Helm HM1520 Instruction Manual

Strain Gage Input Module
Model HM1520
Instruction Manual
Revised : 9/21/2008
Solid state equipment has operational characteristics differing from those
Important User Information
of electromechanical equipment. “Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls” (Allen-Bradley Publication SGI-1.1) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will the Allen-Bradley Company or Helm Instrument Company be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, the Allen-Bradley Company or Helm Instrument Company cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Allen-Bradley Company or Helm Instrument Company with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of the Allen-Bradley Company and Helm Instrument Company is prohibited.
Throughout this manual we use note to make you aware of safety considerations.
ATTENTION: Identifies information about practices or circumstances that can lead to property damage. Identifies information that is especially important for successful application and understanding of the product.
Attentions help you:
identify a hazard
avoid the hazard
recognize the consequences
ATTENTION: Please check power supply ratings before proceeding! Each tonnage module consumes (+24, 65 mA +5, 150mA). Be sure to not overload the power supply.
PLC, PLC2, PLC3, and PLC5 are registered trademarks of the Allen-Bradley Company, Inc. SLC, SLC500, PanelView, RediPANEL, Dataliner are trademarks of Allen-Bradley Company, Inc. IBM is a registered trademark of International Business Machines, Incorporated. StrainGage is a registered trademark of the Helm Instrument Company, Inc.
Table of Contents StrainGage Load Module
Table of Contents Strain Gage Module User Manual
Preface...................................................................................................P-1
Who Should Use this Manual...........................................................P-1
Purpose of this Manual....................................................................P-1
Contents of this Manual..............................................................P-2
Related Documentation ..............................................................P-3
Terms and Abbreviations.................................................................P-4
Common Techniques Used in this Manual......................................P-6
Product Support.........................................................................P-6
Your Questions or Comments on this Manual...........................P-6
User Manual
Overview
Getting Started
Channel Configuration, Data and Status
Chapter 1.............................................................................................. 1-1
Trend Components..........................................................................1-1
Strain Gain Transducer Operation................................................... 1-1
Features........................................................................................... 1-1
Hardware Overview ......................................................................... 1-2
Hardware Features..........................................................................1-3
Chapter 2.............................................................................................. 2-1
Getting Started.................................................................................2-1
Required Tools and Equipment ....................................................... 2-1
System Operation............................................................................2-2
Sensor Wiring .................................................................................. 2-2
Chapter 3.............................................................................................. 3-1
Channel Configuration, Data and Status ......................................... 3-1
Module Addressing..........................................................................3-1
Module Configuration.................................................................... 3-1
Data Table Memory Map ................................................................. 3-1
Output Image..................................................................................3-1
Input Image..................................................................................... 3-3
Integer File...................................................................................... 3-5
Initial Setup Procedures
Table of Contents StrainGage Load Module User Manual
Chapter 4.............................................................................................. 4-1
Initial Setup Procedures...................................................................4-1
Step 1. Set the Run mode bit to Bypass....................................... 4-1
Step 2. Balance Sensor Input.......................................................4-1
Step 3. Set Calibration Numbers ..................................................4-2
Step 4. Set Machine Capacity Cycle............................................. 4-2
Setting Machine Capacity Scale using (1) two
Channel force module ..................................................4-2
Setting Machine Capacity Scale for multiple
channel systems........................................................... 4-3
Step 5. Set Capacity Alarms..........................................................4-3
Step 6. Set Minimum Low Alarm.................................................... 4-4
Step 7. Set Sample Count ............................................................. 4-5
System Trouble­Shooting
Step 8. Set Trend Alarms............................................................... 4-6
Set High and Low Trend Alarm – Channel 1 ................4-6
Set High and Low Trend Alarm – Channel 2 ................4-7
Additional Application Notes............................................................4-8
Mode Status..................................................................................4-8
Bypass Mode................................................................................4-8
Peak Mode....................................................................................4-8
Monitor Parts Mode....................................................................... 4-8
High Capacity and Low Minimum Alarm bits – Channel 1 & 2...... 4-10
Trend High and Low Alarm bits................................................... 4-11
Machine \ Top Stop bit................................................................ 4-12
Low Alarm Inhibit ........................................................................ 4-13
Peak Look Window.....................................................................4-14
Chapter 5 ............................................................................................. 5-1
HT-400 Sensor Ohm Reading......................................................... 5-1
Guide
Block Diagrams
.................................................................................5-2
Appendix
Table of Contents StrainGage Load Module User Manual
Specifications…………………………………………………………Appendix A
Ladder Program………………………………………………………Appendix B
Setting Up HM1520 Module for CompactLogix ..…………………Appendix C
Preface
Preface
Read this preface to familiarize yourself with the rest of this manual. This preface covers the following topics:
who should use this manual
the purpose of this manual
terms and abbreviations
conventions used in this manual
Allen-Bradley support
Who Should Use this Manual
Purpose of This Manual
Use this manual if you are responsible for the design, installation, programming, or maintenance of an automation control system that used Allen-Bradley small logic controllers.
You should have a basic understanding of SLC 500 products. You should understand electronic process control and be able to interpret the ladder logic instructions required to generate the electronic signals that control your application. If you do not, contact your local Allen-Bradley representative for the proper training before using this product.
This manual is a learning and reference guide for the Helm StrainGage Module. It contains the information you need to install, wire, and use the module.
P-1
Contents of this Manual
Preface
Chapter Title Content
Preface
1 Overview
2 Installation and Wiring
3 Channel Configuration, Data
and
Status
4 Ladder Programming Examples
5 Troubleshooting
Describes the purpose, background, and scope of this manual. Also specifies the audience for whom this manual is intended and defines key terms and abbreviations used throughout this book.
Provides a hardware and system overview. Explains and illustrates the components of the system.
Provides installation information and wiring guidelines.
Examines the channel configuration and the channel status word, and explains how the module uses configuration data and generates status during operation.
Gives an example of the ladder logic required to define the channel for operation. Also includes representative examples for unique requirements such as sample count, trend calculation, etc. Explains how to interpret and correct problems that occur while using the load module.
B Ladder Program
P- 2
A Specifications
C
PanelView Screens
Provides physical, electrical, Environmental, and functional Specifications for the module.
Shows PanelView Screens and explain their various functions.
Related Documentation
The following documents contain information that may be helpful to you as you use Allen-Bradley SLC products. To obtain a copy of any of the Allen-Bradley documents listed, contact your local Allen-Bradley office or distributor.
For Read this Document Document
Preface
Number
An overview for the MicroLogixTM Programmable Controllers
A description on how to install and use your MicroLogix Programmable Controller
A description on how to install the processor into the MicroLogix 1500 Base unit.
Selecting Discrete Input/Output Modules Compact Discrete Input/Output Modules
View power usage of expansion modules to determine power supply requirements
End Cap Installation Compact I/O End Caps/Terminators
A complete listing of current Automation Group documentation, including ordering instructions. Also indicates whether the documents are available on CD-ROM or in multi-languages A glossary of industrial automation terms and abbreviations
MicroLogix 1500 Programmable Controllers 1764-UM001A-US-P
MicroLogix 1500 Programmable Controller Base Units Installation Instructions and Wiring Diagrams
MicroLogix 1500 Processor Installation Instructions
Technical Data
Expansion Modules System Qualifier RA Website Download
Installation Instructions
Automation Group Publication Index SD499
Allen-Bradley Industrial Automation Glossary
1764-IN001A-ML-P
1764-IN002A-ML-P
1769-2.1
1769-5.16
ICCG-7.1
An article on wire sizes and types for grounding electrical equipment
P-3
National Electrical Code Published by the
National Fire Protection Association of Boston, MA.
Terms and Abbrevia­tions
Preface
The following terms and abbreviations are used throughout this manual. For definitions of terms not listed here refer to Allen-Bradley’s Industrial Automation Glossary, Publication ICCG-7.1.
Calibration - Procedure, performed by trained personnel, where machine or press is dynamically loaded to impact on load cells. A process of linearity measuring to determine the loading capacity of the machine.
Calibration Number - Amplification values established during machine calibration or pre­assigned on force load cells.
Channel - Refers to one of two, strain gage inputs available on the modules terminal block. Chassis - A hardware assembly that houses devices such as I/O modules, adapter modules,
processor modules, and power supplies. Configuration Word - Contains the channel configuration information needed by the module to
configure and operate each channel. Information is written to the configuration word through the logic supplied in your ladder program.
Data Word - A 16-bit integer that represent the value of the analog input channel. The channel data word is valid only when the channel is enabled.
