HBM WE2107 Operating Manual

Page 1
Operating Manual

WE2107

Communication commands

I1820-1.3 en
Page 2
d
Page 3

Contents

Safety information 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Introduction and appropriate use 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Command set for the WE2107 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Complete menu structure and commands 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Command format 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Responses to commands 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Responses to input 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 Responses to parameter queries 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3 Responses to incorrect or unknown commands 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Output types for measured values 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Password protection parameters 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Command overview (alphabetical order) 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
3 Individual command descriptions 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Interface commands (asynchronous, serial) 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Factory default curve 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Scale characteristic curve and output scaling 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Settings for linearization 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Settings for measuring mode 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Commands for measuring mode 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Special functions 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 Commands for legal for trade applications 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9 Commands for setup the control of an external display 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 Commands for setup the print function 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11 Commands for set up the real time clock 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12 Commands for setup the buttons, digital inputs 109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13 Commands for setup the filling control / limitswitches 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Communication examples 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Making settings for bus mode 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Connecting WE's to the bus 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Setting the data output 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Setting the baud rate 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Determining bus occupation (Bus Scan) 143. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 Measurement query in bus mode 144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Setting a parameter in all the connected WE's 145. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Index 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I1820-1.3 en HBM
Page 4
4
WE2107 - Communication commands

Safety information

See operating instructions Part 1 All the factory settings are stored at the factory so that they are safe from power failure and
cannot be deleted or overwritten. They can be reset at any time by using the command TDD0. For more information, see "Individual Command Descriptions". The factory set production number must not be changed. Residual risks are indicated in these mounting instructions by the following symbols:
Symbol:
Meaning: Possible dangerous situation
Warns of a potentially dangerous situation in which failure to comply with safety requirements could result in damage to property or some form of physical injury.
Symbols for operating instructions and useful information:
Symbol:
Means that important information about the product or its handling is being given.
CAUTION
NOTE
I1820-1.3 enHBM
Page 5
WE2107 - Communication commands

1 Introduction and appropriate use

The WE2107 digital weighing electronics are weighing electronics for non‐automatic weighing instrument (NAWI). They include all the requisite weighing functions for this application:
D Digital filtering
D Adjusting the factory characteristic curve
D Adjusting the scale characteristic curve
D Linearization
D One, two or three ‐range display
D Output scaling of the measured values
D Range monitoring of the display values (OIML, NTEP)
D Zero setting ("2 %)
D Tare
5
D Gross/net selection
D Standstill recognition
D Zero on start‐up
D Automatic zero tracking
D Calibration switch with calibration counter
D Gravitational acceleration correction via a settable factor
D Nonvolatile parameter storage
D Parameter password protection
A command set for filling and dosing extend the field of applications. The digital serial interface for remote control is a RS‐232 interface or RS‐485 (2wire)
interface. With RS‐485 up to 32 bus members can be connected to the bus system. The abbreviation WE is also used for the WE2107 weighing electronics in the following text.
I1820-1.3 en HBM
Page 6
6

2 Command set for the WE2107

Commands can be roughly divided into: ODER The WE commands can be split into the following groups:
D Interface commands
, BDR, COF, S...)
(ADR
D Factory characteristic curve and earth acceleration correction
(SZA
, SFA, ACA, ACU )
D Scale adjustment and output formatting
, LDW, LWT, NOV, RSN, MRA, MRB, MIV, MDT, ENU, DPT)
(CWT
D Settings for linearization
(LIN
, LIM )
D Settings for measuring mode
(ASF
, FMD, ZSE, ZTR )
D Commands for measuring mode
(MSV?
D Special functions
(TDD
D Commands for legal for trade application
(LFT
D Commands for the control of an external display
(FUB
D Commands for printing setup
(ESC
D Commands for real time clock
(TDT Commands for setup buttons, digital inputs (BFL
D Commands for filling control, limit switches
(SFU
, TAR, TA S, TAV, CDL)
, RES, DPW, SPW, IDN?, ERR?, AOV?, SOV?)
, TCR?)
, EDP, EDS, ED1, ED2, EDC)
, PES, PID, PLB, PLE, PRT, PST, SHC)
, TME, TMM)
, BFS, FIN, MAL, TDL)
, RUN, BRK, TAD, EPT, RFT, MFT, MDT, FRS, LIV, SUM, NDS, CSN)
WE2107 - Communication commands
I1820-1.3 enHBM
Page 7
WE2107 - Communication commands

2.1 Complete menu structure and commands

This chapter describes the relationship between the parameter menu and the implemented commands (see also manual part 1).
7
Access
level
0 InFO
1 Print
Main menu level
.1.
second menu level
.2.
VAL
Error
third menu level
.1. .2.
CALC TCR?
tArE TAV?
ZEro
totAL SUM?
FILL FRS?
Sv_nb IDN?
F_nb IDN?
Adc AOV?
SEnS SOV?
Error ERR?
Command
rESLt
Prt SHC(0...6)
PAr
ALL SHC7
I1820-1.3 en HBM
Page 8
8
WE2107 - Communication commands
Access
level
2 SEtPt
Main menu level
.1.
second menu level
third menu level
.1. .2.
Command
.2.
LS_1 LIV1
InPut LIV1,(P2)
LEvEL LIV1,(P3)
OFF_L LIV1,(P5)
On_L LIV1,(P4)
LS_2 LIV2
InPut LIV2,(P2)
LEvEL LIV2,(P3)
OFF_L LIV2,(P5)
On_L LIV2,(P4)
LS_3 LIV3
InPut LIV3,(P2)
LEvEL LIV3,(P3)
OFF_L LIV3,(P5)
On_L LIV3,(P4)
LS_4 LIV4
InPut LIV4,(P2)
LEvEL LIV4,(P3)
OFF_L LIV4,(P5)
On_L LIV4,(P4)
FILL
doS_t MFT, EtY_t EPT rES_t RFT tAr_t TAD
I1820-1.3 enHBM
Page 9
WE2107 - Communication commands
9
Access
level
Main menu level
second menu level
third menu level
.1. .2.
.1.
.2.
2 SEtuP
FILt1 FMD
FILt2 ASF
PtArE TAV
Count
nb
3 UArt1
Addr ADR
bAUdr BDR
PArtY BDR
3 UArt2
Funct FUB
bAUdr
PArtY
Command
EdSPL
St_Ch EDS
Prot EDP
E_Ch1 ED1
E_Ch2 ED2
CrC EDC
I1820-1.3 en HBM
Page 10
10
WE2107 - Communication commands
Access
level
Main menu level
second menu level
third menu level
.1. .2.
.1.
.2.
3 Prt_S
time TME
modE TMM
dAtE TDT
dAY
nonth
YEAr
InIt
ESC11 ESC
ESC12 ESC
ESC13 ESC
ESC14 ESC
ESC15 ESC
ESC21 ESC
command
ESC22 ESC
ESC23 ESC
ESC24 ESC
ESC25 ESC
IdEnt nbr PID
Prot
E_Ch PES
E_Ln1 PLB
E_Ln2 PLE
3 InPut
InP_1 FIN
InP_2 FIN
i_dLY TDL
I1820-1.3 enHBM
Page 11
WE2107 - Communication commands
11
Access
level
Main menu level
second menu level
third menu level
Command
.1. .2.
.1.
.2.
3 Buttn
F1 BFS
F1_L BFL
F2 BFS
F2_L BFL
3 tESt
diSPL
UArt
d_IO
EEPr
buttn
I1820-1.3 en HBM
Page 12
12
WE2107 - Communication commands
Access
level
0 SCALE
4 AdJ
Main menu level
.1.
second menu level
.2.
Funct SFU
AccES MAL
LEGAL LFT
SEtUP
third menu level
.1. .2.
Unit ENU
AZEro ZSE
ZtrAc ZTR
StiLL MDT
RES RSN
Point DPT
CAP NOV
Command
rAnG1 MRA
rAnG2 MRB
CAL CWT
EA_CL ACA
EA_CU ACU
InPut
Zero LDW
SPAn LWT
MEAS
Zero
SPAn
I1820-1.3 enHBM
Page 13
WE2107 - Communication commands
13
Access
level
Main menu level
second menu level
third menu level
.1. .2.
.1.
.2.
Lin
diSP1 LIN
VAL1 LIM
diSP2 LIN
VAL2 LIM
4 FAdJ
dEFLt TDD0
0 OFF
Command
I1820-1.3 en HBM
Page 14
14

2.2 Command format

General advice:
Commands can be entered in upper or lower case letters, they are not case‐sensitive, so either format can be used for input.
Each command entry must be concluded by a delimiter. This can either be a line feed (LF) or a semi‐colon (;).
If an end label is all that is sent to the WE2107, the WE2107 input buffer is cleared. The data provided in round brackets () for the commands are mandatory and must be
entered. Parameters in pointed brackets <> are optional and do not have to be provided.
The brackets themselves are not part of the input.
Text must be enclosed in quotes " ". Responses are given in ASCII characters and terminate with LF. Output in binary characters
is the exception here (see command MSV Each command comprises the command shortform, one or more parameters and the end
mark.
Responses consist of ASCII characters and close with CRLF. An exception to this is binary character output (see MSV Each command consists of the command shortform, one or more parameters and the delimiter.
and COF commands).
WE2107 - Communication commands
or COF).
Command shortform Parameter End label
Input ABC X,Y LF or ;
Output ABC? X,Y LF or ;
LF: line feed (lf = 0a hex)
Example: MSV?;
After this command, a measured value is output.
All the ASCII characters 20 parameters and the end mark.
For commands and parameters the following characters are allowed: ' ' '+' '‐' '.' ',' '"' '0' ...'9' 'A'...'Z' 'a'...'z' For a input string (command PST
the string is enclosed with " ...string...".
(blank) can appear between the command short form, the
H
) the input range is : 0x1f
< char < 0x7f
hex
. In this case
hex
NOTE
If the master has send a command string (query), than the master has to wait for the answer before it send the next query.
If the master has send a command string (input), than the master has to wait for at least 10 msec. before it send the next query or command.
I1820-1.3 enHBM
Page 15
WE2107 - Communication commands

