HIT HM62G36256BP-4, HM62G36256BP-5 Datasheet

HM62G36256 Series
8M Synchronous Fast Static RAM
(256k-word × 36-bit)
ADE-203-1139 (Z)
Preliminary
Rev. 0.0
Description
The HM62G36256 is a synchronous fast static RAM organized as 256-kword × 36-bit. It has realized high speed access time by employing the most advanced CMOS process and high speed circuit designing technology. It is most appropriate for the application which requires high speed, high density memory and wide bit width configuration, such as cache and buffer memory in system. It is packaged in standard 119­bump BGA.
Note: All power supply and ground pins must be connected for proper operation of the device.
Features
Power supply: 3.3 V +10%, –5%
Clock frequency: 200 MHz to 250 MHz
Internal self-timed late write
Byte write control (4 byte write selects, one for each 9-bit)
Optional ×18 configuration
HSTL compatible I/O
Programmable impedance output drivers
User selective input trip-point
Differential, HSTL clock inputs
Asynchronous G output control
Asynchronous sleep mode
Limited set of boundary scan JTAG IEEE 1149.1 compatible
Protocol: Single clock register-register mode
Preliminary: The specifications of this device are subject to change without notice. Please contact your nearest Hitachi’s Sales Dept. regarding specifications.
HM62G36256 Series
Ordering Information
Type No. Access time Cycle time Package
HM62G36256BP-4 HM62G36256BP-5
Pin Arrangement
2.1 ns
2.5 ns
4.0 ns
5.0 ns
119-bumps BGA
1234567
A
VDDQ SA0 SA6 NC SA4 SA2 VDDQ
B
NC NC SA7 NC SA8 SA9 NC
C
NC SA14 SA3 VDD SA5 SA1 NC
D
DQc1 DQc0 VSS ZQ VSS DQb0 DQb1
E
DQc2 DQc3 VSS SS VSS DQb3 DQb2
F
VDDQ DQc4 VSS G VSS DQb4 VDDQ
G
DQc6 DQc5 SWEc NC DQb5 DQb6
H
DQc7 DQc8 VSS NC VSS DQb8 DQb7
J
VDDQ VDD VREF VDD VREF VDD VDDQ
K
DQd7 DQd8 VSS K VSS DQa8 DQa7
L
DQd6 DQd5 K SWEa DQa5 DQa6
M
VDDQ DQd4 VSS SWE VSS DQa4 VDDQ
N
DQd2 DQd3 VSS SA17 VSS DQa3 DQa2
P
DQd1 DQd0 VSS SA16 VSS DQa0 DQa1
R
NC SA10 M1 VDD M2 SA11 NC
T
NC NC SA12 SA15 SA13 NC ZZ
U
VDDQ TMS TDI TCK TDO NC VDDQ
SWEd
SWEb
119-bump 1. 27 mm 14 mm × 22 mm BGA (BP-119A)
(Top view)
2
HM62G36256 Series
Pin Description
Name I/O type Descriptions Notes
V
DD
V
SS
V
DDQ
V
REF
K Input Clock input. Active high.
K Input Clock input. Active low. SS Input Synchronous chip select SWE Input Synchronous write enable
SAn Input Synchronous address input n = 0, 1, 2...17
SWEx Input Synchronous byte write enables x = a, b, c, d G Input Asynchronous output enable
ZZ Input Power down mode select ZQ Input Output impedance control 1 DQxn I/O Synchronous data input/output x = a, b, c, d
M1, M2 Input Output protocol mode select TMS Input Boundary scan test mode select TCK Input Boundary scan test clock TDI Input Boundary scan test data input TDO Output Boundary scan test data output NC No connection
Supply Core power supply Supply Ground Supply Output power supply Supply Input reference: provides input reference voltage
n = 0, 1, 2...8
M1 M2 Protocol Notes
V
SS
V
DD
Synchronous register to register operation 2
Notes: 1. ZQ is to be connected to VSS via a resistance RQ where 150 RQ 300 , if ZQ = V
open, output buffer impedance will be maximum. A case of minimum impedance, it needs to connect over 120 between ZQ and V
2. There is 1 protocol with mode pin. Mode control pins (M1, M2) are to be tied either V
.
SS
DD
respectively. The state of the Mode control inputs must be set before power-up and must not change during device operation. Mode control inputs are not standard inputs and may not meet V
or VIL specification. This SRAM is tested only in the synchronous register to register
IH
operation.