Gain - Amplification of an input signal. Load/Force - Measurement of impact during a machine cycle. Sensors provide the input for
this measurement. Look Window - Resolver or cam activated window, which allows specific degrees in a machine
cycle to be processed. Low Alarm Inhibit - Number of consecutive machine cycles where low alarm is inhibited. Used
in a process where machine cycles several times before running speed is established. LSB - (Least Significant Bit) Refers to a data increment defined as the full scale range divided
by the resolution. The bit that represents the smallest value within a string of bits. Monitor Parts Mode - Status condition used during production run. Sample and compare logic
is enabled. On resolver based systems, tracking alarm limits can be enabled. Multiplexer - A switching system that allows several input signals to share a common A/D
converter. Remote Configuration - A control system where the chassis can be located several thousand
feet from the processor chassis.
P-4
Terms and Abbrevia­tions (continued)
Preface
Resolution - The smallest detectable change in a measurement, typically expressed in
engineering units (e.g. 0.15C) or as a number of bits. For example a 12-bit system has 4,096 possible output states. It can therefore measure 1 part in 4096.
Resolver - Sometimes called encoder. Device attached on a machine to determine stroke position. Sine/cosine based resolver required for Helm systems.
Reverse Load - Measurement of negative load/force being exerted on machine following the break-through of material. Also referred to as snap through.
Sample - Load/force values established from a series of machine cycles. Also defined as benchmark.
Sample Count - User input value used to specify how many machine cycles to base the sample on.
Sampling time - The time required by the A/D converter to sample an input channel. Scale - Value used to describe the press/machine overall tonnage. Set for maximum value of
one channel. For example, settings for a 150 ton press = 75. Setup Mode - Status condition of monitor typically enables during die setup. Machine capacity
alarms are enabled. On resolver based systems, press curve alarm can be enabled. This mode is also used during machine and resolver calibrations.
Status Word - Contains status information about the channel’s current configuration and operational state. You can use this information in your ladder program to determine whether the channel data word is valid.
Target Load - A reference load established by the user. Used primarily during setup to improve setup time.
Tolerance /Trend Alarm - User defined upper and lower control limits established during the sample and compare process. These limits are established on the peak load and will activate the machine stop relay when exceeded.
Tracking Alarm - Requires resolver input. The sample and compare process is applied to the entire forming force based on user selected upper and lower control limits.
Trend Deviation - Percent of change, high and low, from sample value to current value. Update Time - The time required for the module to sample and convert the input signals of all
enables input channels and make the resulting data values available to the SLC processor.
P-5
Common Techniques Used in this Manual
Product Support
The following conventions are used throughout this manual:
Bulleted lists such as this one provide information, not procedural steps.
Numbered lists provide sequential steps or hierarchical information.
Contact your Helm representative or call Helm direct at 419-893-4356:
sales and order support
product technical training
warranty support
support service agreements
Preface
Your Questions or Comments on this Manual
If you have any suggestions for how this manual could be made more useful to you, please send us your ideas.
P-6
Overview
Components
Strain Gain Transducer Operation
StrainGage Module Features
Chapter 1
You have just purchased the most advanced load monitoring solution available. HELM INSTRUMENT COMPANY, INC. manufactures a complete line of load monitoring control solutions for use on metal stamping, forging, compaction and assembly presses; cold forming, cold heating, injection molding and die cast machines.
Standard or custom transducers and load cells are available for in-die monitoring of transfer or progressive tooling.
At HELM, quality is inherent not only in the design of our products but in the attitudes of our employees as well. We’re working together to give you the best. After all, that’s what our business is all about - providing innovative instrumentation to help make your manufacturing process more productive and your operation more effective.
The Helm StrainGage combines machine and tooling monitoring with programmable limit switch function. User programmable high and low limits protect the machine and tooling to ensure part quality.
Critical setup information can be stored and uploaded as part of a die recipe program. An optional resolver input module is used to compare machine/press tonnage to crank angle for real time signature analysis.
The Helm StrainGage module is attached to the controller or to an adjacent I/O module on the din rail. The system is comprised of two parts; the input module and two Helm Strain gage based sensors.
The primary part of the load monitoring system centers around the measurement. The basic function of the Helm Strain Gain sensor is to detect the amount of deflection imposed on the press or die as parts are being formed. All Strain Gain sensors are matched to within 1% and therefore can be replaced without recalibration of the machine.
The Helm Strain Gain sensors can be mounted to strategic high stress areas of the machine frame or strategically located in tooling or applied to stop blocks. Signals from these sensors are routed to the StrainGage module for processing. The Helm Strain Gage is capable of measuring either a tension or compression signal.
Sample and Compare Logic - processor memorizes the sample or benchmark load and compares each machine cycle against this sample.
User programmable Sample Count - selectable number of machine cycles on
which to base the sample.
High and Low Capacity Alarm Sets - a discrete load limit for a maximum allowable load and a minimum allowable load.
High and Low Trend Alarm Sets - set as a percentage of load change on an established sample.
Low Alarm Inhibit - User programmable option to disable low alarm during process start-up.
Page 1-1
Chapter 1
Hardware Overview
The Helm module requires (1) input from a cam switch or a proximity sensor for establishing the peak look window
The StrainGage module can be attached to the controller or to an adjacent I/O module before or after din rail mounting. It is a Class 1 module (uses eight input words and eight output words). It interfaces to strain gage based transducers (350ohm or 700ohm).
The module can accept input from two sensors. The module has no output channels. Module configuration requires manual and user programmable setup.
The StrainGage module receives and stores digitally converted analog data into its image table for retrieval by processor. The module supports connections from any combination of up to two strain gage sensors.
Any combination of Helm Strain Gage sensors can be used. Contact Helm for additional information on the type and application of different sensor options.
Page 1-2
t
ate Switc
t
Hardware Features
Alarm Status Display Fault Status - High and Low
1. Channel 1 Gain Pot
2. Channel 1 Calibr
h
3. Channel 1 Balance Po
4. Recorder Output Jack
5. Channel 2 Gain Pot
6. Channel 2 Calibrate Switch
7. Channel 2 Balance Po
8. Gain Select Jumper
Chapter 1
Door Label Channel 1-Channel 2 calibrate switch
Wiring diagram for (2) sensor inputs
2. and 6. Channel Calibrate Switch
1. and 5. Channel Gain Potentiometer
4. Recorder Output
3. and 7. Channel Balance Potentiometer
Gain Selector High and Low Cam Jumper Setting Located at Bottom Left Corner of Module
Black Jumper
Three-position switch used for setup. AZ (Auto Zero ON) position is the normal run position. CAL position (calibrate) is used with Gain pot to set calibration numbers. OFF position is used with Balance pot to zero sensor. OFF position turns Auto Zero off. Used to set calibration numbers. Set three­position switch to CAL setting.
Jacks for analog or track output of sensor data. One jack for each channel. Can be used with chart recorders or Helm Ramcorder™ data recorder.
Used to zero balance the sensor during setup. Set three-position switch to OFF position.
Used to amplify the sensor input. This switch is factory set at high range. Under normal operating conditions, the setting should not be changed. Personnel responsible for the calibration of the Helm StrainGage module make the determination of the range setting during the calibration process.
Page 1-3
Getting Started
tell you what equipment you need
This chapter can help you to get started using the Helm StrainGage module. The procedures included here assume that you have a basic understanding of PLC products. You should understand electronic process control and be able to interpret the ladder logic instructions required to generate the electronic signals that control your application.
Because it is a start-up guide, this chapter does not contain detailed explanations about the procedures listed. It does, however, reference other chapters in this book where you can get more information about applying the procedures described in each step. It also references other SLC documentation that may be helpful if you are unfamiliar with programming techniques or system installation requirements.
If you have any questions or are unfamiliar with the terms used or concepts presented in the procedural steps, always read the referenced chapters and other recommended documentation before trying to apply the information.
This chapter will:
Chapter 2
explain how to install and wire the module
show you how to set channels for the sensor input
Required Tools and Equipment
Have the following tools and equipment ready:
small blade screwdriver
potentiometer trimmer (tweeker)
appropriate strain gage cable
programming equipment (All programming examples shown in this manual
demonstrate the use of Allen-Bradley’s RS Logix 500.
Page 2-1
System Operation
Sensor Wiring
The Strain Gage module communicates to the processor through the parallel backplane interface and receives +5Vdc and +24Vdc power from the power supply through the backplane. No external power supply is required. The MicroLogix and CompactLogix platforms can support up to 8 I/O modules. You may install up to 3 StrainGage modules using the base power supply. An additional power supply can be added to support more than 3 modules. Refer to publication 17864-UM100A-US-P for information on expansion power supply systems.
Each individual channel on the module can receive input signals from strain gage based sensors. The module converts the analog values directly into digital values.
The sensors are wired to the modules using the rightmost bank of inputs. The pin-out is shown below.