2.3 Responses to commands

NOTE
Note on the reaction times of the WE:
The reaction times specified for the WE in the command description do not include the time taken to transfer the command to the WE and the time taken to transfer the response from the WE.
2.3.1 Responses to input
The WE works in an RS‐485 2‐wire bus configuration. No responses are given to input, regardless of whether the input is valid or invalid. After making an entry, use a query to
verify the input.
15
Example:
ASF3; //Setting the filter to level 3
If the master has send a command string (input), than the master has to wait for at least 10 msec. before it send the next query or command.
ASF?; //query the last input command
If the master has send a command string (query), than the master has to wait for the answer before it send the next query or command.
NOTE
If the parameter is a legal for trade parameter, and the legal for trade mode is switched on, than this parameter will not be changed.
I1820-1.3 en HBM
Page 16
16
WE2107 - Communication commands
2.3.2 Responses to parameter queries
A parameter query is entered by using the command with a question mark attached. A parameter query is always answered in ASCII format. The end label is a line feed
(LF = 0A hex). The output length of a query is always constant for every command.
Example:
Query: ASF; Response: 03 crlf
If the master has send a command string (query), than the master has to wait for the answer before it send the next query or command.
2.3.3 Responses to incorrect or unknown commands
The WE does not respond if a command is incorrect or unknown
I1820-1.3 enHBM
Page 17
WE2107 - Communication commands

2.4 Output types for measured values

The response to measurement queries (MSV?) depends on the output format (COF) that is set (binary or ASCII output). Data output works with fixed output lengths (see command
COF
):
Example:
17
Format command
COF0; MSV? Yy CR LF (y‐ binary) 4 COF2; MSV? Yyyy CR LF (y‐binary) 6
LF: line feed (lf = 0a hex), CR: carriage return ( = 0d hex)
The end mark of the data output is always a line feed. However, this character must not be filtered out as an end mark during binary output, as these characters may also be included in the binary code of the measured value. Which is why only the byte count is helpful with binary output.
WE2107 response No. bytes

2.5 Password protection parameters

WE password protection includes the important settings for the scale curve and its identifica tion. Commands with password protection are only activated after the password has been entered. Unless the password is entered via the command SPW be executed. A query is always possible.
, this command input will not
I1820-1.3 en HBM
Page 18
18
WE2107 - Communication commands

2.6 Command overview (alphabetical order)

Command PW LFT
ACA X X Earth acceleration factor (adjustment) 34 ACU X X Earth acceleration factor (usage) 35 ADR Device address 22
AOV? ADC overflow counter 81
ASF Filter selection 54
BDR Baud rate and parity bit 23
BFL X Button function (long) 113
BFS X Button function (short) 111 BRK; Stop dosing / filling 134 CDL; Set to zero 66
COF Output format for data output ( MSV?) 24
CSN; Clear total weight and counters 138
CWT X X Calibration weight 41
DPT X X Decimal point 46
DPW Password definition 72
ED1 X End character 1 (external display) 93
ED2 X End character 2 (external display) 94
EDC X Check sum (external display) 95 EDP X Protocol external display 88 EDS X Start character external display 92 ENU X X Unit of measurement 44
EPT Emptying time (dosing function) 133
ERR? Error memory 78
ESC X ESC sequences (printer) 98
FIN X Function digital inputs 1,2 115
FMD X Filter mode 56
FRS? Filling result 135
FUB Function UART2 (printer / external display) 87 IDN? X Electronics identification with serial number 75 LDW X X Scale characteristic curve, zero point 38
LFT X X Legal for trade 84 LIM X X Linearization, measured values 51
LIN X X Linearization, output values 52 LIV X Limit switches 127
LWT X X Scale characteristic curve, full scale 39
Function
Page
LFT Legal for trade parameters
PW Password protection via commands DPW/SPW
I1820-1.3 enHBM
Page 19
WE2107 - Communication commands
19
Command PW LFT
Function
MAL X Parameter menu access level 110 MFT X Maximum filling / dosing time 132 MRA X X Multi‐range switch point 1 48 MRB X X Multi‐range switch point 2 49
MIV? Data output (internal resolution for adjustment) 64
MSV? Data output 60
MDT X X Motion detection 47
NDS? Dosing counter 136
NOV X X Nominal output value 43
PES X Number of empty spaces in each row (printing) 100
PID X Print identification (counter) 101 PLB X Number of empty lines before printing values 99 PLE X Number of empty lines after printing values 103 PRT X Print protocol 97 PST X Printer strings 102
RES; Reset electronic 74
RFT Residual flow time (filling) 131
RSN X X Display resolution 45
RUN; Start dosing 129
S... Selecting electronic in bus mode (Select) 27
SFA X X Factory default curve full scale (nominal (rated)
value)
SFU X Scale function 126
SHC Start hard copy 104
SOV? Sensor overflow counter 82
SPW Write enable for all password‐protected para
meters
SZA X X Factory default curve zero point 31
SUM? Total weight 137
TAD Tare delay time (filling function) 130
TAR; Taring 67
TAS Gross / Net selection 70
TAV Tare value 68
TCR? Legal for trade counter 85
TDD Read/Save setting in EEPROM 76
TDL Delay time digital tilt input 11 7 TDT X Date (printing) 106
TME X Time (printing) 107
TMM X Time mode (printing) 108
ZSE X X Zero on start‐up 58 ZTR X X Automatic zero tracking 57
Page
32
73
LFT Legal for trade parameters
PW Password protection via commands DPW/SPW
I1820-1.3 en HBM
Page 20
20
WE2107 - Communication commands

3 Individual command descriptions

3.1 Interface commands (asynchronous, serial)

To establish communication between the WE and the computer, the interface has to be confi gured. The following commands are available in the WE to set up the interface and to select the transfer format:
D Communication address for bus mode ADR D Baud rate setting BDR D Output format for measurement data (ASCII / binary) COF D Select command for a bus user via the communication address (Select) S...
Characteristic data of the serial interface: Start bit: 1 Word length:8 bits Parity: none / even Stop bit: 1 Baud rate: 1200 38400 baud The asynchronous interface of the WE is a serial interface, i.e. there is serial transfer of data,
bit by bit and asynchronously. Asynchronously means that transmission works without a clock signal.
A start bit is set in front of each data byte. This is followed by the bits of the word (D0...D7), a parity bit for transfer checking and a stop bit.
1 bit Word length = 8 data bits 1 bit 1 bit
Start Parity Stop
1 character
Fig. 1: Composition of a character
I1820-1.3 enHBM
Page 21
WE2107 - Communication commands
As data transmission is serial, the rate at which data is transmitted must match the rate at which it is received. The number of bits per second is called the baud rate.
The exact baud rate of the receiver is synchronized with the start bit for each character transferred. The data bits then follow, which all have the same length. On reaching the stop bit, the receiver moves to the wait state until it is reactivated by the next start bit.
The number of characters per measured value depends on the output format selected (COF command).
21
I1820-1.3 en HBM
Page 22
22
WE2107 - Communication commands
ADR
Address
(Device address)
Property Content Note
Command string ADR No. of parameters 2 Parameter range P1=00 ... 31, P2= String P2= 7 character Factory default 31 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1;
Input Master ADR(P1),<“Fnumber“>; No response
Query Master ADR?; Response WE P1crlf P1=2 characters
Note: ( ) required parameters, < > optional parameters for parameter input
No
Function:
You only need this command when the WE is communicating via the RS‐485 bus. The command is used to prepare bus mode. Each WE connected in the bus must have a unique address (00 ‐ 31).
Parameter description:
Input: ADR(new address), <"serial number">;
The serial number (7 digits) can be included as an optional second parameter. The new device address will then only be entered for the WE with the specified serial number. When several WE's have the same address (initializing bus mode), this allows the device addresses to be changed without addressing several WEs.
As with the command IDN?, the serial number has to be specified in quotation marks.
Example: S98; Broadcast command
ADR25,"0000007"; allocates a new address,
only the WE with serial number 0000007 changes the address
Example: S31; Selecting the 'old' address (example)
ADR25; Allocates a new address
I1820-1.3 enHBM
Page 23
WE2107 - Communication commands
23
BDR
Baud Rate
(Baud rate)
Property Content Note
Command string BDR
No. of parameters 2
Parameter range P1=0.5 , P2= 0/1
P1: 0= 1200 …. 5= 38400
P2: 0= none, 1= even parity
Factory default 3, 1 (=9600 baud, even)
Reaction time <15 ms
Password protection No
Relevant to legal for trade
Parameter backup With command TDD1;
Input Master BDR P1,<P2> No response
No
Query Master BDR?;
Response WE P1, P2crlf P1=P2= 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command sets the baud rate for serial communication.
NOTE
When the baud rate is changed, communication is not possible at first. The computer also has to switch over to the new setting (baud rate). For the change in the baud rate to be permanent, it has to be saved in the EEPROM using the command TDD1. This procedure ensures that the baud rates set in the WE are all supported by the remote station. If the newly entered baud rate is not saved, when the system is reset or started up again, the WE will answer at the previous baud rate.
Example: BDR?; 3,1crlf corresponds to 9600 baud, parity bit even Example: BDR4; WE responds at 19200 baud Example: BDR3; WE responds at 9600 baud,
Parity is unchanged
I1820-1.3 en HBM
Page 24
24
WE2107 - Communication commands
COF
Configurate Output Format
(Output format for data outputs)
Property Content Note
Command string COF No. of parameters 1 Parameter range P1=0 ... 4 Factory default 2 binary with status Reaction time <15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1;
Input Master COF(P1); No response
Query Master COF?; Response WE P1crlf P1=1 character
Note: ( ) required parameters, < > optional parameters for parameter input
No
Function
The command is used to set up the output formats for the command MSV?. The possible formats and the decimal number to enter for them are listed in the tables below.
The following format groups are supported:
D COF 0 ... 3 binary data output D COF 4 ASCII data output
Data output relates to the nominal (rated) value set for the WE (see the NOV
Output at max. capacity
2‐byte binary NOV value 4‐byte binary NOV value ASCII NOV value
With 2‐byte binary output, the NOV value must be v 30000, otherwise the measured value will be output with overflow or underflow (7FFF reserve is only about 2700 digits.
or 8000H). With NOV30000, the overload
H
command).
NOV w 100
I1820-1.3 enHBM
Page 25
WE2107 - Communication commands
Binary measurement format:
D 2 or 3 byte measured value D with or without measurement status (see MSV? D byte output sequence :
choose MSB LSB or LSB MSB
Parameter Length Sequence for data output
COF0 Measured
value
COF1 Measured
value
COF2 Measured
value
COF3 Measured
value
MSB=most significant digit, LSB=least significant digit
25
)
2 bytes MSB before LSB
2 bytes LSB before MSB
4 bytes MSB before LSB, LSB=measurement
status
4 bytes LSB before MSB, LSB=measurement
status
NOTE
Note on the evaluation of binary measured values
When measurement data is output in binary format, the binary code for CRLF may occur within the bytes representing the measured value. This is why the contents of the data output should not be tested for the CRLF character when checking for the possible end of measurement transmission. With binary output, it is far better to record the number of characters received. The CRLF control characters are also appended to the measured value during binary output.
I1820-1.3 en HBM
Page 26
26
WE2107 - Communication commands
ASCII measurement format (COF4):
ASCII output always contains 16 characters.
Character
1
G
N
Characters
2‐10
Measured value
(sign, measured
Character
11
Blank g
Characters
12‐14
kg
value with decimal
point)
t
lbs
pcs
G = gross,
N = net
9 x `‐` , when out
side display range
for
For standstill
only, otherwise
3 blanks
LT > 0
The display range is defined as follows:
LFT=0: ‐160 % .... + 160 % (cannot be verified, industrial mode)
LFT=1: ‐20 d ... + NOV + 9 d (legal for trade, OIML, R76) LFT=2: ‐2 % ... + 105 % (NOV) (legal for trade, NTEP)
is the output scaling (NOV w 100). The percentage figures relate to the NOV.
NOV
The d information relates to increment that is set (RSN
):
RSN = 2 ‐> 9 d = 18 digits
Character
15,16
crlf
End
label
I1820-1.3 enHBM
Page 27
WE2107 - Communication commands
27
S..
Select
(Selecting of WE2107 in bus mode)
Property Content Note
Command string S No. of parameters 1 Parameter range P1= 00, 01, ... 30, 31, 98
P1 is always a 2‐digit entry
Factory default ‐ Reaction time <10 ms Password protection No Relevant to legal for
trade
Parameter backup No data to back up Input Master S(P1); No response Query Master Not permitted Response WE
Note: ( ) required parameters, < > optional parameters for parameter input
No
98= broadcast
Function:
With this, the WEs connected to a bus can be addressed individually or jointly. A maximum of 32 addresses (00...31) are assigned using the command ADR
The Select command does not generate a response. A WE is always active after reset or power‐up and must be addressed in bus mode by using
the Select command, so that none of the other bus users respond. If there is only one WE, you do not need the S...
command.
.
I1820-1.3 en HBM
Page 28
28
WE2107 - Communication commands
Parameter description:
Selection Effect for the WE Effect for the PC
S00; to S31;
S98; All WEs execute all commands
Example: Select 00
Command S98; is intended for special functions (broadcast). All the WEs connected to the bus are addressed here. All the WEs execute the subsequent commands. No WE responds. This goes on until a single WE is once again addressed using S00...S31.
Only the WE with the given address executes all the commands and responds.
Command 1
Command 2...n
Select 01
Command 1 etc.
1:1 communication with a selected WE.
NOTE
The S... command on its own does not generate a response. The selected WE only responds when it is combined with another command.
For a measurement query on the bus, proceed as follows:
Master
S00;MSV?; Xxcrlf Query WE with address 00, response at COF0
S01;MSV?; Yycrlf Query WE with address 01, response at COF0
S02;MSV?; Zzcrlf Query WE with address 02, response at COF0
etc.
WE Note
I1820-1.3 enHBM
Page 29
WE2107 - Communication commands

