via an intelligent input terminal without the operation by internal CPU software.
Note: The emergency stop function does not electrically shut off the inverter but merely stops the switching operation
of the main circuit elements. Therefore, do not touch any terminals of the inverter or any power lines, e.g., motor cables. Otherwise, electric shock, injury, or ground fault may result.
- When the emergency stop function is enabled, intelligent input terminals 1 and 3 are used exclusively for this function, and no other functions can be assigned to these terminals. Even if other functions have been assigned to these terminals, these are automatically disabled and these terminals are used exclusively for the emergency stop function. Terminal [1] function:
This terminal always serves as the a (NO) contact for the reset (RS) signal. This signal resets the inverter and releases the inverter from the trip due to emergency stop (E37.*).
Terminal [3] function:
This terminal always serves as the b (NC) contact for the emergency stop (EMR) signal. This signal shuts off the inverter output without the operation by internal CPU software. This signal makes the inverter trip due to emergency stop (E37.*).
Note: If intelligent input terminal 3 is left unconnected, the cable connected to the terminal is disconnected, or the
signal logic is improper, the inverter trips due to emergency stop (E37.*). If this occurs, check and correct the wiring and signal logic, and then input the reset (RS) signal. Only the reset (RS) signal input from intelligent input terminal [1] can release the inverter from tripping due to emergency stop (E37.*). (The inverter cannot be released from the E37.* status by any operation from the digital operator.)
- To enable the emergency stop function, set the slide lever of slide switch SW1 to ON. (With the factory setting, slide switch SW1 is set to OFF to disable the function.)
Note: Before operating slide switch SW1, make sure that the input power supply is off.
Setting of slide switch SW1 setting and function selection for intelligent input terminals [1] and [3]
Setting of slide switch
SW1
Intelligent input terminal [1]
Intelligent input terminal [3]
Terminal [1] function [C001]
a/b (NO/NC) selection
[C011] (*1)
Terminal [3] function [C003]
a/b (NO/NC) selection
[C013] (*1) (*2)
SW1 is OFF.
Emergency stop
disabled
(factory setting)
Selectable arbitrarily (*4)
Selectable arbitrarily (*4)
Selectable arbitrarily (*4)
Selectable arbitrarily (*4)
Factory setting
18 (RS)
Factory setting
00 (NO)
Factory setting
06 (JG)
Factory setting
00 (NO)
SW1 is ON.
Emergency stop enabled
(*5)
Automatic assignment of functions to intelligent input terminals [1] and [3] and the terminal to which function "18 (RS)" has been
assigned (*3)
Fixed function
(cannot be
changed)
18 (RS)
Fixed function
(cannot be
changed)
00 (NO)
Fixed function
(cannot be
changed)
64 (EMR)
Fixed function
(cannot be
changed)
01 (NC)
SW1 is ON (after setting
to OFF once).
Emergency stop
disabled (*3) (*5) Selectable arbitrarily (*4)
Selectable arbitrarily (*4)
Selectable arbitrarily (*4)
Selectable arbitrarily (*4)
Setting made
when SW1 is
set ON
retained
18 (RS)
Setting made
when SW1 is
set ON
retained
00 (NO)
Released from
emergency
stop function
no
(No function
assigned)
Setting made
when SW1 is
set ON
retained
01 (NC)
*1 When function "18 (RS)" is assigned to the input terminal, "a/b (NO/NC)" selection is always "00 (NO)". *2 When terminal setting "C003" is "64 (EMR)", terminal setting "C013" is always "01 (NC)". *3 If function "18 (RS)" has been assigned to an intelligent input terminal other than intelligent input terminals [1] and [3] before slide
switch SW1 is set to ON, the input terminal setting for said terminal is automatically changed to "no (no function assigned)" when slide switch SW1 is set to ON to prevent any duplication of terminal functions. Even if slide switch SW1 is subsequently returned to OFF, the original function setting for said terminal will not be restored. If necessary, the original function will have to be re-assigned to said terminal.
Example: If slide switch SW1 is set to ON when function "18 (RS)" has been assigned to input terminal 2 (by terminal setting "C002"),
terminal setting "C002" is changed to "no (no function assigned)," and function "18 (RS)" is assigned to input terminal 1 (by terminal setting "C001").
Even if slide switch SW1 is subsequently returned to OFF, terminal [2] function "C002" and terminal [1] function "C001" will remain as
"no (no function assigned)" and "18 (RS)," respectively.
Loading...
+ 258 hidden pages