(CH 1) + SIGNAL (WHITE) (CH 1) NOISE DRAIN (SHIELD) (CH 1) – SIGNAL (RED) BOTH + GAGE (BLACK) BOTH – GAGE (GREEN) (CH 2) + SIGNAL (WHITE) (CH 2) NOISE DRAIN (SHIELD) (CH2) – SIGNAL (RED)
To ensure proper operation and high immunity to electrical noise, always use Helm strain gage cable.
To limit noise, keep strain gage cable as far away as possible from power and load lines.
The module can support up to two sensor inputs DO NOT attempt to parallel additional gages as you w ill cause damage to the module and void product warranty.
Chapter 2
Page 2-2
Channel Configuration Data and Status
This chapter explains how the StrainGage module and the processor communicate. For CompactLogix configuration, please refer to Appendix C – Setting Up HM1520 for
CompactLogix The 8 word output image (output from the CPU to the module) contains
Information that you configure to define the way a specific channel will work. Example – If you want to configure channel 2 on the module located in slot 4
in the SLC chassis, your address would be O:4.2.
(
Bit Look Window Signal CH 1&2 O:e.0/0
Bit Bypass Mode CH 1&2 O:e.0/1 Bit Peak Mode CH 1&2 O:e.0/2 Bit Monitor Parts Mode Bit O:e.0/3
Bit Reverse Load CH 1&2 O:e.0/5 Bit Low Alarm Inhibit CH 1&2 O:e.0/6 Bit Reserved O:e.0/7
o = file type : =element delimiter 4=slot .=word delimiter 2=word)
Bit Alarm Reset CH 1&2 O:e.0/4
Chapter
3
Bit D0 Bit of Sample Count O:e.0/8 Bit D1 Bit of Sample Count O:e.0/9 Bit D2 Bit of Sample Count O:e.0/10 Bit D3 Bit of Sample Count O:e.0/11 Bit D4 Bit of Sample Count O:e.0/12 Bit Reserved O:e.0/13 Bit Reserved O:e.0/14 Bit Reserved O:e.0/15 Integer Scale Value O:e.1 Integer Capacity Low Alarm Setting Channel 1 O:e.2 Integer Capacity High Alarm Setting Channel 1 O:e.3 Integer Capacity Low Alarm Setting Channel 2 O:e.4 Integer Capacity High Alarm Setting Channel 2 O:e.5 Integer Trend High/Low Alarm Setting Channel 1 O:e.6 Integer Trend High/Low Alarm Setting Channel 2 O:e.7
Page 3-1
Output Image (cont.)
Minimum Load Alarm Setting Channel 1 (Integer Word O:e.2)
Integer value of low capacity alarm setting. Range = 0 to 9999. A value of 0 disables alarm.
Capacity Load Alarm Setting Channel 1 (Integer Word O:e.3)
Integer value of high capacity alarm setting. Range = 0 to 9999. A value of 0 disables alarm.
Minimum Load Alarm Setting Channel 2 (Integer Word O:e.4)
Integer value of low capacity alarm setting. Range = 0 to 9999. A value of 0 disables alarm.
Capacity Alarm - High Setting Channel 2 (Integer Word O:e.5)
Integer value of low capacity alarm setting. Range = 0 to 9999
Trend Alarm - Channel 1 High and Low (Integer Word O:e.6)
Trend Alarm - Channel 2 High and Low (Integer Word O:e.7)
Peak Look Window Bit 0 (O:2/0)
When set on (1) the look window is active. When set off (0), the look window is inactive. The module will process data while look window is active.
Bypass Mode Bit (O:2/)
When set on (1) module is in calibration mode. Channels are disabled. No alarms are active. Only occurs when in Tonnage Calibration Screen.
Peak Mode Bit (O:2/2)
When set on (1) module is in setup (peak only monitoring) mode. Capacity alarms are active.
Alarm Reset Bit (O:2/4)
When set on (1) alarm reset occurs. Alarm condition must be cleared.
Reverse Load Bit (O:2/5)
When set on (1) reverse load values are stored (I:e.1 - I:e.2).
Low Alarm Inhibit Bit (O:2/6)
When set on (1) low alarming is disabled for duration. Duration set in ladde r counter file.
Machine Capacity Scale Setting (Integer Word O:2.1)
Represents the total load rating of each load cell. A value must be present to enable module functionality.
Integer values of high and low trend alarm settings. Values are set in percent and represent The maximum and minimum percent of change off the sample value. Range = 0 to 99%. High Trend percent is set at high byte of the word value. Low Trend percent is set at low byte of the world value. For example, to set 25% high alarm and a 20% low alarm, the actual word value is 25 * 256 + 20 = 6420. A value of 0 disables alarm.
Integer values of high and low trend alarm settings. Values are set in percent and represent The maximum and minimum percent of change off the sample value. Range = 0 to 99%. High Trend percent is set at high byte of the word value. Low Trend percent is set at low byte of the world value. For example, to set 25% high alarm and a 20% low alarm, the actual word value is 25 * 256 + 20 = 6420. A value of 0 disables alarm.
Chapter
3
Page 3-2
Data Table Input Image
Chapter
3
The 8-word module input image (input from the module to the CPU) represents data words and status words. Input words (data words) hold the input data that represents the values of the sensor inputs. Input words (status bits) contain the various status conditions and reflect the configuration settings you have entered into the output configuration words. To obtain the status of Channel 2 Capacity Alarm Bit of the module located in slot 2 of the rack, use address I:2
(I =file type : =element delimiter 2 =slot . =word delimiter 0 =word / 2 =bit)
Bit Channel 1 Low Capacity Alarm Bit I:e.0/1 Bit Channel 2 High Capacity Alarm Bit I:e.0/2 Bit Channel 2 Low Capacity Alarm Bit I:e.0/3 Bit Channel 1 Trend High Alarm Bit I:e.0/4 Bit Channel 1 Trend Low Alarm Bit I:e.0/5 Bit Channel 2 Trend High Alarm Bit I:e.0/6 Bit Channel 2 Trend Low Alarm Bit I:e.0/7 Bit Learn Cycle Indicator Bit I:e.0/9
Bit Channel 1 High Capacity Alarm Bit I:e.0/0
Integer Channel 1 Load Value I:e.1 Integer Channel 2 Load Value I:e.2 Integer Channel 1 Deviation value in Percent I:e.3 Integer Channel 2 Deviation value in Percent I:e.4 Integer Channel 1 Sample value in Ton I:e.5 Integer Channel 2 Sample value in Ton I:e.6 Integer Sample Count I:e.7
Channel 1 High Capacity Alarm Bit
When on (1) channel 1 load has met or exceeded the high alarm limit. Load values are stored at integer word I:e.1.
Channel 1 Low Capacity Alarm Bit
When on (1) channel 1 load has met or dropped below the low alarm limit. Load values are stored at integer word I:e.1.
Channel 2 High Capacity Alarm Bit
When on (1) channel 2 load has met or exceeded the high alarm limit. Load value is stored at integer word I:e.2.
Channel 2 Low Capacity Alarm Bit
When on (1) channel 2 load has met or dropped below the low alarm limit. Load value is stored at integer word I:e.2
Page 3-3
Chapter
Channel 1 High Trend Alarm Bit
When on (1) channel 1 load has met or exceeded the high alarm percentage of sample. Load values are stored at integer word I:e.1. Percent of deviation of sample is stored at integer word I:e.5 Percent of deviation of sample is stored at integer word I:e.5
Channel 1 Low Trend Alarm Bit
When on (1) channel 1 load has met or dropped below the low alarm percentage of sample. Load values are stored at integer word I:e.1. Percent of deviation of sample is stored at integer word I:e.5
Channel 2 High Trend Alarm Bit
When on (1) channel 2 load has met or exceeded the high alarm limit. Load value is stored at integer word I:e.2. Percent of deviation of sample is stored at integer word I:e.6
Channel 2 Low Trend Alarm Bit
When on (1) channel 2 load has met or dropped below the low alarm percentage of sample. Load value is stored at integer word I:e.2. Percent of deviation of sample is stored at integer word I:e.6
Channel 1 Load Value (I:e.1)
Integer word represents peak load on channel 1 for current machine cycle. If Reverse Bit (O:e.0/5) is on (1) value is reverse load on channel 1 for current machine cycle.
Channel 2 Load Value (I:e.2)
Integer word represents peak load on channel 2 for current machine cycle. If Reverse Bit (O:e.0/5) is on (1) value is reverse load on channel 2 for current machine cycle.
Note: If O:e.0/1 is set to 1 then A/D Value is integer word for calibration set. Channel 1 Percent of Deviation (I:e.3)
Integer word represents the percentage of change current peak load is to sample peak load.
Channel 2 Percent of Deviation (I:e.4)
Integer word represents the percentage of change current peak load is to sample peak load.
Channel 1 Average Sample Value (I:e.5)
Integer word represents the average of the sample load values on channel 1 in Tons.
