HEI H1A424M167 Datasheet

H1A424M167
Image Signal Processor
for Hyundai CMOS Image Sensor
Data Sheet
Version 1.0
Electronics Industries Co., Ltd
REVISION HISTORY
Revision Issue Date Comments
0.45 April 28, 1999 Draft
0.9 June 15, 1999 Added Suspend Pin(No.16) Added Flicker Free Banding noise filter Added Histogram Equalization function Added STATUS_FLAGS register Modified Gamma Correction function Modified AWB/AE function
0.95 August 10, 1999 Added CIF type CIS(HV7121X) support function Added X-flip function Modified Edge Enhancement filter JFIF color space conversion equation Modified BASE_ENB register Modified STATUS_FLAGS register Modified AWB/AE function
1.0 October 11, 1999 Added Functional Description/Register Description Added Soldering Description Formal Release
1999 October 11 Page 2
TABLE OF CONTENTS
1. FEATURES......................................................................................................................................5
2. PIN CONFIGURATION..................................................................................................................6
3. PIN DEFINITION............................................................................................................................7
4. SYSTEM DIAGRAM.....................................................................................................................10
5. BLOCK DIAGRAM ......................................................................................................................10
6. VIDEO PROCESSING ENGINE BLOCK DIAGRAM............................................................... 11
7. FUNCTIONAL DESCRIPTION....................................................................................................12
7.1. HOST INTERFACE .......................................................................................................................12
7.1.1. Serial Interface..................................................................................................................12
7.1.2. Host Parallel Interface ...................................................................................................... 14
7.1.3. Serial or Parallel Interface selection .................................................................................15
7.2. CLOCK(MCLK, PCLK, VCLK) TIMING DIAGRAM .....................................................................16
7.3. VIDEO OUTPUT INTERFACE......................................................................................................... 16
7.4. RELATIONS BETWEEN INPUT VIDEO TIMING AND OUTPUT VIDEO TIMING ........................................ 17
7.4.1. VGA................................................................................................................................... 18
7.4.2. CIF....................................................................................................................................18
7.4.3. SIF..................................................................................................................................... 19
7.4.4. QCIF ................................................................................................................................. 19
7.4.5. QSIF..................................................................................................................................20
8. REGISTER DESCRIPTION .........................................................................................................21
8.1. REGISTERS MNEMONIC TABLE....................................................................................................21
8.2. BASE REGISTER MAP................................................................................................................ 24
8.2.1. Normal Register[80h~83h]................................................................................................ 24
8.2.2. Color Matrix Coefficients Value[8Ah ~ 95h]..................................................................... 26
8.3. AUTO REGISTER MAP...............................................................................................................29
8.3.1. Function Enable Register[A0h]......................................................................................... 29
8.3.2. AWB/AE Windows Configuration Registers[A1h~A6h]......................................................30
8.3.3. Normal Register[A7h~B8h]............................................................................................... 31
8.4. OUT REGISTER MAP..................................................................................................................37
8.4.1. Normal Register[C0h~C2h]............................................................................................... 37
1999 October 11 Page 3