DDQ
or V
or
SS
3
HM62G36256 Series
Block Diagram
A0 to A17
SS
SWE
SWEx
ZZ
V
REF
ZQ
18
JTAG register
JTAG register
JTAG register
4
JTAG register
G
K
K
JTAG register
JTAG register
JTAG register
JTAG register
JTAG register
R-Add register
SS register
SWE register
SWEx register
CLK
control
18
W-Add register
4
Impedance contorol logic
18
MUX
1
WRC
Match
DOC
D-in register
Memory
cell array
(256k × 36)
Row decoder
Column decoder
WA
Multiplex
D-out register
OB
36
SA
DQa0-8 DQb0-8 DQc0-8 DQd0-8
TDI
TCK
TMS
JTAG tap controller
TDO
4
HM62G36256 Series
Operation Table
ZZ SS G SWE SWEa SWEb SWEc SWEd K K Operation DQ (n) DQ (n + 1)
H ××ЧЧЧЧЧЧ×sleep mode High-Z High-Z LH×ЧЧЧЧЧL-H H-L Dead
(not selected)
L × H ЧЧЧЧЧЧ×Dead
(Dummy read)
LLLH ××××L-H H-L Read × Dout
LL× LLLLLL-HH-LWrite a, b, c, d
byte
LL× L H L L L L-H H-L Write b, c, d
byte
LL× L L H L L L-H H-L Write a, c, d
byte
LL× LLLHLL-HH-LWrite a, b, d
byte
LL× LLLLHL-HH-LWrite a, b, c
byte LL× L H H L L L-H H-L Write c, d byte High-Z Din (c,d)0-8 LL× L L H H L L-H H-L Write a, d byte High-Z Din (a,d)0-8 LL× L L L H H L-H H-L Write a, b byte High-Z Din (a,b)0-8 LL× L H L L H L-H H-L Write b, c byte High-Z Din (b,c)0-8 LL× LHHHLL-HH-LWrite d byte High-Z Din (d)0-8 LL× L H H L H L-H H-L Write c byte High-Z Din (c)0-8 LL× L H L H H L-H H-L Write b byte High-Z Din (b)0-8 LL× L L H H H L-H H-L Write a byte High-Z Din (a)0-8
Notes: 1. × means don’t care for synchronous inputs, and H or L for asynchronous inputs.
2. SWE , SS, SWEa to SWEd, SA are sampled at the rising edge of K clock.
3. Although differential clock operation is implied, this SRAM will operate properly with one clock phase (either K or K) tied to V specified within this document will be met.
. Under such single-ended clock operation, all parameters
REF
× High-Z
High-Z High-Z
(a,b,c,d)0-8
High-Z Din (a,b,c,d)0-8
High-Z Din (b,c,d)0-8
High-Z Din (a,c,d)0-8
High-Z Din (a,b,d)0-8
High-Z Din (a,b,c)0-8
5
HM62G36256 Series
Absolute Maximum Ratings
Parameter Symbol Value Unit Notes
Input voltage on any pin V Core supply voltage V Output supply voltage V Operating temperature T Storage temperature T
IN
DD
DDQ
OPR
STG
–0.5 to V –0.5 to 3.9 V 1 –0.5 to 2.2 V 1, 4 0 to 70 °C
–55 to 125 °C Junction temperature Tj 110 °C Output short–circuit current I Latch up current I
OUT
LI
25 mA
200 mA Package junction to case thermal resistance θJC 5 °C/W 5, 7 Package junction to ball thermal resistance θJB 8 °C/W 6, 7
Notes: 1. All voltage is referred to VSS.
2. Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted the Operation Conditions. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.
3. These CMOS memory circuits have been designed to meet the DC and AC specifications shown in the tables after thermal equilibrium has been established.
4. The supply voltage application sequence need to be powered up in the following manner: V V
, V
, V
DD
DDQ
then VIN. Remember, according to the Absolute Maximum Ratings table, V
REF
not to exceed 3.9 V, whatever the instantaneous value of V
5. θJC is measured at the center of mold surface in fluorocarbon (See Figure “Definition of Measurement”).
6. θJB is measured on the center ball pad after removing the ball in fluorocarbon (See Figure “Definition of Measurement”).