Channel 2 Average Sample Value (I:e.6)
Integer word represents the average of the sample load values on channel 2 in Tons.
Sample Counter (I:e.7)
Counter used for number of Sample Count.
Page 3-4
3
Chapter
3
Using RS Logics 500 software, reserve two integer file’s for tonnage monitoring. Reserve one counter for tonnage monitoring.
For illustration purposes in this manual, we have reserved Integer file N10:0 - N10:25.
Data Description Address
I
Integer Channel 2 Trend Deviation in percent N10:2 Integer Channel 1 Low Trend Alarm Setting N10:3 Integer Channel 1 High Trend Alarm Setting N10:4 Integer Channel 2 Low Trend Alarm Setting N10:5 Integer Channel 2 High Trend Alarm Setting N10:6 Integer 256 Multiply register N10:7 Integer Channel 1 Peak Value in Tons N10:8 Integer Channel 2 Peak Value in Tons N10:9 Integer Channel 1 High Capacity Alarm Setting N10:11 Integer Channel 1 Low Capacity Alarm Setting N10:12 Integer Channel 2 High Capacity Alarm Setting N10:13 Integer Channel 2 Low Capacity Alarm Setting N10:14 Integer Scale N10:15 Bit Channel 1 High Capacity Alarm N10:16/0 Bit Channel 1 Low Capacity Alarm N10:16/1 Bit Channel 2 High Capacity Alarm N10:16/2 Bit Channel 2 Low Capacity Alarm N10:16/3 Bit Channel 1 High Trend Alarm N10:16/4 Bit Channel 1 Low Trend Alarm N10:16/5 Bit Channel 2 High Trend Alarm N10:16/6 Bit Channel 2 Low Trend Alarm N10:16/7 Bit Learn Cycle Bit N10:16/9 Bit Low Alarm Inhibit Bit N10:16/10 Bit Alarm Indication Bit (Module Alarm Bit) N10:16/11 Integer Low Alarm Inhibit Cycle Count N10:17 Integer # Samples (set from 1 to 16) N10:18 Integer Current Running Sample Counter N10:19 Integer Mode Status Value N10:20 Bit Cam Cycle Bit N10:21/0 Bit Start\Stop Indicator Bit N10:21/1 Bit Reverse Load Bit N10:21/6 Bit Alarm Reset Bit N10:21/7 Integer Channel 1 Calibration Value N10:22 Integer Channel 2 Calibration Value N10:23 Integer Channel 1 Sample Peak in Tons N10:24 Integer Channel 2 Sample Peak in Tons N10:25
nteger Channel 1 Trend Deviation in percent N10:1
Page 3-5
A complete listing of a sample ladder logic program is included at the back of this manual. Examples shown here are for reference.
All values are 0 (default) on initial start-up. This means that all alarms are disabled. You must make the following adjustments for proper operation:
set calibration numbers
set meter scale
set capacity (maximum load) alarms
set minimum load alarms
set sample count
set trend alarms
Steps 2 and 3 require adjustment to the three position toggle switch on the inside panel of the module.
Step 1. Set the Run mode bit to Bypass
From your operator interface, put the tonnage module into bypass mode. (Both the setup and run lights on
the tonnage module should be off.)
Rung 3:2 | PANELVIEW | CH'S 1&2 | | MODE | MODULE | | BUTTON | BYPASS BIT | | (BYPASS) | | | N10:20 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 3 1 |
NOTE: Make sure that only 1 bit is set at any time for Panel Mode, integer N10:20.
Step 2. Balance Sensor Input.
1. Set three-position switch to OFF (center) position.
Chapter 4
2. Turn balance potentiometer until 0’s are all displayed.
3. If two sensors are wired, follow this procedure for both channels. If you are using Helm Panel Software select SET CAL NO. on menu. Adjust balance pot until 0’s are
displayed.
Page 4-1
Step 3. Set Calibration Numbers
1. Set three-position switch to calibrate (down) position)
2. Turn Gain Potentiometer to dial in calibration numbers.
3. If two sensors are wired, follow this procedure for both channels. If you are using Helm Panel Software select the SET CAL NO. Menu. Adjust gain balance pot until
calibration numbers are correct for channel 1 and
channel 2.
Always make sure that the three-position switch is in ON (top) position for Normal operation. The remaining setup procedures can be accomplished with the Run Mode
bit in either Bypass, Peak or Monitor Parts Mode. However, the Bypass Mode should only be used when setting calibration values or zero balancing the sensor input.
Step 4. Set Machine Capacity Scale The three position switch should be placed in the ON (top) position.
This setting is based off of one channel. It represents the maximum allowable load or tonnage from one sensor location. Integer N10:14 should be set from your operator interface.
Rung 3:21 | CH'S 1&2 | | SCALE INFO | | | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:15| | | | 0| | | |Dest O:4.1| | | | 0| | | +------------------+ |
Setting Machine Capacity Scale using (1) two channel force module:
If 2 sensors are installed on the left and right sides of a 60 ton press, set the Scale to 30 (maximum capacity of one sensor).
Use the following table as a reference for setting the Machine Capacity Scale for a single force module installation with two sensors. Divide the press/machine capacity by the number of sensors (2) and set Scale to the result.
PRESS SCALE PRESS SWITCH PRESS SWITCH CAPACITY SETTING CAPACITY SETTING CAPACITY SETTING 20 10 30 15 40 20 45 22 50 25 60 30 80 40 110 55 150 75
...
200 100 250 125 300 150
If 2 sensors are installed in the tooling rather than on the press structure, set the Machine Capacity Scale to the highest load/tonnage of one sensor.
Chapter
4
Page 4-2
Setting Machine Capacity Scale for multiple channel systems.
Divide the Machine capacity by the number of sensors and set Machine Capacity Scale on all modules to the result. Example: If 2 load modules are used for monitoring a straight side press with 4 sensors mounted on the press columns,
set the Machine Capacity Scale on
both modules to the highest load/tonnage of one sensor.
Use the following table as a reference for setting the Machine Capacity Scale for a system comprised of (2) force modules and (4) sensors.
PRESS SWITCH PRESS SWITCH PRESS SWITCH CAPACITY SETTING CAPACITY SETTING CAPACITY SETTING (same on all (same on all (same on all modules) modules) modules) 100 25 125 31 150 37 175 43 200 50 250 62 275 68 300 75 350 87 400 100 450 112 500 125 ... 800 200 1000 250 1200 300
Step 5. Set Capacity Alarms
This value is a discrete load/tonnage value, not a percentage. NOTE: Although the range of values for capacity alarm settings is 0 to 9999, it is recommended that you do not enter
values that exceed the capacity rating of the machine/press. A value of 0 disables capacity alarm set.
Chapter
4
To determine the maximum rating for each channel, divide the total machine/press capacity by the number of sensor inputs. EXAMPLE: A press or slide rated at 100 tons with a (2) channel force module would have a capacity alarm setting of 50 tons per sensor input.
This setting differs from the Scale setting as it can be adjusted up or down depending on the nature of the process.
The recommended maximum value is 195% of Machine Capacity Scale.
Rung 3:23 | CH1 HIGH | | CAPACITY | | ALARM | | SETTING | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:11| | | | 0| | | |Dest O:4.3| | | | 0| | | +------------------+ |
Page 4-3
Chapter
Step 6. Set Minimum Low Alarm
This value is a discrete load/tonnage value, not a percentage. The range of this value is 0 to 9999. A value of 0 disables Minimum Low Alarm. Use a value here that represents a
minimum load/tonnage that is acceptable for the process. Use this alarm setting when running in Peak Mode to alarm against low load/tonnage hits.
Rung 3:22 | CH1 LOW | | CAPACITY | | ALARM | | SETTING | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:13| | | | 0| | | |Dest O:4.2| | | | 0| | | +------------------+ |
4
Page 4-4
Chapter
4
Step 7. Set Sample Count
The sample count is a user programmable parameter that tells the processor how many machine strokes are required to establish sample or benchmark load values. The value can range from 0 to 16. A value of 0 invalidates the Monitor Parts mode. You should set Sample Count to a minimum of 1 to enable Monitor Parts mode.
Note: Each time you change Monitor Parts mode bit from ON to OFF, the sample value is cleared. During normal operations, Monitor Parts mode is enabled when beginning a process run. If the process varies due to change in material thickness, for example, it may be necessary to take a new sample.
Rung 3:34 | | D0 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | | | | N10:18 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 0 8 |
Rung 3:35 | | D1 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | N10:18 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 1 9 |
Rung 3:36 | | D2 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | N10:18 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 2 10 |
Rung 3:37 | | D3 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | N10:18 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 3 11 | Rung 3:38 | | D4 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | N10:18 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 4 12 |
Page 4-5
Step 8. Set Trend Alarms
The Trend Alarm settings are established as a percentage of allowable change in load. These percentages are applied to the sample load values. There is a High Trend Alarm set and a Low Trend Alarm set for each channel. The limits can range from 0 to 99%. A setting of 0 disables the alarm.