3.2 Factory default curve

The commands described in this section are used to set up the factory default curve:
D Adjusting the default curve: SZA D Gravitational acceleration correction: ACA, ACU
Setting the characteristic curve
The WE works initially with a factory default curve SZA is made with a calibration standard for 0mV/V and 2mV/V (=200000 internal digits). This factory default curve should not be modified.
A second characteristic curve (LDW The gravitational acceleration correction is then activated via command ACA and ACU, if the
place where the scale was adjusted is not the same as the place of installation and the gravitational acceleration factors are different.
, LWT) is available for the scale adjustment.
29
, SFA
, SFA. This factory default calibration
Setting the factory default curve with SZA
Action
Enter password, e.g. SPW00000; Measure input at 0 mV/V SZA(P1); Measure input at 2mV/V SFA(P2);
, SFA (absolute value calibration in mV/V)
Command sequence
I1820-1.3 en HBM
Page 30
30
WE2107 - Communication commands
Digit
Initial curve
100000
COF2
Effect of SZA
0
1
1 mV/
V
Load, max. capacity
Fig. 2: Effect of the SZ command on the factory default curve
Digit
1
1 mV/
V
Initial curve
Effect of SFA
Load, max. capacity
100000
COF2
0
Fig. 3: Effect of the SFA command on the factory default curve
I1820-1.3 enHBM
Page 31
WE2107 - Communication commands
31
SZA
Sensor Zero Adjust
(factory default curve zero point)
Property Content Note
Command string SZA No. of parameters 1 Parameter range P1=0...+ Factory default Adjustment to 0 mV/V Reaction time <15 ms on input or query Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1; after input of SFA
Input Master SZA(P1); No response
Query Master SZA?; Response WE P1crlf
Note: ( ) required parameters, < > optional parameters for parameter input
Yes
(P1= 6‐digit plus sign)
399999
P1=
7 characters
Function:
For an input signal of 0mV/V, the output value 0 digits is assigned to the internal measured value.
Parameter description:
For a query, the value is output ±6‐digit (e.g. ‐000246 CRLF). The curve is disabled at SZA=0 and SFA=200000. To perform the electronic adjustment see command SFA
I1820-1.3 en HBM
.
Page 32
32
WE2107 - Communication commands
SFA
Sensor Fullscale Adjust
(factory default curve full scale)
Property Content Note
Command string SFA No. of parameters 1 Parameter range P1=0...+ Factory default Adjustment to 2mV/V (200000d) Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1; Input Master SFA(P1); No response Query Master SFA?; Response WE P1crlf
Note: ( ) required parameters, < > optional parameters for parameter input
Yes
(P1= 6‐digit plus sign)
399999
P1 = 7 characters
Function:
For an input signal of 2 mV/V, the output value 200000 digits is assigned to the internal measured value for ASCII output.
Parameter description:
For a query, the value is output ±6‐digit (e.g. ‐350246 LF). The curve is disabled at SZA=0 and SFA=200000.
I1820-1.3 enHBM
Page 33
WE2107 - Communication commands
Manual input of the nominal (rated) value via SZA/SFA:
1. Connect the transducer electronics to a calibration standard.
33
2. Use the SPW
3. Set legal for trade switch to LFT= 0
4. Reset the correction factor: ACU:= ACU
5. Reset the factory characteristic: SZA=0, SFA=200000,
6. Reset the user characteristic: CWT=100000, LDW=0, LWT=200000,
7. NOV=0, RSN=1, switch the linearization OFF (LIN
8. Set the ASF filter in such a way that the display is as smooth as possible.
9. Set the calibration standard to 0mV/V misalignment.
10.Use the command MSV
11. Set the calibration standard to 2mV/V misalignment.
12.Use the command MSV?; to determine the measured value. Note value2 for SFA.
13.Enter the new user curve with SZA<value1>; followed by SFA<value2>;.
14.Save the new curve with TDD1;.
command to enter your password.
, LIM).
?; to determine the measured value. Note value1 for SZA.
NOTE
The characteristic curve commands SZA and SFA should be entered or executed in the following order: SZA followed by SFA. The input data is only offset if these two parameters have been entered in pairs.
When the factory default curve is entered with SZA/SFA, this resets the user curve to the default values LDW=0, LWT=200000, CWT=100000 and ACU:=ACA.
Numbers 1 ‐ 10 do not apply if the factory default curve can be re‐entered using parameters that are already known.
With the command TDD0; the factory default settings will be activated.
I1820-1.3 en HBM
Page 34
34
WE2107 - Communication commands
ACA
G‐Correction Factor
(G‐factor correction, calibration location)
Property Content Note
Command string ACA No. of parameters 1 Parameter range P1 = 97000 ... 99000 Factory default 98102 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1; Input Master ACA(P1); No response
Query Master ACA?; Response WE P1crlf P1 = 5 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command is used to correct the effect of gravitational acceleration when the place where the scale is adjusted is not the same as the place of installation and the gravitational acceleration factors (g) are different.
Yes
Parameter description:
For a query, the value is output 6‐digit (e.g. 098102 CRLF). Correction is disabled at ACA = ACU.
Calculating the internal correction factor:
ǒ
GF +
The internal GF parameter is reset automatically (ACU: = ACA) when
g * factoratplaceofadjustment(ACA)
ǒ
g * factoratplaceofinstallation(ACU)
Ǔ
Ǔ
S curve SZA / SFA is re‐measured S curve LDW / LWT is re‐measured
Input example:
Place of adjustment (ACA) = Darmstadt ³ g = 9.81029 Place of installation (ACU) = Tokyo ³ g = 9.7977
GF = 1.001285
I1820-1.3 enHBM
Page 35
WE2107 - Communication commands
35
ACU
Acceleration Correction User
(G‐factor correction, destination location)
Property Content Note
Command string ACU No. of parameters 1 Parameter range P1 = 97000 ... 99000 Factory default 98102 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1; Input Master ACU(P1); No response Query Master ACU?; Response WE P1crlf P1 = 5 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
For a query, the value is output 6‐digit (e.g. 098102 CRLF). Correction is disabled at ACA = ACU.
Yes
See command ACA
I1820-1.3 en HBM
.
Page 36
36
WE2107 - Communication commands