8.4.2. Histogram Equalization Control Register[C3h~C4h] ........................................................ 38
8.4.3. Gamma Control Register[E0h~F1h] .................................................................................. 39
9. ELECTRICAL CHARACTERISTICS .........................................................................................42
9.1. ABSOLUTE MAXIMUM RATINGS .................................................................................................. 42
9.2. DC CHARACTERISTICS...............................................................................................................42
9.3. AC CHARACTERISTICS...............................................................................................................43
9.3.1. Microcontroller Bus Interface timing (Write cycle)............................................................43
9.3.2. Microcontroller Bus Interface timing (Read cycle)............................................................. 43
9.3.3. Serial Interface Control Timing ......................................................................................... 44
9.3.4. RESETB Timing ................................................................................................................. 45
9.3.5. Video Output Timing.......................................................................................................... 45
10. PACKAGE SPEC......................................................................................................................... 46
11. SOLDERING................................................................................................................................47
11.1. SOLDER REFLOW EQUIPMENT .................................................................................................... 47
11.2. REFLOW PROFILES.................................................................................................................... 47
11.3. FLUX APPLICATION................................................................................................................... 47
11.4. CLEANING ............................................................................................................................... 47
11.5. DRYING................................................................................................................................... 47
1999 October 11 Page 4
1. Features
n Dedicated sensor control and signal processing chip for Hyundai CMOS Image
Sensor
n CMOS 3.3V Device (0.5um CMOS TLM Process used) n Serial-Bus interface or alternative 8-bit MCU parallel interface for register programming n Serial-Bus interface for HYUNDAI CMOS Image Sensor Chip Control n 8 bit Bayer format image input n 3 x 3 Interpolation n Color Correction matrix n Gamma Correction n Automatic Exposure Control n Automatic White Balance Control n Programmable AE/AWB windows n Automatic Reset Level Control n Edge Enhancement Support n 2x2, 4x4 Sub-Sampling(CIF, QCIF) n RGB to YCrCb Color Space Convert n Histogram Equalization Logic n 16bit YUV 4:2:2, YUV 4:2:0, 8bit YUV 4:2:2, YUV 4:2:0 video output format n Flicker Free Banding noise filter n X Flip Function for mirrored image n Horizontal and Vertical Sync Information on Separate Pin n 64 Pin LQFP Package(Standard JEDEC Package)
1999 October 11 Page 5
2. Pin Configuration
1999 October 11 Page 6
3. Pin Definition
Pin Number Pin Name Type Description
1 SDA B Serial Data for CMOS Image Sensor Control 2 HSYNC I Horizontal SYNC Signal from CMOS Image
Sensor
3 VSYNC I Vertical SYNC Signal from CMOS Image
Sensor 4 PD[0] I Raw Pixel Data from Image Sensor Chip 5 PD[1] I Raw Pixel Data from Image Sensor Chip 6 PD[2] I Raw Pixel Data from Image Sensor Chip 7 VDD P Power Pin, 3.3V 8 SCK O Serial Clock for CMOS Image Sensor Control 9 VSS G Ground Pin
10 PD[3] I Raw Pixel Data from Image Sensor Chip 11 PD[4] I Raw Pixel Data from Image Sensor Chip 12 PD[5] I Raw Pixel Data from Image Sensor Chip 13 PD[6] I Raw Pixel Data from Image Sensor Chip 14 PD[7] I Raw Pixel Data from Image Sensor Chip 15 NC - No Connection 16 SUSPEND I Suspend Mode Support Pin, Active high
17 ENB O CMOS Image Sensor Enable 18 VDD P Power Pin, 3.3V 19 PCLK O Pixel Clock for CMOS Sensor ( MCLK / 3 ) 20 VSS G Ground Pin 21 AD[0] B Address/Data Bus for MCU interface 22 AD[1] B Address/Data Bus for MCU interface 23 AD[2] B Address/Data Bus for MCU interface 24 AD[3] B Address/Data Bus for MCU interface 25 VDD P Power Pin, 3.3V 26 MCLK I Master Clock Input 27 VSS G Ground Pin 28 AD[4] B Address/Data Bus for MCU interface 29 AD[5] B Address/Data Bus for MCU interface 30 AD[6] B Address/Data Bus for MCU interface
1999 October 11 Page 7