These alarms are active when the Monitor Parts Mode bit is ON. When monitor parts mode is enabled, the sample process takes place.
Example: Monitor Parts mode is enabled with a sample count of 4 and high and low Trend Alarms set at 10%. The load generated on the next 4 machine cycles is averaged to obtain the sample value for each channel. A sample of 30 tons is calculated for channel 1 and a sample of 40 tons is calculated for chann el 2.
If any succeeding machine stroke develops tonnage of 33 (10% of 30 = 3 tons) or higher on channel 1 the High Trend Alarm is reached and the alarm bit is turned ON. If tonnage falls to 27, the Low Trend Alarm set is reached and the alarm bit is turned ON.
You have completed the basic setup and the module is operational.
Page 4-6
Chapter 4
Additional Application Notes
Mode Status
The three modes are Bypass, Peak, Monitor Parts
Bypass Mode
Used for module setup and at the time of calibration. All alarms are disabled in bypass mode.
Rung 3:2 | PANELVIEW | CH'S 1&2 | | MODE | MODULE | | BUTTON | BYPASS BIT | | (BYPASS) | | | N10:20 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 3 1 |
Peak Mode In Peak Mode operation, the high capacity alarms and the low minimum alarms are active. There is no
sample calculation and high and low Trend alarms are inactive. This mode is used primarily during machine setup operations.
Rung 3:3 | PANELVIEW | CH'S 1&2 | | MODE | MODULE | | BUTTON | PEAK MODE | | (PEAK) | BIT | | N10:20 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 4 2 |
Monitor Parts Mode When Monitor Parts Mode bit is turned ON, the sample is calculated based on the number of sample counts
and the high and low Trend alarms are activated. The High Capacity and Low Minimum Alarms remain active.
Rung 3:4 | PANELVIEW | | | MODE | CH'S 1&2 | | BUTTON | MODULE | | (MONITOR | MONITOR | | PARTS) | PARTS BIT | | N10:20 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 5 3 |
The panel function switch in these 3 rungs need to be a button on your operator interface (multistate pushbutton with 3 states) that writes 3 different values to tag N7:6
1st state - 8 bypass 2nd state - 16 peak 3rd state - 32 monitor parts
Page 4-7
Chapter
4
Chapter 4
Alarm Bits - 9 bits used to determine which alarm condition is detected. High Capacity and Low Capacity Alarm bits - Channel 1 & Channel 2
Rung 3:8 | | | | | CH1 HIGH CH1 HIGH | | CAPACITY CAPACITY | | ALARM BIT ALARM | | I:4 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 0 | 0 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:9 | | | | | CH1 LOW CH1 LOW | | CAPACITY CAPACITY | | ALARM BIT ALARM | | I:4 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 1 | 1 | | | | +++ +++ +++ +++ | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:10 | | | | | CH2 HIGH CH2 HIGH | | CAPACITY CAPACITY | | ALARM BIT ALARM | | I:4 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 2 | 2 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:11 | | | | | CH2 LOW CH2 LOW | | CAPACITY CAPACITY | ALARM BIT ALARM | | I:4 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 3 | 3 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
|
Page 4-8
Chapter
4
Trend High and Low Alarm bits
Rung 3:12 | | | | | CH1 HIGH CH1 HIGH | | TREND TREND | | ALARM BIT ALARM | | I:4 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 4 | 4 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:13 | | | | | CH1 LOW CH1 LOW | | TREND TREND | | ALARM BIT ALARM | | I:4 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 5 | 5 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:14 | | | | | CH2 HIGH CH2 HIGH | | TREND TREND | | ALARM BIT ALARM | | I:4 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 6 | 6 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:15 | | | | | CH2 LOW CH2 LOW | | TREND TREND | | ALARM BIT ALARM | | I:4 N10:16 |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 7 | 7 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Page 4-9
|
Chapter
4
Machine / Top Stop bit
Rung 2:13 CAUSES EITHER E-STOP OR TOP STOP RELAY TO DROP OUT WHEN THERE IS A TONNAGE FAULT | CH'S 1&2 | E-STOP OR | | MODULE | TOP STOP | | ALARM BIT | RELAY | | N10:16 O:2 | |----]/[---------------------------------------------------------------------------------------------------------------( )-----| | 11 0 |
NOTE: Customer mapped in output module.
Page 4-10
Chapter
4
Low Alarm Inhibit
In some processes it may be necessary to inhibit the Low Capacity alarm during machine ramp up. Use the following example to set the low alarm inhibit bit based on a counter.
Rung 3:0 | PANELVIEW | CH'S 1&2 | | LOW ALARM | MODULE | | INHIBIT | LOW | | INDICATOR | INHIBIT | | | ALARM | | N10:16 O:4 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 10 6 |
Rung 2:0 | PRESS IN | | MOTION BIT | | N10:21 C5:5 | |----]/[--------------------------------------------------------------------------------------------------------+--(RES)-----+-| | 8 | | | | | PANELVIEW | | | | LOW ALARM | | | | INHIBIT | | | | INDICATOR | | | | N10:16 | | | +----(L)-----+ | |
10 |
NOTE: Use N10:21/8 when using Helm’s resolver module and Helm’s press in motion ladder logic or use customer’s own press in motion bit.
Rung 2:1 | PANELVIEW | | AND CH'S | | 1&2 MODULE LOW ALARM | | CAM CYCLE INHIBIT | | BIT COUNTER | | N10:21 C5:5 +CTU---------------+ | |----] [------]/[------------------------------------------------------------------------------------+COUNT UP +-(CU)-| | 8 DN |Counter C5:5+-(DN) | | |Preset 4| | | |Accum 1| | | +------------------+ |
Rung 2:2 | PRESS IN PANELVIEW | | MOTION BIT LOW ALARM | | INHIBIT | | INDICATOR | | N10:21 C5:5 N10:16 | |----] [------] [------------------------------------------------------------------------------------------------------(U)-----| | 8 DN 10 |
Rung 2:4 MOVES LOW ALARM INHIBIT COUNTS ENTERED FROM PANELVIEW INTO THE PRESET OF THE LOW ALARM INHIBIT COUNTER | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:17| | | | 0| | | |Dest C5:5.PRE| | | | 4| | | +------------------+ |
Page 4-11
Chapter
4
Peak Look Window
The following example details the peak look window requirement.
Rung 2:3 SETS UP CAM WINDOW FOR TONNAGE MODULE | PANELVIEW | | AND CH'S | | 1&2 MODULE | | CAM CYCLE | | BIT | | +LIM---------------+ N10:21 | |-+LIMIT TEST +-------------------------------------------------------------------------------------------------( )-----| | |Low Lim 90| 0 | | | | | | |Test N153:0| | | | 0| | | |High Lim 220| | | | | | | +------------------+ |
- OR –
Rung 2:7 | | | | prox probe| | | or rotary | ch's 1&2 | | cam input | cam bit | | I:4 N10:21 | |----] [---------------------------------------------------------------( )-----| | 0 0 |
Note: Customer mapped in input.
Input for the Look Window can be obtained from a rotary cam limit switch, proximity probe or position resolver.
N10:21/1 Indicates the machine stop and start status on the Panel. This bit is set to 1 (ON) when a module alarm occurs.
N10:21/0 Set bit to 1 (ON) during peak window time, clear at other times.
Page 4-12
System Trouble­shooting Guide
switch is in top (ON) position. (See diagram page 1-3)
Make sure three position
HT-400 Sensor Ohm Readings
Green-Black. . . . . . . . . . . . . . . . . . . . . 350 ohms
Red-White . . . . . . . . . . . . . . . . . . . . . . 350 ohms
All other color combinations . . . . . . . . . 266 ohms
All colors to Ground. . . . . . . . . . . . . . . . open
Shield to Ground . . . . . . . . . . . . . . . . . . open
Page 5-1
Chapter
5
System Trouble­shooting Guide (contd.)
Alarm does not reset
or remain reset w/
press stopped
Check zero balance
on all channels
Connect sensor
Broken sensor cable
or sensor bad
Disconnected
Check sensor connections
at terminal strip
Bad
readings
Disconnect sensors and
take ohm readings
Not able to
balance channel(s)
Connected
Reconnect sensors.
Good readings
Channel(s) balance OK
Check calibration numbers
Incorrect
Dial in correct
calibration number
Run press
Page 5-2
Alarm
in Peak Mode
Chapter
Alarm can be reset
and remains cleared
with press stopped
Does alarm fire again
with press running
Yes
Is alarm equal to 195%
of capacity alarm of
any channel
No
Check for slug build-up
in die
None
Check for broken shear
collar, linkage or other
press or die damage
None
Check press
parallelism
Parallel
5
No
Yes
Yes
Yes
Out of
parallel
Intermittent press overload condition
Intermittent sensor
cable short
Remove slug and
run press
Correct problem
Correct problem
System Trouble­shooting Guide (contd.)