3.3 Scale characteristic curve and output scaling

D Scale characteristic curve adjustment: LDW, LWT D Partial load parameter for LDW, LWT: CWT
D Measured value scaling: NOV
D Unit of measurement: ENU
D Increment: RSN
D Decimal point: DPT
D Motion detection: MDT
D 2‐range display: MRA
D 3‐range display: MRB
You can adapt the WE characteristic curve to your particular requirements with the command pair LDW/LWT.
With the CWT command, the user curve can also be set with a partial load.
NOTE
The characteristic curve commands LDW and LWT should be entered or executed in the following order: LDW followed by LWT. The input data is only offset if these two parameters have been entered or measured in pairs.
After the scale adjustment the range LDW LWT is assigned to the following number ranges:
Output at max. capacity (COF)
2‐byte binary NOV value
4‐byte binary NOV value
ASCII NOV value
NOV w 100
I1820-1.3 enHBM
Page 37
WE2107 - Communication commands
Calculating the internal correction factor:
Setting the scale characteristic curve with LDW, LWT (for max. capacity adjustment)
37
Action
Command sequence
Enter password, e.g. SPW00000;
Loading at scale zero load LDW(P1);
Loading at scale max. capacity LWT(P2);
Set user characteristic curve with LDW, LWT
100000
COF2
70000
10000
Digit
0.1
0.7 1
Default characteristic curve
Load L/Ln
Range application
200000
COF2
Digit
User characteristic curve
Ln = max. load
0
0.1
0.7
Load L/Ln
Range application
Fig. 4: Setting the user characteristic curve
I1820-1.3 en HBM
Page 38
38
WE2107 - Communication commands
LDW
Load Cell Dead Weight
(Scale curve zero point)
Property Content Note
Command string LDW No. of parameters 1 Parameter range P1=0...+ Factory default 0 Reaction time <15 ms on input or query Password protection Yes Relevant to legal for
trade
Parameter backup after input of LWT with TDD1; Input Master LDW(P1); on response Query Master LDW?; Response WE P1crlf
Note: ( ) required parameters, < > optional parameters for parameter input
Yes
(P1= 6‐digit plus sign)
399999
P1 = 7 characters
Function:
When measuring, the current input signal (e.g. scale not loaded, but with dead load) assigns the output value 0 digits to the internal measured value.
Parameter description:
For a query, the value is output ±6‐digit (e.g. ‐000246 CRLF).
The user curve is disabled at LDW=0 and LWT=200000.
The LDW
To perform the scale adjustment see command LWT
value is not converted via NOV.
.
I1820-1.3 enHBM
Page 39
WE2107 - Communication commands
39
LWT
Load Weight
(Scale characteristic curve full scale)
Property Content Note
Command string LWT No. of parameters 1 Parameter range P1=0...+ Factory default 200000 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1;
Input Master LWT(P1); No response
Query Master LWT?; Response WE P1crlf
Note: ( ) required parameters, < > optional parameters for parameter input
Yes
(P1= 6‐digit plus sign)
399999
P1 = 7 characters
Function:
When measuring, the current input signal (e.g. scale loaded= max. capacity) assigns the output value 200000 digits to the internal measured value.
Parameter description:
For a query, the value is output ±6‐digit (e.g. ‐950246 CRLF). The user curve is disabled at LDW The LWT value is not converted via NOV
=0 and LWT=200000.
.
I1820-1.3 en HBM
Page 40
40
WE2107 - Communication commands
Manual input of the nominal (rated) value via LWT:
1. Use the SPW command to enter your password.
2. Set legal for trade switch to LFT=0
3. Reset the correction factor: ACA==ACU
4. the scale is unloaded.
5. Query the measurement output (MIV
6. Enter the LDW value.
7. Load the scale with max. capacity.
8. Query the measurement output (MIV
9. Use the command LWT<nominal (rated) value> to enter the measured value for nominal load. The value entered is stored and offset with the LDW value previously measured or entered.
10.Save the new curve with TDD1;.
?)
?)
NOTE
The characteristic curve commands LDW and LWT should be entered or executed in the following order: LDW followed by LWT. The input data is only offset if these two parameters have been entered or measured in pairs.
When the factory default curve is measured with LDW/LWT, this resets the user curve to the default values LDW=0, LWT=200000, CWT
With partial load adjustment (measurement): The LWT value is converted to 100 % in accordance with the CWT value entered and the
CWT value is then reset to its 100 % value (=100000).
=100000 and ACU:=ACA
I1820-1.3 enHBM
Page 41
WE2107 - Communication commands
41
CWT
Calibration Weight
(Calibration weight)
Property Content Note
Command string CWT No. of parameters 1 Parameter range P1=10000...120000 (10%...120%) 100000 = 100% Factory default 100000 =100% Reaction time <15 ms Password protection YES Relevant to legal for
trade
Parameter backup With command TDD1; Input Master CWT(P1); No response Query Master CWT?; Response WE P1crlf P1 = 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
If, when adjusting the user curve, you cannot apply 100 % of the input signal, then the CWT command also gives you the opportunity to adjust the WE with an input signal in the range 10 % to 120 % of the required nominal (rated) value (partial load calibration).
YES
I1820-1.3 en HBM
Page 42
42
WE2107 - Communication commands
Parameter description:
P1 is a 6-digit decimal number in the range 10000 to 120000 (=10 % ... 120 %). With P1=100000 (=100 %) this part load calibration is switched off.
P1 is a 6‐digit decimal number in the range 10000 to 99999 (=10 % ... 120 %) for none legal for trade applications.
P1 is a 6‐digit decimal number in the range 20000 to 99999 (=20 % ... 120 %) for legal for trade applications.
P1 is the percentage of the max. capacity with which the next LDW / LWT adjustment is to be carried out.
P1:= 100000 * adjustment weight / max. capacity
Example:
The scale curve LDW/LWT of a scale is adjusted with 15 kg=15000 d. But the only adjustment weight available for the adjustment is a 10 kg weight. Proceed as follows:
1. For the adjustment, set the CWT value to 66667 ( corresponds to 66 %).
2. For the adjustment, set the NOV value to 15000.
3. Then carry out an LDW/LWT adjustment.
After the adjustment, the WE outputs 10000 digits as the measured value at 10 kg and 15000 digits at 15 kg.
4. Set the increment to RSN5 and the decimal point to DPT3. This gives the number of
divisions as 3000 d=e and a display of 15,000 at 15 kg max. capacity.
NOTE
After an adjustment, the LDW and LWT values can be read out. They correspond to parameters, as if the adjustment had been carried out at max. capacity (and not at partial load). Should you want to enter the values for LDW and LWT again later, you must first enter CWT=0, then the LDW value that has been read out and finally the value read out for LWT.
When the factory default curve is entered with SZA/SFA, this resets the user curve to the default values LDW=0, LWT=200000 and CWT=100000.
I1820-1.3 enHBM
Page 43
WE2107 - Communication commands
43
NOV
Nominal Output Value
(Resolution of the scale characteristic curve)
Property Content Note
Command string NOV No. of parameters 1 Parameter range P1=100...99999 Factory default 6000 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master NOV(P1); No response Query Master NOV?; Response WE P1crlf P1 = 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The N0V value is used to scale the output value during data output. ASCII data output is scaled at the factory to 6000. If you require a data output of 2000 digits at max. capacity, for example, then use this command to set the nominal (rated) value NOV2000;. This scaling does not change the input parameters.
The tare value is on the NOV curve and is output in this scaling.
Yes
Output format measured value at max. capacity
2‐byte binary NOV value
4‐byte binary NOV value
ASCII NOV value
NOV w 100
NOTE
For 2‐byte binary output, the NOV value must be v 30000. Otherwise the measured value will be output with overflow or underflow (7FFF NOV30000, the overload reserve is only about 2700 digits.
I1820-1.3 en HBM
or 8000H; H: hexadecimal). With
H
Page 44
44
WE2107 - Communication commands
ENU
Engineering Unit
(Unit of measurement)
Property Content Note
Command string ENU No. of parameters 1 Parameter range P1= 0...4 Factory default 0 No unit Reaction time < 15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master ENU(P1); No response Query Master ENU?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command implements input of a unit of measurement.
Yes
P1
0 none
1 g
2 kg
3 t
4 lbs
Unit of measurement
I1820-1.3 enHBM
Page 45
WE2107 - Communication commands
45
RSN
Resolution
(Display resolution, Increment)
Property Content Note
Command string RSN No. of parameters 1 Parameter range P1 = 1,2,5,10, 20, 50 [d] Factory default 1 [d] Reaction time < 15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master RSN(P1); No response Query Master RSN?; Response WE P1crlf P1 = 2 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command implements the increment of data output. The following functions are affected by the increment:
D standstill recognition (MDT
D zero tracking (ZTR
D measuring range monitoring
D initial zero setting (ZSE
D measured value resolution
Yes
)
)
)
I1820-1.3 en HBM
Page 46
46
WE2107 - Communication commands
DPT
Decimal Point
(Decimal point position)
Property Content Note
Command string DPT No. of parameters 1 Parameter range P1= 0…4 Factory default 0 Reaction time < 15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master DPT(P1); No response Query Master DPT?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command implements the input of data output decimal places:
DPT0: xxxxx.
DPT1: xxxx.x
DPT2: xxx.xx
DPT3: xx.xxx
DPT4: x.xxxx
Yes
I1820-1.3 enHBM
Page 47
WE2107 - Communication commands
47
MDT
Motion detection
(Motion detection)
Property Content Note
Command string MDT No. of parameters 1 Parameter range P1= 0…4 Factory default 0 Reaction time < 15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master MDT(P1); No response Query Master MDT?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
MDT0: OFF (motion detection is switched off, unit is always displayed)
MDT1: 0.5 d / sec.
MDT2: 1.0 d / sec. ( to be set if legal for trade application)
MDT3: 2.0 d / sec.
MDT4: 5.0 d / sec.
Yes
If the stand still conditions are fulfilled than the selected unit (ENU The digit unit (d) relates to the nominal (rated) value (NOV
).
(RSN
Example:
RSN=5, NOV=15000, weighing range = 15000 g With MDT2 the stand still condition occurs if the deviation of the weight is less than 5 g/sec. With MDT3 the stand still condition occurs if the deviation of the weight is less than 10 g/sec.
I1820-1.3 en HBM
) and the selected increment
) will be displayed.
Page 48
48
WE2107 - Communication commands
MRA
Multi Range Mode 1
(2‐range weighing display)
Property Content Note
Command string MRA No. of parameters 1 Parameter range P1=0...NOV (99999) 0=disabled Factory default 0 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master MRA(P1); No response Query Master MRA?; Response WE P1crlf P1 = 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command is used to set up the scale as a one or two‐range scale. At MRA0; 2‐range mode is deactivated. With MRA>0 ... NOV, it is possible to specify the changeover point between ranges 1 and 2. If 2‐range mode is enabled, the set RSN increment is valid for range 1. The increment for range 2 is then automatically the next increment:
Yes
Examples:
RSN=2: Range 1 with increment 2, range 2 with increment 5 RSN=5: Range 1 with increment 5, range 2 with increment 10
The display switches back to the increment of range 1 if the scale is unloaded.
I1820-1.3 enHBM
Page 49
WE2107 - Communication commands
49
MRB
Multi Range Mode 2
(3‐range weighing display)
Property Content Note
Command string MRB No. of parameters 1 Parameter range P1=0...NOV (99999) 0=disabled Factory default 0 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master MRB(P1); No response Query Master MRB?; Response WE P1crlf P1 = 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command is used to set up the scale as a one, two or three ‐range scale. At MRA0; 2‐range mode is deactivated. With MRA< MRB ... NOV, it is possible to specify the changeover point between ranges 2 and 3. If 3‐range mode is enabled, the set RSN increment is valid for range 2. The increment for range 3 is then automatically the next increment:
Yes
Examples (0 < MRA < MRB < NOV):
RSN=2: Range 1 with increment 2, range 2 with increment 5, range 3 with increment 10,
RSN=5: Range 1with increment 5, range 2 with increment 10, range 3 with increment 20
The display switches back to the increment of range 1 if the scale is unloaded.
I1820-1.3 en HBM
Page 50
50