31 AD[7] B Address/Data Bus for MCU interface 32 ALE I Address Latch Enable 33 IODONE O CIS/ISP Read/Write Done 34 UV[7] O Video Data Output for CrCb 35 UV[6] O Video Data Output for CrCb 36 UV[5] O Video Data Output for CrCb 37 UV[4] O Video Data Output for CrCb 38 VDD P Power Pin, 3.3V 39 RESETB I ISP Reset, Active Low 40 VSS G Ground Pin 41 UV[3] O Video Data Output for CrCb 42 UV[2] O Video Data Output for CrCb 43 UV[1] O Video Data Output for CrCb 44 UV[0] O Video Data Output for CrCb 45 VDD P Power Pin, 3.3V 46 VCLK O Pixel Clock for Video Output 47 VSS G Ground Pin 48 Y[7] O Video Data Output for Y 49 Y[6] O Video Data Output for Y 50 Y[5] O Video Data Output for Y 51 Y[4] O Video Data Output for Y 52 VDD P Power Pin, 3.3V 53 VSS G Ground Pin 54 Y[3] O Video Data Output for Y 55 Y[2] O Video Data Output for Y 56 Y[1] O Video Data Output for Y 57 Y[0] O Video Data Output for Y 58 HSISP O Horizontal SYNC Signal for Video Data Output 59 VSISP O Vertical SYNC Signal for Video Data Output 60 VDD P Power Pin, 3.3V 61 SCLK/IOR I Serial Bus Clock for programming ISP, Can be
used as IOR when MCU interface configuration
62 VSS G Ground Pin 63 SDATA/IOW B Serial Bus Data for programming ISP, Can be
used as IOW when MCU interface configuration
1999 October 11 Page 8
64 CSB/MODE I ISP chip select when MCU interface
configuration
During reset time, this pin operates as
interface mode
1999 October 11 Page 9
Controller
Video Buffer
4. System Diagram
HYUNDAI
CMOS Image Sensor
Image
HSYNC VSYNC
PD[7:0] PCLK
ENB
Serial Interface
H1A424M167
HYUNDAI ISP
MCLK
HSISP VSISP
Y[7:0] UV[7:0] VCLK
Serial Interface or Parallel Interface
USB
USB
5. Block Diagram
HSYNC VSYNC
PD[7:0] PCLK
ENB
SDA SCK
Video
Input
Interface
Serial
Interface
Master
(to CIS)
Video
Processing
Engine
DRAM
Video Ouput
Interface
MCU
Interface
( Serial or
Parallel )
HSISP VSISP
Y[7:0] UV[7:0] VCLK
Serial Interface or
Parallel Interface
1999 October 11 Page 10
6. Video Processing Engine Block Diagram
Bayer format RGB Stream
Interpolation
to 24bit RGB
Color
Correction
Gamma
Correction
Reset Level Offset Data
YCrCb
Y
Color Space
Conversion
Auto White
Balance
Auto Exposure
Anti Flicker Auto Reset
Level
Histogram
Equalization
Format
conversion
RGB Analog gain control
Integration Time Setting
Reset Level Setting
Edge
Enhnacement
YCrCb
Output Stream
To CIS
1999 October 11 Page 11
7. Functional Description
7.1. Host Interface
Hyundai ISP chip supports two kinds of host interface, serial and 8bit parallel, to program ISP registers or to read ISP registers. And the host interface is also used to write or to read CMOS Image Sensor(CIS) registers through ISP.
7.1.1. Serial Interface
The serial interface of Image Signal Processor[ISP] is implemented by the following pins.
SCLK: Serial Clock SDATA: Serial Data
7.1.1.1. WRITE OPERATION
Write transaction between the ISP and a host is the similar as the well-known I2C serial interface except that only one byte transfer at each transaction is allowed. The transaction consists of START CONDITION, DEVICE ADDR + R/W[0], SUB ADDR, WRITE DATA, and STOP CONDITION states. The single write access sequence is as follows.
S DEVICE ADDR A1 SUB ADDR A2 WRITE DATA A3 P
[ S ] Operation start condition [ DEVICE ADDR ] ISP 40h(010_0000 + 0), CIS 22h(001_0001 + 0)
ð device address + R/W bit [ A1 ] Acknowledge from ISP [ SUB ADDR ] ISP Sub address space 80h ~ FFh
CIS Sub address space 00h ~ 7Fh [ A2 ] Acknowledge from ISP [ WRITE DATA ] Register Value from host [ A3 ] Acknowledge from ISP [ P ] Operation stop condition
7.1.1.2. READ OPERATION
Read transaction between the ISP and a host proceeds as the following sequence. START CONDITION ð DEVICE ADDR + R/W[0] ð SUB ADDR ð START CONDITION ð DEVICE ADDR + R/W[1] ð READ DATA ð STOP CONDITION The ISP register access throughput is one byte at each read transaction. But the
1999 October 11 Page 12
CMOS Image Sensor register access through the ISP chip needs two sequential read operations to compensate the read access delay from CMOS Image Sensor to ISP. The second read data for the CMOS image sensor register should be recognized as the right value of the accessed register. But when the ISP auto functions are enabled, there will be a variable delay for the right data transfer from the CMOS image sensor to the ISP at the first read access, so the second read access may not get acknowledge from the ISP until the first read access is completely processed in the ISP. To take care of the said situation, a system host should repeat the second read access until it get acknowledge from the ISP or there should be sufficient delay between two accesses. To summarize, the ISP general register read access is always completed by only one read transaction, and the CMOS image sensor register access needs two fully acknowledged read transactions and the last read data is the right value for the accessed register. The single read access sequence is as follows.