Alarm in
Monitor Parts Mode
Alarm does not reset
with press stopped
Alarm does reset
with press stopped
SetmodetoPeak
Check for slug build-up
in die
No alarm
Re sample with
press running
Check for broken shear
collar, linkage, or other
press or die damage
Check press parallelism
Page 5-3
Capacity alarm fired
Tolerance alarm fired
Yes
No
Yes
None
Out of
Parallel
parallel
Chapter
Remove slug and
Correct problem
Correct problem
5
run press
System Trouble­shooting Guide (contd.)
Run press
Page 5-4
Remove jumper
Yes
Chapter
5
Press not stopped
during an alarm condition
No
Is relay jumped out
at press controls
No
Relay should be energized
and contacts closed during
a "no alarm" condition.
Contacts open during power
down of unit
No
Replace relay
System Trouble­shooting Guide (contd.)
Tonnage readings
on diagonal corners
HIGH
Replace
wear collar
Broken
Check for broken or
deformed shear collar
Correct
problem
parallel
Remove slug Check for slug build-up
& run press
Yes
Check the parallelism
of press
Parallel
in die
Out of
Page 5-5
Chapter
Uneven load
distribution
Tonnage readings
on adjacent corners
Correct
problem
Remove slug
& run press of press
Replace
wear collar
Out of
parallel
Yes
Broken
Check the parallelism
Check for slug build-up
Check for broken or
deformed shear collar
HIGH
Remove slug
of press
ParallelOK
in die
None Parallel
& run press
Correct
problem
Replace
wear collar
5
Yes
Out of parallel
Broken
Tonnage readings
on one corner
Check for slug build-up
in die
Check the parallelism
Check for broken or
deformed shear collar
HIGH
None
System Trouble­shooting Guide (contd.)
Page 5-6
Yes
Correct problem
Yes
Correct problem
Yes
Correct problem
Chapter
Erratic readings
Check for die
problem
None
Check for variation
in stock
None
Check for press
problem
5
Electrical Specifications:
Backplane Current Consumption Backplane Power Consumption
Appendix A
10W
Physical Specifications:
Number of Channels I/O Chassis Location A/D Conversion Method Normal Mode Rejection
(between + input and - input) AMP roll-off frequency
Current Rating
Calibration Isolation
LED Indicators Module ID Code Recommended Cable Terminal Strip
2 (isolated) Any I/O module slot except 0 Successive Approximation - 12 bit 50 db at 2000 gain
650 Hz at 3000 Gain 132mA @ 5V
70mA @ 24V Manual Calibration
500 VDC continuous between inputs and chassis ground, and between inputs and backplane
6 LED’s for alarm status 3535 Strain Gage Cable (Helm part number 6117) 8-pin removable
Environmental Specifications:
Input Specifications:
Operating Temperature
Hazardous Environment Classification
Type of Input Input Impedance Display Resolution Overall Module Accuracy Module Update Time
0°C to 60°C (32°F to 140°F) Class 1 Division 2 Hazardous Environment
Strain Gage (350 ohm, 700 ohm) 1K Up to 0.1% of full scale 1% of full scale 140 µsec
Ladder
Page A-1
Programming
Ladder Programming Summary:
Appendix B
Appendix B, Section 2 - ladder interface for a 2 channel tonnage system Appendix B, Section 3 - ladder interface for a 4 channel tonnage system Appendix B, Section 4 - ladder file required for every StrainGage module
in your plc. Ex: 2 tonnage modules = 2 files, each with a different integer table and different I/O addresses.
Note: 1.) For 2 channel system - use ladder in sections 2 & 4
2.) For 4 channel system - use ladder in sections 3 and have 2 files same as section 4, the file for CH’S 1 & 2 uses integer N10 and file and file for CH’S 3 & 4 uses integer N11.
3.) If creating a system with more than 2 StrainGage modules, use Appendix B, Section 3 as a reference. This file has all the common integers needed for each StrainGage mod
Appendix B
Ladder Programming
Items needed to map into program:
1.) Press in motion bit a.) If you are using Helm HR-1101 resolver for position input and
are using our sample ladder:
Rung 2:0
| helm's | press in |
| press in | motion bit | | motion bit| | | N12:0 N10:21 | |----] [---------------------------------------------------------------( )-----| | 4 0 |
b.) If you have your own press in motion bit
Rung 2:1 | customer | press in | | press in | motion bit | | motion bit| | | N7:0 N10:21 | |----] [---------------------------------------------------------------( )-----| | 0 0 |
2.) Resolver or a rotary cam or prox probe a.) If using resolver, map the angle value into N153:0
Rung 2:3 SETS UP CAM WINDOW FOR TONNAGE MODULE | PANELVIEW | | AND CH'S | | 1&2 MODULE | | CAM CYCLE | | BIT | | +LIM---------------+ N10:21 | |-+LIMIT TEST +-------------------------------------------------------------------------------------------------( )-----| | |Low Lim 600| 0 | | | | | | |Test N153:0| | | | 0| | | |High Lim 2830| |
| | | | +------------------+ |
Note : Centers Signature in look window. |
Ladder Programming
Appendix B
b.) If using rotary cam or prox probe and it’ a:
1.) 2 CH system, modify rung 2:3 (Appendix B, Section 2).
Rung 2:7 | | | | prox probe| | | or rotary | ch's 1&2 | | cam input | cam bit | | I:4 N10:21 | |----] [---------------------------------------------------------------( )-----| | 0 0 |
2.) 4 CH system, modify rung 3:3 (Appendix B, Section 3).
Rung 2:4 | | | prox probe | | or rotary ch's 1&2 | | cam input cam bit | | I:4 N10:21 | |----] [--------------------------------------------------------+----( )-----+-| | 0 | 0 | | | | | | | | | | | | ch's 3&4 | | | | cam bit | | | | N11:21 | | | +----( )-----+ | | 0 |
NOTE: Make sure prox probe or rotary cam is on between 90 to 220°
3.) Top Stop or E-Stop a.) 2 CH system, modify rung 2:13 (Appendix B, Section 2) for where
your top stop or e-stop relay is connected.
Rung 2:5 | ch's 1&2 | top stop | | module | or e-stop | | alarm bit | relay | | N10:16 O:7 | |----]/[---------------------------------------------------------------( )-----| | 11 0 |
NOTE: Whenever output module is located.
b.) 4 CH system, modify rung 3:27 (Appendix B, Section 3).
| ch's 1&2 |ch's 3&4 | top stop | | module |module | or e-stop | | alarm bit |alarm bit | relay | | N10:16 N11:16 O:7 | |----]/[--------]/[----------------------------------------------------( )-----| | 11 11 0 |
NOTE: Wherever output module is located.