3.4 Settings for linearization

The WE has the possibility to reduce the non linearity of the scale. The WE use a polynomial third order. Therefore two additional points between deadload (LDW) and max. capacity (LWT) has to be used for this correction. These commands should be set after the adjustment of the scale (LDW, LWT, NOV).
D Input values for the correction LIM D Output values of the correction LIN
To calculate the coefficients for the polynomial third order there are 4 pairs of values necessary:
WE2107 - Communication commands
Output values
0 0 Dead load removed
LIN1 LIM1 First point
LIN2 LIM2 Second point
NOV NOV max. capacity
So these two additional points have to be in the range 0NOV. And the following conditions have to be valid:
0 < LIM1 < LIM2 < NOV 0 < LIN1 < LIN2 < NOV
Input values Comment
I1820-1.3 enHBM
Page 51
WE2107 - Communication commands
51
LIM
Linearization Measured values
(Input values linearization curve)
Property Content Note
Command string LIM No. of parameters 2 Parameter range P1=1,2
P2=0... NOV (99999)
Factory default P2=0 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1; Input Master LIM(P1),(P2); No response Query Master LIM(P1)?; Response WE P2 crlf P2 = 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Yes
Value 1 or 2
Parameter
Function:
The values LIM are the input values of the linearization curve. Conditions: 0 < LIM1 < LIM2 < NOV For more information see command LIN
.
I1820-1.3 en HBM
Page 52
52
WE2107 - Communication commands
LIN
Linearization Nominal values
(Output values linearization curve)
Property Content Note
Command string LIN No. of parameters 2 Parameter range P1=1,2
P2=0... NOV (99999)
Factory default P2=0 Reaction time <15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1; Input Master LIM(P1),(P2); No response Query Master LIM(P1)?; Response WE P2 crlf P2 = 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Yes
Value 1 or 2
Parameter
Function:
The values LIN are the wanted output values of the linearization curve. Conditions: 0 < LIN1 < LIN2 < NOV
I1820-1.3 enHBM
Page 53
WE2107 - Communication commands
Setup of the linearization :
D Use the SPW command to enter your password.
D Set legal for trade switch to LFT=0
D The scale is adjusted (LDW, LWT, NOV, …)
D Switch off the old linearization: LIN1=0, LIN2=0, LIM1=0 LIM2=0,
D The scale is loaded with the first known weight (point1).
D Enter the LIN1 value (weight without comma).
D Query the measurement output (MSV?)
D Enter the LIM1 value (without comma).
D The scale is loaded with the second known weight (point2).
D Enter the LIN2 value (weight without comma).
53
D Query the measurement output (MSV?)
D Enter the LIM2 value (without comma).
With the input of LIM2 value the WE activates the new linearization curve.
D Store the new values in the EEPROM with TDD1.
Switch OFF the linearization:
Enter the default values: Enter the password (DPW) Switch off legal for trade (LFT0; if necessary) LIN1,0; LIN2,0; LIM1,0; LIM2,0; TDD1;

3.5 Settings for measuring mode

These commands should be set before data output.
D Filter selection, cut-off frequencies ASF D Filter mode FMD D Automatic zero tracking ZTR D Initial zero setting ZSE
I1820-1.3 en HBM
Page 54
54
WE2107 - Communication commands
ASF
Amplifier Filter
(Filter selection cut-off frequencies)
Property Content Note
Command string ASF No. of parameters 1 Parameter range P1=0...8 Factory default 4 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master ASF(P1); No response Query Master ASF?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command selects a digital filter. This influences the filter behavior of the WE ( measurement signal bandwidth).
The limit frequency of the filter determines the settling time. The higher the filter index, the better the filter effect, but also the longer the settling time when the weight changes. Choose as low a filter setting as possible, but one that ensures measured value rest (standstill) when the weight does not change.
The mean‐value calculation influences the overall settling time of the WE. The overall settling time also depends on the mechanical construction of the transducer, the dead load of the scale and the weight to be weighed.
No
I1820-1.3 enHBM
Page 55
WE2107 - Communication commands
Parameter description:
At ASF0, the filter is disabled.
Filter characteristics FMD0:
55
ASF
Settling time in ms
Cut‐off frequency in Hz
to 0.01 %
0 80 25
1 125 8
2 250 4
3 500 2
4 1000 1
5 2000 0.5
6 4000 0.25
7 8000 0.125
8 16000 0.0625
The settling time of the scale is also influenced by the settings of FMD.
Filter characteristics FMD1:
ASF
Settling time in ms
Cut‐off frequency in Hz
to 0.01 %
0 140 10
1 150 8
at –3dB
at –3 dB
2 160 7
3 170 6
4 240 5
5 310 4
6 380 3
7 450 2.5
8 566 2
I1820-1.3 en HBM
Page 56
56
WE2107 - Communication commands
FMD
Filter mode
(Filter mode selection)
Property Content Note
Command string FMD No. of parameters 1 Parameter range P1=0,1, 3, 4, 5 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master FMD(P1); No response Query Master FMD?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
FMD0: normal behavior (as described with ASF FMD1: fast settling mode
No
)
FMD2, 3, 4: Animal filter (with different settling times),
Recommendation: ASF should be set to 5.
I1820-1.3 enHBM
Page 57
WE2107 - Communication commands
57
ZTR
Zero Tracking
(Automatic zero tracking)
Property Content Note
Command string ZTR No. of parameters 1 Parameter range P1=0/1 (0= Off, 1= On) Factory default 0 disabled Reaction time < 15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master ZTR(P1); No response Query Master ZTR?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
Automatic zero tracking occurs with gross or net measured values < 0.5 d in the range ±2 % of the nominal (rated) value of the scale (NOV scale standstill. The unit d (digit) relates to the nominal (rated) value (NOV increment RSN
.
Yes
). The maximum adjustment speed is 0.5d/s at
) and the
I1820-1.3 en HBM
Page 58
58
WE2107 - Communication commands
ZSE
Zero Setting
(Initial zero setting on start‐up)
Property Content Note
Command string ZSE No. of parameters 1 Parameter range P1=0 ... 4 Factory default 0 disabled Reaction time < 15 ms Password protection Yes Relevant to legal for
trade
Parameter backup With command TDD1 Input Master ZSE(P1); No response Query Master ZSE?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
When switching on the voltage, during a RESET or after an RES executed in the selected range at standstill after about 2.5 s. Any change to the zero on start‐up setting range only takes effect after switching on the voltage or after the RES command.
If there is no standstill or if the gross value is outside the selected limits, zero setting does not occur. The internal zero memory is always cleared before automatic zeroing. If the gross value at standstill is within the selected range, the gross value is accepted into the zero memory. It is not possible to read out the zero memory. The standstill condition will be set with MDT (RES
. The digit unit (d) relates to the nominal (rated) value (NOV) and the increment
).
YES
command, zero setting is
Parameter description:
ZSE0: zeroing disabled
ZSE1: zeroing range "2 % of NOV value
ZSE2: zeroing range "5 % of NOV value
ZSE3: zeroing range "10 % of NOV value
ZSE4: zeroing range "20 % of NOV value
I1820-1.3 enHBM
Page 59
WE2107 - Communication commands