S1 DADDR 1 A1 SADDR A2 S2 DADDR 2 A3 READ DATA A4 P
[ S1 ] Start condition [ DADDR 1 ] Device Address ISP 40h(010_0000 + 0),
CIS 22h(001_0001 + 0)
ð device address + R/W bit [ A1 ] Acknowledge from ISP [ SADDR ] ISP Sub address space 80h ~ FFh
CIS Sub address space 00h ~ 7Fh [ A2 ] Acknowledge from ISP [ S2 ] Start condition [ DADDR 2 ] Device Address ISP 41h(010_0000 + 1),
CIS 23h(001_0001 + 1)
ð device address + R/W bit [ A3 ] Acknowledge from ISP [ READ DATA ] Register Value from ISP [ A4 ] Acknowledge from HOST [ P ] Stop condition
* Note ( Importance ! )
ISP General Register Read : 1 Read Operation needed. CIS Register Read : 2 Read Operation needed, valid data at second read operation. ISP recognize CIS read command at first read.
1999 October 11 Page 13
7.1.1.3. Data Transfer Timing on the serial Interface
SDA
SCL
S
START
CONDITION
1-7
1-7
ADDRESS
ADDRESS
8 9
8 9
R/W
R/W
ACK
ACK
1-7
DATA
8 9
ACK
1-7
DATA
8 9
ACK
P
STOP
CONDITION
7.1.2. Host Parallel Interface
H1A424M167 ISP supports an external 8-bit microcontroller interface to access H1A424M167 internal registers. Basically, the data transfer operations(8bits) are multiplexed on the address bus.
CSB
ALE
IOR
Stretched
IODone
AD[7:0]
A[7:0] D[7:0]
Valid D[7:0]
Host Parallel Read Operation
A Parallel read operation always needs only 1 read cycle different from the serial read operation. But the host must watch ‘ IODone’ signal for a proper read operation. IODone signal indicates the completion of read/write operation. So the host must hold the IOR, CSB signals until IODone signal is active, to read the valid data on AD[7:0] lines. At the final stage, the host ends the bus cycle(CSB, IOR) then IODone signal become inactive.
1999 October 11 Page 14
IOW
CSB
Host Parallel Write Operation
ALE
Stretched
IODone
AD[7:0]
A[7:0] D[7:0]
Stretched
Active write operation
Similar to parallel read operation, parallel write operation needs only 1 operation cycle. The host must watch ‘ IODone’ signal for a proper write operation. IODone signal indicates the completion of read/write operation. So the host must hold the IOW, CSB, Write Data[7:0] signals until IODone signal become active. When IODone signal become active, ISP accept the write data internally. At the final stage, the host ends the bus cycle(CSB, IOW, Write Data[7:0]) and IODone signal become inactive.
ISP holds IODone active until read/write operation is completed. CIS register read/write operation needs more time than ISP register read/write operation. So IODone active signal for CIS register read/write operation is much longer than that of ISP register read/write operation.
7.1.3. Serial or Parallel Interface selection
The selection between serial interface and parallel interface is made at hardware reset time. If CSB/MODE pin, pin number 64, is pulled down during reset, Serial Interface is configured, and otherwise parallel interface is selected.
For example, Serial Interface selection timing is as below.
RESETB
CSB/MODE
1999 October 11 Page 15
More than 64 MCLK
Serial Interface Selection
Loading...
+ 32 hidden pages