Rung 2:6
Ladder Programming
Appendix B
Rung 2:0 | PRESS IN | | MOTION BIT | | N10:21 C5:5 | |----]/[--------------------------------------------------------------------------------------------------------+--(RES)-----+-| | 0 | | | | | PANELVIEW | | | | LOW ALARM | | | | INHIBIT | | | | INDICATOR | | | | N10:16 | | | +----(L)-----+ | | 10 | Rung 2:1 | PANELVIEW | | AND CH'S | | 1&2 MODULE LOW ALARM | | CAM CYCLE INHIBIT | | BIT COUNTER | | N10:21 C5:5 +CTU---------------+ | |----] [------]/[------------------------------------------------------------------------------------+COUNT UP +-(CU)-| | 0 DN |Counter C5:5+-(DN) | | |Preset 4| | | |Accum 1| | | +------------------+ |
Rung 2:2 | PRESS IN PANELVIEW | | MOTION BIT LOW ALARM | | INHIBIT | | INDICATOR | | N10:21 C5:5 N10:10 | |----] [------] [------------------------------------------------------------------------------------------------------(U)-----| | 0 DN 10 |
Rung 2:3 SETS UP CAM WINDOW FOR TONNAGE MODULE | PANELVIEW | | AND CH'S | | 1&2 MODULE | | CAM CYCLE | | BIT | | +LIM---------------+ N10:21 | |-+LIMIT TEST +-------------------------------------------------------------------------------------------------( )-----| | |Low Lim 600| 0 | | | | | | |Test N153:0| | | | 0| NOTE: CENTERS SIGNITURE IN LOOKWINDOW | | | | | | |High Lim 2830| | | | | | | +------------------+ |
Rung 2:4 MOVES LOW ALARM INHIBIT COUNTS ENTERED FROM PANELVIEW INTO THE PRESET OF THE LOW ALARM INHIBIT COUNTER | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:17| | | | 0| | | |Dest C5:5.PRE| | | | 4| | | +------------------+ |
Rung 2:13 CAUSES EITHER E-STOP OR TOP STOP RELAY TO DROP OUT WHEN THERE IS A TONNAGE FAULT | CH'S 1&2 | E-STOP OR | | MODULE | TOP STOP | | ALARM BIT | RELAY | | N10:16 O:7 | |----]/[---------------------------------------------------------------------------------------------------------------( )-----| | 11 0 |
Rung 2:14 | | |-------------------------------------------------------------+END+------------------------------------------------------------| | |
Ladder Programming
Rung 3:0 | | | | | press in | | motion bit | | N10:21 C5:5 | |----]/[--------------------------------------------------------------------------------------------------------+--(RES)-----+-| | 0 | | | | | PANELVIEW | | | | LOW ALARM | | | | INHIBIT | | | | INDICATOR | | | | N10:16 | | | +----(L)-----+ | | 10 |
Rung 3:1 | PANELVIEW | | AND CH'S | | 1&2 MODULE LOW ALARM | | CAM CYCLE INHIBIT | | BIT COUNTER | | N10:21 C5:5 +CTU---------------+ | |----] [------]/[------------------------------------------------------------------------------------+COUNT UP +-(CU)-| | 0 DN |Counter C5:5+-(DN) | | |Preset 4| | | |Accum 1| | | +------------------+ |
Rung 3:2 | PANELVIEW | | LOW ALARM | | press in INHIBIT | | motion bit INDICATOR | | N10:21 C5:5 N10:16 | |----] [------] [------------------------------------------------------------------------------------------------------(U)-----| | 0 DN 10 |
Rung 3:3 SETS UP CAM WINDOW FOR TONNAGE MODULE | PANELVIEW | | AND CH'S | | 1&2 MODULE | | CAM CYCLE | | BIT | | +LIM---------------+ N10:21 | |-+LIMIT TEST +------------------------------------------------------------------------------------------+----( )-----+-| | |Low Lim 600| | 0 | | | | | | | | | |Test N153:0| | | | | | 124| | | | | |High Lim 2830| NOTE: CENTERS SIGNITURE IN LOOKWINDOW | | | | | | | | | | +------------------+ | | | | | | | | | | | | | | | | | CH'S 3&4 | | | | MODULE CAM | | | | CYCLE | | | | BIT | | | | N11:21 | | | +----( )-----+ | | 0 |
Rung 3:4 | PANELVIEW | | | LOW ALARM | CH'S 3&4 | | INHIBIT | LOW ALARM | | INDICATOR | INHIBIT | | | MAP IN | | N10:16 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 10 4 |
Appendix B
Ladder Programming
Appendix B
Rung 3:7 MOVES LOW INHIBIT COUNTS THAT IS ENTERED FROM PANELVIEW INTO PRESET OF THE LOW ALARM INHIBIT COUNTER | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:17| | | | 4| | | |Dest C5:5.PRE| | | | 4| | | +------------------+ |
Rung 3:9 COPIES SCALE INFORMATION FROM CH'S 1&2 TONNAGE MODULE 1 INTO CH'S 3&4 TONNAGE MODULE 2 | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:15| | | | 1000| | | |Dest N11:15| | | | 1000| | | +------------------+ |
Rung 3:27 DROPS OUT RELAY WHEN THERE IS A TONNAGE FAULT | CH'S 1&2 |CH'S 3&4 | TOP STOP | | MODULE |MODULE | RELAY OR | | ALARM BIT |ALARM BIT | E-STOP | | | RELAY | | N10:16 N11:16 O:7 | |----]/[--------]/[----------------------------------------------------------------------------------------------------( )-----| | 11 11 0 |
Rung 3:28 | | |-------------------------------------------------------------+END+------------------------------------------------------------| | |
Ladder Programming
Appendix B
Rung 3:0 | PANELVIEW | CH'S 1&2 | | LOW ALARM | MODULE | | INHIBIT | LOW | | INDICATOR | INHIBIT | | | ALARM | | N10:16 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 10 6 |
Rung 3:1 | PANELVIEW | CH'S 1&2 | | AND CH'S | MODULE | | 1&2 MODULE| LOOK | | CAM CYCLE | WINDOW | | BIT | SIGNAL | | N10:21 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 0 0 |
Rung 3:2 | PANELVIEW | CH'S 1&2 | | MODE | MODULE | | BUTTON | BYPASS BIT | | (BYPASS) | | | N10:20 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 3 1 |
Rung 3:3 | PANELVIEW | CH'S 1&2 | | MODE | MODULE | | BUTTON | PEAK MODE | | (PEAK) | BIT | | N10:20 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 4 2 |
Rung 3:4 | PANELVIEW | | | MODE | CH'S 1&2 | | BUTTON | MODULE | | (MONITOR | MONITOR | | PARTS) | PARTS BIT | | N10:20 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 5 3 |
Rung 3:5 | PANELVIEW | | | & CH'S 1&2| CH'S 1&2 | | REVERSE | MODULE | | LOAD | REV LOAD | | BUTTON | BIT | | N10:21 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 6 5 |
Rung 3:6 | SAMPLE | | SETTING | | +MOV---------------+ | |-------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:18| | | | 0| | | |Dest C5:0.PRE| | | | 0| | | +------------------+ |
Rung 3:7 | MODULE 1 |PANELVIEW SAMPLE | | CYCLE |MODE COUNTER | | BIT |BUTTON | | |(MONITOR | | | PARTS) | | N10:21 N10:20 +CTD---------------+ | |----] [--------] [--------------------------------------------------------------------------------+COUNT DOWN +-(CD)-| | 0 5 |Counter C5:0+-(DN) | | |Preset 0| | | |Accum 0| | | +------------------+ |
Rung 3:8 | PANELVIEW SAMPLE | | MODE COUNTER | | BUTTON | | (PEAK) | | N10:20 C5:0 | |-+----] [-----+----------------------------------------------------------------------------------------------------(RES)----| | | 4 | | | | S:1 | | | +--] [-------+ | | 15 |
Ladder Programming
Appendix B
Rung 3:9 | CURRENT | | SAMPLE | | COUNT | | +MOV---------------+ | |--------------------------------------------------------------------------------------------------------+MOVE +-| | |Source C5:0.ACC| | | | 0| | | |Dest N10:19| | | | 0| | | +------------------+ |
Rung 3:10 | | PANELVIEW | | | LEARN | | | CYCLE | | | INDICATOR | | C5:0 N10:16 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | DN 9 |
Rung 3:11 | | | | | CH1 HIGH CH1 HIGH | | CAPACITY CAPACITY | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 0 | 0 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:12 | | | | | CH1 LOW CH1 LOW | | CAPACITY CAPACITY | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 1 | 1 | | | | | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:13 | | | | | CH2 HIGH CH2 HIGH | | CAPACITY CAPACITY | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 2 | 2 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:14 | | | | | CH2 LOW CH2 LOW | | CAPACITY CAPACITY | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 3 | 3 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Ladder Programming
Rung 3:15 | | | | | CH1 HIGH CH1 HIGH | | TREND TREND | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 4 | 4 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:16 | | | | | CH1 LOW CH1 LOW | | TREND TREND | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 5 | 5 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:17 | | | | | CH2 HIGH CH2 HIGH | | TREND TREND | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 6 | 6 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:18 | | | | | CH2 LOW CH2 LOW | | TREND TREND | | ALARM BIT ALARM | | I:2 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(L)-----+-| | 7 | 7 | | | | CH'S 1&2 | | | | MODULE | | | | ALARM BIT | | | | N10:16 | | | +----(L)-----+ | | 11 |