3.6 Commands for measuring mode

Before taking up measuring mode, the scale should be adjusted (section 3.3) and the requi site settings for measuring mode should be stored (section 3.4
D Data output MSV?
D Data output (internal resolution) MIV?
D Zero setting gross value (±2 %) CDL
D Tare mode TAR
D Tare value TAV
D Gross/net selection TAS
Tare is subtractive tare.
59
).
I1820-1.3 en HBM
Page 60
60
WE2107 - Communication commands
MSV
Measured Signal Value
(Measurement query)
Property Content Note
Command string MSV? No. of parameters ‐ Parameter range ‐ Factory default ‐ Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup No data to back up Query Master MSV?; Response WE See description
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
As previously defined, the measured value is output in ASCII or binary format (see commands COF
For 2‐byte data output: integer ±32767 For 4‐byte data output: long integer ±399999 For ASCII data output: ASCII ±399999
The length of output depends on the output format (see COF The output format for a measured value must be defined before the measurement run. The
measured value is output in relation to the particular measuring range (NOV value can be a net or a gross measured value (TAS
, NOV and RSN). The maximum extent of the measured values is:
No
command).
). The measured
).
I1820-1.3 enHBM
Page 61
WE2107 - Communication commands
Preparing for data output
1. Use the COF
2. Use the NOV
3. Use the RSN
4. Use the DPT
5. Use the MRA
6. Use the FMD
7. Use the ASF The output scaling is defined by the parameter of the NOV command.
61
command to define the output format command to define output scaling command to define display resolution
command to define the decimal point position
command to define the mode of operation
command to define the digital filter mode
command to define the digital filter
Output format measured value at max. capacity
NOV w 100
2‐byte binary NOV value
4‐byte binary NOV value
ASCII NOV value
With 2‐byte binary output, the NOV value must be v 30000, otherwise the measured value will be output with overflow or underflow (7FFF
or 8000H, H: hexadecimal). With
H
NOV30000, the overload reserve is only about 2700 digit.
The measured value is stored in the output buffer independently of the measurement query.
Binary output:
The length specification includes the end label (CR, LF). With 4‐byte output, the measured value is a 3‐byte value. The fourth byte is the
measurement status
COF Length Sequence for data output
COF0 4 bytes MSB before LSB
COF1 4 bytes LSB before MSB
COF2 6 bytes MSB before LSB (LSB = status)
COF3 6 bytes LSB before MSB (LSB = status)
MSB=most significant digit, LSB=least significant digit
I1820-1.3 en HBM
Page 62
62
WE2107 - Communication commands
ASCII output (COF4):
The ASCII output length is 16 bytes, whatever the content (incl. CRLF):
1 character
1
G
N
9 characters
2‐10
Measured value
(sign, measured
value with decimal
point)
1 character
11
Blank g
3 characters
12‐14
kg
t
lbs
1 character
15,16
crlf
pcs
G=gross,
N=net
9 x `‐` , when out
side display range
for LFT>0
For standstill
only, otherwise
3 blanks
End
label
The display range is defined as follows:
LFT=0: ‐160 x NOV .... + 160 x NOV (cannot be verified, industrial mode)
LFT=1: ‐20 d ... + NOV + 9 d (legal for trade, OIML, R76) LFT=2: ‐2 % ... + NOV + 5 % (legal for trade, NTEP)
NOV is the output scaling (NOV>100). The percentage figures relate to the NOV. The decimal point DPT The d information relates to increment that is set (RSN
only takes effect for ASCII output.
):
RN=2 ‐> 9 d = 18 digits (d).
I1820-1.3 enHBM
Page 63
WE2107 - Communication commands
Measurement status
In 4‐byte binary output, the measurement status can be transferred with the measured value (see command COF
63
). The measurement status is coded bit by bit.
Content of the status byte
Possible cause
Bit 0 1= counting scale 1= counting scale is activated
Bit1 1= outside the display range
‐160 % ... +160 % of NOV (industrial, LFT=0) ,
‐20 d ... MAX+9 d (OIML, LFT=1) ,
‐2 % ... MAX+5 % (NTEP, LFT=2)
Bit2 1= Gross value 0= net value, 1 = gross value (see also TAS)
Bit3 1= standstill 1 = standstill ( see MDT)
Bit4 1= range 2 / 3 0 = range 1, 1= range 2 / 3 (multi‐range display)
Bit5 1= Out1 active 1 = Output 1 is active
Bit6 1= Out2 active 1 = Output 2 is active
Bit7 1= Error An error occurs, read the error status with the com
mand ERR?
Example:
If standstill is active and a gross value is involved, then the content of the status byte = (8+4) = 12 decimal (0C hex).
I1820-1.3 en HBM
Page 64
64
WE2107 - Communication commands
MIV
Measured Internal Signal Value
(Measurement query)
Property Content Note
Command string MIV? No. of parameters ‐ Parameter range ‐ Factory default ‐ Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup No data to back up Query Master MIV?; Response WE Xxxs crlf 4 byte binary
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This command should be only used for the scale adjustment (LDW, LWT) The output format for a measured value is fixed (COF2). The maximum extent of the meas
ured values is: For 4‐byte data output: long integer "399999 The measured value is output in not in relation to the particular measuring range (NOV).
No
Output format measured value at max. capacity
4‐byte binary 0 200000
Binary output:
The length specification includes the end label (CR, LF). With 4‐byte output, the measured value is a 3-byte value. The fourth byte is the measure ment status
COF
COF2 6 bytes MSB before LSB (LSB=status)
MSB=most significant digit, LSB=least significant digit
Length Sequence for data output
0 mV/V 2 mV/V
I1820-1.3 enHBM
Page 65
WE2107 - Communication commands
Measurement status
In 4‐byte binary output, the measurement status can be transferred with the measured value (see command COF). The measurement status is coded bit by bit.
65
Content of the status byte
Possible cause
Bit 0 1= counting scale 1= counting scale is activated
Bit1 1= outside the display range -160 % ... +160 % of NOV (industrial, LFT=0),
-20 d ... MAX+9 d (OIML, LFT=1),
-2 % ... MAX+5 % (NTEP, LFT=2)
Bit2 1= Gross value 0= net value, 1 = gross value (see also TAS)
Bit3 1= standstill 1 = standstill ( see MDT)
Bit4 1= range 2 / 3 0 = range 1, 1= range 2 / 3 (multi-range display)
Bit5 1= Out1 active 1 = Output 1 is active
Bit6 1= Out2 active 1 = Output 2 is active
Bit7 1= Error An error occurs, read the error status with the
command ERR?
Example:
If standstill is active and a gross value is involved, then the content of the status byte = (8+4) = 12 decimal (0C hex).
I1820-1.3 en HBM
Page 66
66
WE2107 - Communication commands
CDL
Clear Dead Load
(Set to zero)
Property Content Note
Command string CDL No. of parameters ‐ Parameter range ‐ Factory default ‐ Reaction time 1/ output rate Password protection No Relevant to legal for
trade
Parameter backup No data to back up Input Master CDL; No response
Note: ( ) required parameters, < > optional parameters for parameter input
Function: The command CDL; undertakes a zero balance of the gross value if this is in the range
"2 % (or "20 % with LFT=0 respectively) of the weighing range (NOV) and there is standstill. Set to zero is not executed if one of the two conditions is violated.
Once set to zero is successfully completed, the display is switched to gross output (TAS=1).
A CDL?; query is not permitted.
no
I1820-1.3 enHBM
Page 67
WE2107 - Communication commands
67
TAR
Tare
(Tare with the actual gross value)
Property Content Note
Command string TAR No. of parameters ‐ Parameter range ‐ Factory default ‐ Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup No data to back up Input Master TAR; No response
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command TAR; tares the current measured value. After tare, it switches back to the net measured value (TAS0;). The current value is stored in tare memory (also see the TAV command) and subtracted from the measured value and all subsequent measured values.
With legal for trade applications (LFT>0) tare is only allowed when standstill conditions occurs.
no
Permissible tare range:
LFT=0: " 100 % of NOV LFT>0: 0 NOV
A TAR?; query is not permitted. The stored tare value can be read out with TAV?. At Power OFF, the tare value is lost unless
it is saved with TDD1;.
I1820-1.3 en HBM
Page 68
68
WE2107 - Communication commands
TAV
Tare Value
(Tare value)
Property Content Note
Command string TAV No. of parameters 1 Parameter range P1= 0...±99999 Factory default 0 disabled Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master TAV(P1); No response Query Master TAV ?; Response WE X crlf
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The tare value can be pre‐assigned, or a tare value saved by the tare function (TAR output.
The value is on the LDW/LWT curve (0...NOV) scaled with the NOV the curve inputs with the commands SZA, SFA (content=0).
When the tare value is entered, the display switch to NET display weight. When the tare value is input, the net value is identified in the displayas a pretare value (PT).
No
X = 6 chars.
(X= current 7‐digit tare value with sign)
) is
parameter. After making
or LDW, LWT, the tare memory is cleared
I1820-1.3 enHBM
Page 69
WE2107 - Communication commands
Query: TAV?;
The content of the tare memory is output. The tare value is converted to the NOV value.
With legal for trade applications (LFT>0), the tare range is restricted to 0...100 % of NOV. permissible tare range : LFT=0: ± 100 % of NOV LFT>0: 0 NOV
Example:
NOV3000; (scale scaling)
TAS1; (gross output enabled)
MSV?; 1500 LF (measured value at 50% = max. capacity
TAR; (tare and select net output
69
of the scale)
TAV?; 1500 LF (query tare value)
MSV?; 0 LF (net measured value)
TAS?; 0 LF (net is enabled)
TAS1; (select gross)
MSV?; 3000 LF (measured value at 100 % = nominal (rated)
load of the scale)
TAV?; 1500 LF (query tare value, unchanged)
I1820-1.3 en HBM
Page 70
70
WE2107 - Communication commands
TAS
Tare Set
(Gross/net selection)
Property Content Note
Command string TAS No. of parameters 1 Parameter range P1= 0/1 (0=net, 1=gross) Factory default 1 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master TAS(P1); No response Query Master TA S?; Response WE P1 crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command changes data output over (MSV? TAS0:net measured value
The value in tare memory is subtracted from the current measured value.
TAS1:gross measured value
The value in tare memory is not offset. The tare value is unchanged during the gross/net changeover.
no
).
I1820-1.3 enHBM
Page 71
WE2107 - Communication commands