7. These thermal resistance values have error of ± 5°C/W.
+ 0.5 V 1, 4
DDQ
.
DDQ
DDQ
,
SS
is
θJC
θJB
T.C.
Fluorocarbon
T.C.
Fluorocarbon
Definition of Measurement
6
HM62G36256 Series
Note: The following the DC and AC specifications shown in the Tables, this device is tested under the
minimum transverse air flow exceeding 500 linear feet per minute.
DC Operating Conditions (Ta = 0 to 70°C [Tj max = 110°C])
Parameter Symbol Min Typ Max Unit Notes
Supply voltage (Core) V Supply voltage (I/O) V Supply voltage V Input reference voltage (I/O) V Input high voltage V Input low voltage V Clock differential voltage V Clock common mode voltage V
DD
DDQ
SS
REF
IH
IL
DIF
CM
Notes: 1. Peak to peak AC component superimposed on V
2. Minimum differential input voltage required for differential input clock operation.
3. See following figure.
4. V
= 0.75 V (typ).
REF
3.135 3.30 3.63 V
1.4 1.5 1.6 V 000 V
0.65 0.75 0.90 V 1 V
+ 0.1 — V
REF
–0.5 V
0.1 V
+ 0.3 V 4
DDQ
– 0.1 V 4
REF
+ 0.3 V 2, 3
DDQ
0.55 0.90 V 3 may not exceed 5% of V
REF
REF
.
V
DDQ
V
SS
V
DIF
V
CM
Differential Voltage/Common Mode Voltage
7
HM62G36256 Series
DC Characteristics (Ta = 0 to 70°C, [Tj max = 110°C], VDD = 3.3 V +10%, –5%)
Parameter Symbol Min Typ Max Unit Notes
Input leakage current I Output leakage current I Standby current I VDD operating current,
excluding output drivers 4 ns cycle
VDD operating current, excluding output drivers 5 ns cycle
Quiescent active power supply current
Output low voltage V Output high voltage V ZQ pin connect
resistance Output low current I Output high current I
Notes: 1. 0 Vin V
2. 0 Vout V
DDQ
DDQ
3. All inputs (except clock) are held at either V guaranteed at 75°C junction temperature.
4. Iout = 0 mA, read 50%/write 50%, V
5
. Iout = 0 mA, read 50%/write 50%, V
6. Minimum impedance push pull output buffer mode, I
7. Measured at V
8. Measured at V
9. Output buffer impedance can be programmed by terminating the ZQ pin to V precision resister (RQ). The value of RQ is five times the output impedance desired. The allowable range of RQ to guarantee impedance matching with a tolerance of 15% is between 150 and 300 Ω. If the status of ZQ pin is open, output impedance is maximum. Maximum impedance occurs with ZQ connected to V occurs when the SRAM is in High-Z. Write and Deselect operations will synchronously switch the SRAM into and out of High-Z, therefore triggering an update. The user may choose to invoke asynchronous G updates by providing a G setup and hold about the K clock to guarantee the proper update. At power-up, the output impedance defaults to minimum impedance. It will take 2048 cycles for the impedance to be completely updated if the programmed impedance is much higher than minimum impedance.
LI
LO
SBZZ
I
DD4
I
DD5
I
DD2
RQ 150 250 300
OL
OH
for all input pins (except V
OL
OH
——2 µA1 ——5 µA2 — 100 mA 3 — 700 mA 4
650 mA 4
200 mA 5
V
OL
OH
SS
V
– 0.4 V
DDQ
(V
/2)/[(RQ/5)–15%] (V
DDQ
(V
/2)/[(RQ/5–4)+15%] — (V
DDQ
REF
—VSS + 0.4 V 6
DDQ
/2)/[(RQ/5)+15%] mA 7, 9
DDQ
/2)/[(RQ/5–4)–15%] mA 8, 9
DDQ
, ZQ, M1, M2 pin).
, DQ in High-Z.
or VIL, ZZ is held at VIH, Iout = 0 mA, Spec is
IH
= VDD max, VIN = VIH or VIL, Frequency = minimum cycle.
DD
= VDD max, VIN = VIH or VIL, Frequency = 3 MHz.
DD
= –6 mA, IOL = 6 mA.
OH
= 1/2 V
= 1/2 V
DDQ
DDQ
.
.
. The impedance update of the output driver
DDQ
through a
SS
V6
8
Loading...
+ 16 hidden pages