Rung 3:19 | PANELVIEW | | TONNAGE | | FAULT CH1 HIGH | | RESET TREND | | BUTTON ALARM | | N10:21 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(U)-----+-| | 7 | 4 | | | | | | | | | | | | CH1 LOW | | | | TREND | | | | ALARM | | | | N10:16 | | | +----(U)-----+ | | | 5 | | | | | | | | | | | | CH2 HIGH | | | | TREND | | | | ALARM | | | | N10:16 | | | +----(U)-----+ | | | 6 | | | | | | | | | | | | CH2 LOW | | | | TREND | | | | ALARM | | | | N10:16 | | | +----(U)-----+ | | 7 |
Appendix B
Ladder Programming
Rung 3:20 | PANELVIEW | | TONNAGE | | FAULT CH1 HIGH | | RESET CAPACITY | | BUTTON ALARM | | N10:21 N10:16 | |----] [--------------------------------------------------------------------------------------------------------+----(U)-----+-| | 7 | 0 | | | | | | | | | | | | CH1 LOW | | | | CAPACITY | | | | ALARM | | | | N10:16 | | | +----(U)-----+ | | | 1 | | | | | | | | | | | | CH2 HIGH | | | | CAPACITY | | | | ALARM | | | | N10:16 | | | +----(U)-----+ | | | 2 | | | | | | | | | | | | CH2 LOW | | | | CAPACITY | | | | ALARM | | | | N10:16 | | | +----(U)-----+ | | 3 |
Rung 3:21 | PANELVIEW | | | TONNAGE | CH'S 1&2 | | FAULT | MODULE | | RESET | ALARM | | BUTTON | RESET BIT | | N10:21 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 7 4 |
Appendix B
Rung 3:22 | PANELVIEW | | | ALARM | | | RESET | MODULE 1 | | BUTTON | ALARM | | | BIT | | N10:21 N10:16 | |----] [----------------------------------------c---------------------------------------------------------------------(U)-----| | 7 11 |
Rung 3:23 | CH'S 1&2 | | SCALE INFO | | | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:15| | | | 0| | | |Dest O:2.1| | | | 0| | | +------------------+ |
Rung 3:24 | CH1 LOW | | CAPACITY | | ALARM | | SETTING | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:12| | | | 0| | | |Dest O:2.2| | | | 0| | | +------------------+ |
Rung 3:25 | CH1 HIGH | | CAPACITY | | ALARM | | SETTING | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:11| | | | 0| | | |Dest O:2.3| | | | 0| | | +------------------+ |
Rung 3:26 | CH2 LOW | | CAPACITY | | ALARM | | SETTING | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:14| | | | 0| | | |Dest O:2.4| | | | 0| | | +------------------+ |
Rung 3:27 | CH2 HIGH | | CAPACITY | | ALARM | | SETTING | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source N10:13| | | | 0| | | |Dest O:2.5| | | | 0| | | +------------------+ |
Rung 3:28 | CH 1 TREND | | DEVIATION | | IN PERCENT | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source I:2.3| | | | 0| | | |Dest N10:1| | | | 0| | | +------------------+ |
Rung 3:29 | CH 2 TREND | | DEVIATION | | IN PERCENT | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source I:2.4| | | | 0| | | |Dest N10:2| | | | 0| | | +------------------+ |
Rung 3:30 | +MUL---------------+ | |-----------------------------------------------------------------------------------------------------+-+MULTIPLY +-+-| | | |Source A N10:4| | | | | | 0| | | | | |Source B 256| | | | | | | | | | | |Dest N10:7| | | | | | 0| | | | | +------------------+ | | | | | | | | TREND | | | | HIGH\LOW | | | | ALARM | | | | SETTING | | | | FOR CH1 | | | | +ADD---------------+ | | | +-+ADD +-+ | | |Source A N10:7| | | | 0| | | |Source B N10:3| | | | 0| | | |Dest O:2.6| | | | 0| | | +------------------+ |
Ladder Programming
Appendix B
Ladder Programming
Appendix B
Rung 3:31 | +MUL---------------+ | |-----------------------------------------------------------------------------------------------------+-+MULTIPLY +-+-| | | |Source A N10:6| | | | | | 0| | | | | |Source B 256| | | | | | | | | | | |Dest N10:7| | | | | | 0| | | | | +------------------+ | | | | TREND | | | | HIGH\LOW | | | | ALARM | | | | SETTING | | | | FOR CH2 | | | | +ADD---------------+ | | | +-+ADD +-+ | | |Source A N10:7| | | | 0| | | |Source B N10:5| | | | 0| | | |Dest O:2.7| | | | 0| | | +------------------+ |
Rung 3:32 DISPLAYS PEAK TONNAGE FOR CHANNEL 1 AS LONG AS MODULE IS NOT IN SETUP MODE | PANELVIEW | | MODE | | BUTTON | | (BYPASS) | | N10:20 +MOV---------------+ | |----]/[--------------------------------------------------------------------------------------------------+MOVE +-| | 3 |Source I:2.1| | | | 0| | | |Dest N10:8| | | | 0| | | +------------------+ |
Rung 3:33 DISPLAYS CAL NUMBER FOR CHANNEL 1 ON PANELVIEW | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source I:2.1| | | | 0| | | |Dest N10:22| | | | 0| | | +------------------+ |
Rung 3:34 DISPLAYS PEAK TONNAGE FOR CHANNEL 2 AS LONG AS MODULE IS NOT IN SETUP MODE | PANELVIEW | | MODE | | BUTTON | | (BYPASS) | | N10:20 +MOV---------------+ | |----]/[--------------------------------------------------------------------------------------------------+MOVE +-| | 3 |Source I:2.2| | | | 0| | | |Dest N10:9| | | | 0| | | +------------------+ |
Rung 3:35 DISPLAYS CAL NUMBER FOR CHANNEL 2 ON PANELVIEW | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source I:2.2| | | | 0| | | |Dest N10:23| | | | 0| | | +------------------+ |
Rung 3:36 | CH 1 | | AVERAGE | | of SAMPLES | | IN TONS | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source I:2.5| | | | 0| | | |Dest N10:24| | | | 0| | | +------------------+ |
Rung 3:37 | CH 2 | | AVERAGE | | of SAMPLES | | IN TONS | | +MOV---------------+ | |---------------------------------------------------------------------------------------------------------+MOVE +-| | |Source I:2.6| | | | 0| | | |Dest N10:25| | | | 0| | | +------------------+ |
Ladder Programming
Appendix B
Rung 3:38 | | D0 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | | | | N10:18 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 0 8 |
Rung 3:39 | | D1 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | N10:18 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 1 9 |
Rung 3:40 | | D2 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | N10:18 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 2 10 |
Rung 3:41 | | D3 BIT OF | | PANELVIEW | SAMPLE | | ENTRY | COUNT | | N10:18 O:2 | |----] [---------------------------------------------------------------------------------------------------------------( )-----| | 3 11 |
Rung 3:42 | | |-------------------------------------------------------------+END+------------------------------------------------------------| | |
Setting Up HM1520 Module for CompactLogix
Adding HM1520 module to your RXLogix 5000 project file
Open the RSLogix 5000 project in which you wish to install the module. Right click on I/O Configuration Select New Module Select 1769 MODULE – Generic 1769 Module Click OK
Module Properties:
Enter Module name (must begin with a letter) example) HELM HM1520 Enter Module description Enter Slot location Select Comm Format. Must be Data – INT
Connection Parameters
INPUT 101 8 OUTPUT 100 8 CONFIGURATION 102 0
I/O Data Tags for RSLogix 5000
INPUT IMAGE DATA TAGS
Data Tags Local:x.I
.Data[0] BIT 0
.Data[1] INT - Channel 1 (Left) Load Value .Data[2] INT - Channel 2 (Right) Load Value .Data[3] INT - Channel 1 Percent Deviation Value .Data[4] INT - Channel 2 Percent Deviation Value .Data[5] INT - Channel 1 Sample Value in Tons .Data[6] INT - Channel 2 Sample Value in Tons .Data[7] INT - Sample Count
Data Type
Bit Description
Channel 1 High Capacity Alarm Indication Bit
1
Channel 1 Low Capacity Alarm Indication Bit
2
Channel 2 High Capacity Alarm Indication Bit
3
Channel 2 Low Capacity Alarm Indication Bit
4
Channel 1 High Trend Alarm
5
Channel 1 Low Trend Alarm
6
Channel 2 High Trend Alarm
7
Channel 2 Low Trend Alarm
8
Reserved
9
Learn Cycle Indication Bit
Appendix C
Appendix C
OUTPUT IMAGE TAGS
Data Tags Local:x.O
.Data[0]
.Data[1] INT - Set Scale Value .Data[2] INT - Set Channel 1 Low Capacity Alarm Value .Data[3] INT - Set Channel 1 High Capacity Alarm Value .Data[4] INT - Set Channel 2 Low Capacity Alarm Value .Data[5] INT - Set Channel 2 High Capacity Alarm Value .Data[6] INT
.Data[7] INT
Data Type
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit
HByte LByte
HByte LByte
Bit Description
0
Look Window Signal Input Bit
1
Set Bypass Mode Bit
2
Set Peak Mode Bit
3
Set Monitor Parts Mode Bit
4
Alarm Reset Bit
5
Reverse Load Enable Bit
6
Low Alarm Inhibit Enable Bit
7
Reserved
8
Sample Count D0 Bit
9
Sample Count D1 Bit
10
Sample Count D2 Bit
11
Sample Count D3 Bit
12
Sample Count D4 Bit
- Channel 1 Trend High/Low Value Set Ch1 High Trend Percent value (0 – 99) Set Ch1 Low Trend Percent value (0 – 99)
- Channel 2 Trend High/Low Value Set Ch2 High Trend Percent value (0 – 99) Set Ch2 Low Trend Percent value (0 – 99)
Loading...