3.7 Special functions

D Pass word commands DPW, SPW
D Amplifier reset RES
D Amplifier identification IDN
D Save/ restore all parameters TDD
D Error memory ERR?
D ADC overflow counter AOV?
D Sensor overflow counter SOV?
The WE has password protection for parameters Relevant to legal for trade. If the password is not activated with SPW, although the parameters of a protected function
can be read out, they cannot be modified. A new password is entered with the command DPW.
71
I1820-1.3 en HBM
Page 72
72
WE2107 - Communication commands
DPW
Define Password
(Define password)
Property Content Note
Command string DPW No. of parameters 1
Parameter range P1= 00000 .... 99999 (5 digits)
Factory default 00000 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master DPW(P1); No response
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command saves the new password. No query is possible. The new password has to be activated after input with the SPW
YES
command.
A DPW? query is not permitted.
I1820-1.3 enHBM
Page 73
WE2107 - Communication commands
73
SPW
Set Password
(Write enable for all password protected parameters)
Property Content Note
Command string SPW No. of parameters 1 Parameter range P1= 00000 ... 99999 (5 digits) Must match P1 of
DPW
Factory default 00000 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup ‐ Input Master SPW(P1); No response
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The command SPW with a correctly entered password (using the command DPW) gives authorization for data input with all commands. The command SPW with an incorrect password stops data input for protected commands. A password is not necessary for query.
After an RES or a power‐up, you are again prevented from using the protected commands. A SPW? query is not permitted.
Yes
In the chapter 2.6
I1820-1.3 en HBM
there is an overview of the protected commands.
Page 74
74
WE2107 - Communication commands
RES
Restart
(Reset electronic)
Property Content Note
Command string RES No. of parameters ‐ Parameter range ‐ Factory default ‐ Reaction time < 4 s Password protection No Relevant to legal for
trade
Parameter backup ‐ Input Master RES; No response
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The RES command initiates device start‐up (warm start). This command does not generate a response. All the parameters are set in the same way as they were saved with the last TDD1 command, that is to say, the EEPROM values are transferred to the RAM.
No
A RES? query is not permitted.
I1820-1.3 enHBM
Page 75
WE2107 - Communication commands
75
IDN
Identification
(Identification of electronic type and serial number)
Property Content Note
Command string IDN? No. of parameters ‐ Parameter range ‐ Factory default WE2107,xxxxxxx,P7y crlf Response to IDN?; Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup ‐ Input Master Not possible Query Master IDN?; Response WE WE2107,xxxxxxx,P7y crlf
Note: ( ) required parameters, < > optional parameters for parameter input
No
Pyy is the program version number Xxxxxxx is the serial number
18 chars. + end label
Function:
An identification string is output (18 characters + end label). Sequence: electronics type, serial number, software version A fixed number of characters are output. 6 characters are always output for the electronics
type, the serial number always has 7 characters and the version number always has three characters (each separated by a comma).
Only the manufacturer can enter the serial number (any ASCII characters).
I1820-1.3 en HBM
Page 76
76
WE2107 - Communication commands
TDD
Transmit Device Data
(Back up device parameters)
Property Content Note
Command string TDD No. of parameters 1 Parameter range P1 = 1 to store the parameter
P1 = 0 to restore the factory default
Factory default ‐ Reaction time < 0.2 s Password protection No Relevant to legal for
trade
Parameter backup No data to back up Input Master TDD(P1); No response
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This command is used to save all the parameters. The WE has two EEPROM. In the first EEPROM, customer‐specific parameters are stored power fail safe. The second EEPROM contains the legal for trade parameters.
No
Content of the first EEPROM:
, BDR, COF, SFU, ASF,, FMD, TAV, TAS,
ADR
, ED2, EDC, ESC, PES, PID, PLB, PLE, PRT, PST, TAD, TDL, EPT, RFT,
ED1
, FRS, LIV, BFL, BFS, FIN, MAL, DPW
MDT
Content of the second EEPROM (legal for trade parameters)
SZA
, SFA, ACA, ACU, CWT, LDW, LWT, NOV, RSN, MRA, MRB, MDT, ENU, DPT,LIN, LIM, , ZTR, LFT, TCR.
ZSE
If LFT>0 only the parameters of the first EEPROM will be stored. If LFT=0 the parameters of both EEPROM will be stored. A TDD? query is not permitted.
I1820-1.3 enHBM
Page 77
WE2107 - Communication commands
With parameter input, the changed settings are initially only saved in working memory (RAM), so they are not stored power fail safe. Use the command TDD1 to store the settings that you have changed in working memory power fail safe in the EEPROM.
TDD0, restore the factory default:
This command restore the factory default parameters:
D SZA
Unchanged parameters:
D Commands for the communication: BDR D Commands for the real time clock : TDT D Commands for the external display: EDP D Commands for the print setup: ESC,PES,
Commands for setup buttons, digital inputs:
D BFL
All other parameters are set to the factory default values as we described in this manual.
, SFA (02 mV/V factory characteristic curve)
, ADR, COF,
,TME,TMM,
, EDS, ED1, ED2, EDC
,PLB,PLE,PRT,PST
PID
, BFS, FIN, MAL, TDL
77
NOTE
After TDD0 the scale has to be adjusted again. The legal for trade switch is set to OFF. The calibration counter is incremented by one.
I1820-1.3 en HBM
Page 78
78
WE2107 - Communication commands
ERR
Error status
(Error status)
Property Content Note
Command string ERR? No. of parameters ‐ Parameter range ‐ Factory default ‐ Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup ‐ Query Master ERR?; Response WE P1 crlf P1 = 3 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The Error code has a range of 0255 (decimal, ERR=0 == no Error). After reading the error status the error memory is set to zero.
An error can be detected by the status of the measured value (Bit7=1). The error status is coded bit by bit. If several errors occurs at the same time than the
individual error bits (30) are set to error with the highest priority.
no
Error
Hardware Bit 7 = 1 (priority high)
Load cell / sensor Bit 6 = 1
Parameter Bit 5 = 1
Communication Bit 4 = 1 (priority low)
Individual error bits Bit 3…0
Error bit
I1820-1.3 enHBM
Page 79
WE2107 - Communication commands
Error bits 3…0 Error hardware (Bit 7 = 1)
0 ‐ ( no or several errors)
1 Internal EEPROM (checksum)
2 External EEPROM (checksum)
3 ADC overflow (AOV)
4 ADC underflow (AOV)
5 External power supply voltage to low
6 Short cut digital OUT14
7 Internal voltage too low < 7.0 V
Error bits 3…0 Error load cell (Bit 6 = 1)
79
0 ‐ ( no or several errors)
1 Sensor overflow (SOV)
2 Sensor underflow (SOV)
3 Sensor excitation voltage too low (< 3 V)
4 Floating bridge input signal
5 7 Tbd
I1820-1.3 en HBM
Page 80
80
WE2107 - Communication commands
Error bits 3…0 Error parameter (Bit 5 = 1)
0 ‐ ( no or several errors)
1 Factory characteristic to sensitive
( SFA – SZA < 2000)
2 Scale characteristic to sensitive
( LWT – LDW < 2000)
3 Linearization parameter
LIN1> LIN2 or LIM1> LIM2
4 Gross value overflow
1)
5 Linearization curve, no solution
6 Gross value underflow 1)
7 Initial zero setting value out of range (ZSE)
8 zeroing failed
9 tare failed
10 dosing time overflow
11 weight in the bin/tank is larger than the start limit
12 weight in the tank is too small to dosing
13 dosing: sum is out of range
14 Printing: not standstill over 5 sec. When LFT>0
1)
out of display range
Error bits 3…0 Error communication (Bit 4 = 1)
0 ‐ ( no or several errors)
1 Parameter input out of range
2 Unknown command
3 Password (DPW) failed
4 Parameter write protected (LFT>0, or/and password)
5 Printing time out
6 Calibration counter overflow (TCR>65535)
7 COM1 : framing, parity, break
8 Total weight (sum) overflow
I1820-1.3 enHBM
Page 81
WE2107 - Communication commands
81
AOV
ADC Overflow
(ADC overflow / underflow counter)
Property Content Note
Command string AOV? No. of parameters ‐ Parameter range 0...99999 Factory default ‐ Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup ‐ Query Master AOV?; Response WE P1 crlf P1= 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
If an ADC overflow or underflow occurs (to large input signals), each 10 minutes the overflow counter will be increment by 1. The Error memory is set to (1100 0010 binary = 0C2 hex, see command ERR
The maximum count is 99999.
No
).
I1820-1.3 en HBM
Page 82
82
WE2107 - Communication commands
SOV
Sensor Overflow
(Sensor overflow / underflow counter)
Property Content Note
Command string SOV? No. of parameters ‐ Parameter range 0...99999 Factory default ‐ Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup ‐ Query Master SOV?; Response WE P1 crlf P1= 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
If an sensor overflow / underflow occurs, each 10 minutes the overflow counter will be increment by 1. The Error memory is set to (1100 0010 binary = 0C2 hex, see command
ERR
). The maximum count is 99999. Overflow range: > + 3.4 mV/V or < ‐ 3.4mV/V
No
I1820-1.3 enHBM
Page 83
WE2107 - Communication commands

3.8 Commands for legal for trade applications

The commands are used to monitor parameter changes made to parameters Relevant to legal for trade via the standard counter:
D Calibration switch LFT D Calibration counter TCR?
The parameters Relevant to legal for trade are:
SZA
, SFA, ACA, ACU, CWT, LDW, LWT, NOV, RSN, MRA, MRB, MDT, ENU, DPT, LIN, LIM,
ZSE
, ZTR, LFT, TCR
If the calibration switch is set to LFT>0, it is not possible to make changes to parameters Relevant to legal for trade. Before changing parameters relevant to legal for trade,
activate the password (DPW
calibration counter (TCR) that cannot be reset by 1.
After calibration, set LFT to a value greater than zero. Then read out the calibration counter and make a note on the identification label of the scale.
, SPW) and set LFT to zero. Every LFT change increases the
83
I1820-1.3 en HBM
Page 84
84
WE2107 - Communication commands
LFT
Legal for Trade
(Legal for trade switch)
Property Content Note
Command string LFT No. of parameters 1 Parameter range P1 = 0, 1, 2
0=industrial use (not legal for trade),
1= legal for trade application OIML (R76) enabled
2= legal for trade application NTEP
enabled Factory default 0 disabled Reaction time < 15 ms Password protection YES Relevant to legal for
trade
Parameter backup With command TDD1 Input Master LFT(P1); Query Master LFT?; Response WE P1crlf P1 = 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
YES
Function:
With each LFT command change, the calibration counter (TCR With LFT>0 (legal for trade applications), parameter input of the following commands is
blocked:
, SFA, ACA, ACU, CWT, LDW, LWT, NOV, RSN, MRA, MRB, MDT, ENU, DPT, LIN, LIM,
SZA ZSE
, ZTR
This means that each change to these parameters relevant to legal for trade applications is detected by the standard counter TCR that cannot be reset.
The display range is defined as follows:
LFT=0: ‐160 x NOV .... + 160 x NOV (cannot be verified)
LFT=1: ‐20 d ... + NOV + 9 d (legal for trade, OIML, R76) LFT=2: ‐2 % ... + NOV + 5 % (legal for trade, NTEP)
Permissible tare range:
LFT=0: "100 % of NOV LFT>0: 0 NOV
) is increased by 1.
I1820-1.3 enHBM
Page 85
WE2107 - Communication commands
85
TCR
Trade Counter
(Legal for trade (calibration) counter)
Property Content Note
Command string TCR? No. of parameters ‐ Parameter range ‐ Factory default < 00100 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup Query Master TCR?; Response WE Xxxxx crlf 6 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This counter cannot be reset and marks the parameter changes of commands relevant to legal for trade applications (see command LFT count is reached, the counter stops data output MSV? This status can only be removed at the factory.
It is only possible to read out the calibration counter.
YES
). The maximum count is 65535. When this
; then only outputs overflow values.
I1820-1.3 en HBM
Page 86
86
WE2107 - Communication commands

3.9 Commands for setup the control of an external display

The commands are used to setup the communication with the external display via the second serial link.
D Protocol UART2 FUB
D Protocol external display EDP
D Start character EDS
D CRC character EDC
D End character 1 ED1
D End character 2 ED2
Via the second serial link an external display can be connected. Baud rate: 1200...9600 Parity bit: non / even Type: RS232 Update rate: 5 / sec. Protocol: no protocol (just send out)
Hardware – protocol (DTR) Software – protocol (DC1/DC3/DC4)
The protocol has to be defined in the parameter menu (UART2/FUNCT) or with the command FUB. The baudrate can only be selected in the parameter menu (there is no command available)
I1820-1.3 enHBM
Page 87
WE2107 - Communication commands
87
FUB
Function UART2 (printer / external display protocol)
(Protocol UART2)
Property Content Note
Command string FUB No. of parameters 1 Parameter range 0 5 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master FUB(P1); No response Query Master FUB?; Response WE X crlf 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This command defines the function of the COM‐port 2.
No
Definition of the parameter:
P1=0: Function OFF,
P1=1; printer : hardware protocol (DTR),
P1=2; printer: software protocol (DC1/DC3/DC4),
P1=3; external display: no protocol (only transmit),
P1=4; external display: hardware protocol (DTR),
P1=5; external display: software protocol (DC1/DC3/DC4)
I1820-1.3 en HBM
Page 88
88
WE2107 - Communication commands
EDP
External display protocol
(Protocol external display via second serial link)
Property Content Note
Command string EDP No. of parameters 1 Parameter range 0 7 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master EDP(P1); No response Query Master EDP?; Response WE X crlf 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
Definition of the output string:
No
P1 = 0: no external display (if printer is connected)
P1 = 1; output of the Gross‐ or Net value
P1 = 2; output of the Gross‐ or Net value and the tare value
P1 = 3; output of the filling result
P1 = 4; output of the Gross‐ or Net value with decimal point
(6 char.)
P1 = 5; output of the Gross‐ or Net value without decimal point
(5 char.)
From software version P73:
P1 = 6; Gross or net value is output without decimal separators. (6 characters)
with status
P1 = 7; Gross or net value is output without decimal separators. (6 characters)
The length of the output string depends on the start character (EDS), the both end characters (ED1, ED2) and the check sum character (EDC).
I1820-1.3 enHBM
Page 89
WE2107 - Communication commands
P1=1 / 3, actual Gross or Net value :
89
Byte
Content
1 Start character (EDS),
if EDS=0 no start char. will send out
2 Sign of the measured value
3 ‐ 9 P1=1: Gross or net value (with decimal point)
P1=3: Filling result (with decimal point)
1)
10 Empty space
11 ‐ 14 Unit (`kg ` ; `t ` ; `g ` ; `lbs ` ; `pcs ` ), if standstill otherwise empty spaces
15 Empty space
16 – 19 `G ` =Gross value; `Net ` = Net value or
`N PT' = Net value with usage of pre tare value
20 End character 1 (ED1),
if ED1=0 no char. will send out
21 End character 2 (ED2),
if ED2=0 no char. will send out
22 Check sum character (EDC),
if EDC=0 no char. will send out
1)
if an error occurs than the value is `Err xx'
I1820-1.3 en HBM
Page 90
90
WE2107 - Communication commands
P1=2, actual Gross or Net value and the tare value :
Byte
Content
1 Start character (EDS),
if EDS=0 no start char. will send out
2 Sign of the measured value
3 ‐ 9 Gross or net value (with decimal point)
1)
10 Empty space
11 ‐ 14 Unit (`kg ` ; `t ` ; `g ` ; `lbs ` ; `pcs ` ),if standstill otherwise empty spaces
15 Empty space
16 – 19 `G ` =Gross value; `Net ` = Net value or
`N PT' = Net value with usage of pre tare value
20 Empty space
21 – 27 Tare value (with decimal point)
28 End character 1 (ED1),
if ED1=0 no char. will send out
29 End character 2 (ED2),
if ED2=0 no char. will send out
30 Check sum character (EDC),
if EDC=0 no char. will send out
1)
if an error occurs than the value is `Err xx'
I1820-1.3 enHBM
Page 91
WE2107 - Communication commands
P1=4, actual Gross or Net value :
91
Byte
Content
1 Start character (EDS) ,
if EDS=0 no start char. will send out
2 – 7 G/N value, 6 characters with decimal point
8 End character 1 (ED1) ,
if ED1=0 no char. will send out
9 End character 2 (ED2) ,
if ED2=0 no char. will send out
10 Check sum character (EDC) ,
if EDC=0 no char. will send out
P1=5, actual Gross or Net value :
Byte
Content
1 Start character (EDS) ,
if EDS=0 no start char. will send out
2 – 6 G/N value, 5 characters without decimal point
7 End character 1 (ED1) ,
if ED1=0 no char. will send out
8 End character 2 (ED2) ,
if ED2=0 no char. will send out
9 Check sum character (EDC) ,
if EDC=0 no char. will send out
Protocol 6 and 7 (as described above)
Character
1 2 3 4 5 6 7 8 9
Protocol 6 EDS VZ w w w w w w S1
Protocol 7 EDS VZ bo bo bo bo bo ED1 ED2
Character 10 11 12 13 14 15 16 17 18
Protocol 6 S2 S3 S4 unit1 unit2 unit3 ED1 ED2 EDC
Protocol 7 EDC
EDS Start character S1 G/N or Space ED1 End character 1 S2 M (motion) or space ED2 End character 2 S3 space EDC Check sum S4 space or 1/2/3 for multi range VZ sign LZ space
I1820-1.3 en HBM
Page 92
92
WE2107 - Communication commands
EDS
External display start character
(External display, definition of the start character)
Property Content Note
Command string EDS No. of parameters 1 Parameter range 0 99 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for trade No Parameter backup With command TDD1 Input Master EDS(P1); No response Query Master EDS?; Response WE xx crlf 2 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This command defines the start character in the output string. EDS=0: no start character is defined (the telegram is 1 byte shorter) EDS=199 an start character is defined ( reference ASCII‐chart PC437)
Examples:
EDS=2: start character is STX (=02hex)
EDS=27: start character is an ESC (=1B hex)
I1820-1.3 enHBM
Page 93
WE2107 - Communication commands
93
ED1
External display end character 1
(Protocol external display definition of the end character 1)
Property Content Note
Command string ED1 No. of parameters 1 Parameter range 0 31 Factory default 13 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master ED1(P1); No response Query Master ED1?; Response WE xx crlf 2 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This command defines the first end character in the output string. ED1=0: no end character is defined (the telegram is 1 byte shorter) ED1=131 an end character is defined ( reference ASCII‐chart PC437)
No
Examples:
ED1=3: end character is ETX (=03hex)
ED1=13: end character is an CR (=0d hex)
I1820-1.3 en HBM
Page 94
94
WE2107 - Communication commands
ED2
External display end character 2
(Protocol external display definition of the end character 2)
Property Content Note
Command string ED2 No. of parameters 1 Parameter range 0 31 Factory default 10 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master ED2(P1); No response Query Master ED2?; Response WE xx crlf 2 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This command defines the second end character in the output string. ED2=0: no end character is defined (the telegram is 1 byte shorter) ED2=131 an end character is defined ( reference ASCII‐chart PC437)
No
Examples:
ED1=3: end character is ETX (=03hex)
ED1=10: end character is an LF (=0a hex)
I1820-1.3 enHBM
Page 95
WE2107 - Communication commands
95
EDC
External display check sum
(Protocol external display definition of the check sum)
Property Content Note
Command string EDC No. of parameters 1 Parameter range 0,1 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master EDC(P1); No response Query Master EDC?; Response WE x crlf 1 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
This command defines the checksum in the output string. EDC = 0: no check sum is defined (the telegram is 1 byte shorter) EDC = 1 an check sum will be calculated The check sum is the XOR function ( first byte is the start character (EDS) and The last byte is the end character 2 (ED2).
No
I1820-1.3 en HBM
Page 96
96
WE2107 - Communication commands

3.10 Commands for setup the print function

D Print protocol PRT D Escape sequence ESC
D Number of empty lines before printing PLB
D Number of empty spaces in each row PES
D Print identification counter PID
D Printer strings PST
D Number of empty lines after printing PLE
D Start a hard copy SHC
To start a hard copy a function button (F1/F2) or a digital input has to be set (BUS, BUL, FIN
Via the second serial link a printer can be connected.
).
Baud rate: 1200...9600
Parity bit: non / even
Type: RS‐232
Protocol: Hardware – protocol (DTR)
Software – protocol (DC1/DC3/DC4)
The protocol has to be defined in the parameter menu (UART2/FUNCT) or with the com mand FUB
The parity bit and the communication protocol has to be defined in the menu of the WE. The different hard copies are described in the part 1 of the manual. . The baud rate can only be selected in the parameter menu (there is no command available).
.
I1820-1.3 enHBM
Page 97
WE2107 - Communication commands
97
PRT
Print protocol
(Print protocol via second serial link)
Property Content Note
Command string PRT No. of parameters 1 Parameter range 0 9 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master PRT(P1); No response Query Master PRT?; Response WE X crlf 1 character
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
P1 = 0: print function is switched off
No
P1 = 1: gross or net weight (tare value if net weight printed)
P1 = 2: gross or net weight and the quantity ( if counting scale)
P1 = 3: gross or net weight, quantity, total weight
P1 = 4: gross or net weight, quantity, total weight, after printing the total
weight is cleared
P1 = 5: result portion weighing (gross or net weight),
P1 = 6: result portion weighing (gross or net weight), total weight,
after printing the total weight is cleared
P1 = 7: print all parameters of the WE,
P1 = 8: Gross or net weight (tare value on printout of net weight) without header
and date/time
P1 = 9: Gross or net weight (tare value on printout of net weight) without header,
with date/time
I1820-1.3 en HBM
Page 98
98
WE2107 - Communication commands
ESC
Escape sequences
(Escape sequences for the print protocol )
Property Content Note
Command string ESC No. of parameters 2 Parameter range P1: 0 … 9
P2: 0 255
Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master ESC(P1),(P2); No response Query Master ESC(P1)?; Response WE xxx crlf 3 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
The escape sequences are used to setup the printer (see manual of the printer). The WE has two Escape sequences: Sequence 1:ESC, ESC0, ESC1, ESC2, ESC3, ESC4 Sequence 2:ESC, ESC5, ESC6, ESC7, ESC8, ESC9 If the ESC character is set to zero (ESCx,0) this character will not be transmitted. To switch off the sequence 1 the command ESC0,0 has to be send. To switch off the sequence 2 the command ESC5,0 has to be send.
No
I1820-1.3 enHBM
Page 99
WE2107 - Communication commands
99
PLB
Print empty lines before printing
(Print empty lines before printing)
Property Content Note
Command string PLB No. of parameters 1 Parameter range 0…99 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master PLB(P1); No response Query Master PLB?; Response WE xx crlf 2 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
P1 defines the number of empty lines at the start of printing.
No
I1820-1.3 en HBM
Page 100
100
WE2107 - Communication commands
PES
Print empty spaces
(Print empty spaces in each line)
Property Content Note
Command string PES No. of parameters 1 Parameter range 0…99 Factory default 0 Reaction time < 15 ms Password protection No Relevant to legal for
trade
Parameter backup With command TDD1 Input Master PES(P1); No response Query Master PES?; Response WE xx crlf 2 characters
Note: ( ) required parameters, < > optional parameters for parameter input
Function:
P1 defines the number of empty spaces (blanks) on the start of each new line.
No
I1820-1.3 enHBM
Loading...