Hach MET ONE 6003, MET ONE 6013, MET ONE 6015, MET ONE 6005 User Manual

DOC026.97.80340
MET ONE 6000: 6003, 6005,
6013, 6015
05/2013, Edition 2
Basic User Manual
Manuel d'utilisation de base
Manual básico del usuario
基本用户手册
기본 사용 설명서
English...................................................................................................................................................................................................
Français..............................................................................................................................................................................................24
Español...............................................................................................................................................................................................48
中文.......................................................................................................................................................................................................72
日本語..................................................................................................................................................................................................91
한글.....................................................................................................................................................................................................113
3
2

Table of contents

Specifications on page 3 Startup on page 15
General information on page 4 Operation on page 16
Installation on page 8 Maintenance on page 23

Specifications

Specifications are subject to change without notice.
Specification Details
Dimensions (W x D xH)13.56 x 8.93 x 12.06 cm (5.34 x 3.52 x 4.75 in.)
Enclosure 304 stainless steel
Light source Long Life Laser™ diode , Class 3B laser
Weight 0.82 kg (1.8 lb)
Pollution degree 2
Installation category I
Protection class III
Power requirements 9–28 VDC (source: Class 2 limited energy, < 150 VA)
Power consumption (maximum)
Operating temperature
Storage temperature –40 to 70 °C (–40 to 158 °F)
Humidity Operating and storage: 5 to 95% relative humidity, non-
Altitude 2000 m (6562 ft) maximum
Serial and pulse units: 3.3 W; Ethernet unit: 4.3 W; Analog: 3.5 W; 1 A maximum
5 to 40 °C (40 to 104 °F); best performance: 10 to 32 °C (50 to 90 °F)
condensing
Specification Details
Port sizes Model 6003, 6005: barb fitting for 0.32 cm (1/8-in.) ID
Output signal options Pulse, analog 4–20 mA, serial RS232 with Modbus RTU
Data storage 1000 samples/records (oldest records are written over
Sample flow rate Model 6003, 6005: 0.1 cfm (2.83 Lpm) ± 5%
Inlet pressure Ambient to 2.5 mm (0.1 in) Hg vacuum
Vacuum requirement ≥ 406 mm (16 in.) Hg (542 mbar) minimum vacuum
Range Model 6003: 0.3 μm to 10.0 μm at 0.1 cfm (2.83 L/min)
Sensitivity Model 6003: 0.3 μm at 0.1 cfm (2.83 L/min)
Counting efficiency Model 6003: 50% (± 20%) for 0.3 μm, (100% ± 10% at
Coincidence loss Model 6003, 6005 (all output options): 10% at
inlet tubing, 0.64 cm (¼-in.) ID outlet tubing Model 6013, 6015: barb fitting for 0.64 cm (¼-in.) ID inlet
tubing, 0.64 cm (¼-in.) ID outlet tubing
or FXB communication protocol (no networking), serial RS485 with Modbus RTU or FXB communication protocol, Ethernet with ModbusTCP protocol
when the buffer is full)
Model 6013, 6015: 1.0 cfm (28.3 Lpm) ± 5%
measured at each instrument with flow through all instruments.
Model 6005: 0.5 μm to 10.0 μm at 0.1 cfm (2.83 L/min) Model 6013, 6015: 0.5 μm to 10.0 μm at 1.0 cfm
(28.3 L/min)
Model 6005: 0.5 μm at 0.1 cfm (2.83 L/min) Model 6013: 0.3 μm at 1.0 cfm (28.3 L/min) Model 6015: 0.5 μm at 1.0 cfm (28.3 L/min)
1.5 times the minimum sensitivity)1. Model 6005, 6013, 6015: 50% (± 20%) for 0.5 μm, (100%
± 10% at 1.5 times the minimum sensitivity)1.
140,000,000 particles /m3 (4,000,000 particles /ft3) Model 6013, 6015 (all output options except for pulse):
10% at 20,000,000 particles/m3 (566,000/ft3)
English 3
Specification Details
False count rate One or less in 5 minutes
Certifications CE
1
Fully complies with ISO21501-4.

General information

In no event will the manufacturer be liable for direct, indirect, special, incidental or consequential damages resulting from any defect or omission in this manual. The manufacturer reserves the right to make changes in this manual and the products it describes at any time, without notice or obligation. Revised editions are found on the manufacturer’s website.

Expanded manual version

For additional information, refer to the CD for an expanded version of this manual.

Safety information

N O T I C E
The manufacturer is not responsible for any damages due to misapplication or misuse of this product including, without limitation, direct, incidental and consequential damages, and disclaims such damages to the full extent permitted under applicable law. The user is solely responsible to identify critical application risks and install appropriate mechanisms to protect processes during a possible equipment malfunction.
Please read this entire manual before unpacking, setting up or operating this equipment. Pay attention to all danger and caution statements. Failure to do so could result in serious injury to the operator or damage to the equipment.
Make sure that the protection provided by this equipment is not impaired. Do not use or install this equipment in any manner other than that specified in this manual.
Use of hazard information
D A N G E R
Indicates a potentially or imminently hazardous situation which, if not avoided, will result in death or serious injury.
Indicates a potentially or imminently hazardous situation which, if not avoided, could result in death or serious injury.
Indicates a potentially hazardous situation that may result in minor or moderate injury.
Indicates a situation which, if not avoided, may cause damage to the instrument. Information that requires special emphasis.
W A R N I N G
C A U T I O N
N O T I C E
Precautionary labels
Read all labels and tags attached to the instrument. Personal injury or damage to the instrument could occur if not observed. A symbol on the instrument is referenced in the manual with a precautionary statement.
This symbol, if noted on the instrument, references the instruction manual for operation and/or safety information.
This symbol, when noted on a product enclosure or barrier, indicates that a risk of electrical shock and/or electrocution exists.
4 English
This symbol indicates a laser device is used in the equipment.
Electrical equipment marked with this symbol may not be disposed of in European public disposal systems after 12 August of 2005. In conformity with European local and national regulations (EU Directive 2002/96/EC), European electrical equipment users must now return old or end-of-life equipment to the Producer for disposal at no charge to the user.
Note: For return for recycling, please contact the equipment producer or supplier for instructions on how to return end-of-life equipment, producer-supplied electrical accessories, and all auxillary items for proper disposal.
Laser safety information
This instrument is a CLASS 1 LASER PRODUCT, CDRH Accession No. 9022243-029. Invisible laser radiation is present when opened. Avoid direct exposure to the beam. Service of the internal components must be done by factory-authorized personnel only.
The instrument complies with IEC/EN 60825-1 and 21 CFR
1040.10 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

Certification

Canadian Radio Interference-Causing Equipment Regulation, IECS-003, Class A:
Supporting test records reside with the manufacturer. This Class A digital apparatus meets all requirements of the Canadian
Interference-Causing Equipment Regulations. Cet appareil numèrique de classe A répond à toutes les exigences de la
réglementation canadienne sur les équipements provoquant des interférences.
FCC Part 15, Class "A" Limits
Supporting test records reside with the manufacturer. The device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:
1. The equipment may not cause harmful interference.
2. The equipment must accept any interference received, including
interference that may cause undesired operation.
Changes or modifications to this equipment not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at their expense. The following techniques can be used to reduce interference problems:
1. Disconnect the equipment from its power source to verify that it is or
is not the source of the interference.
2. If the equipment is connected to the same outlet as the device
experiencing interference, connect the equipment to a different outlet.
3. Move the equipment away from the device receiving the interference.
4. Reposition the receiving antenna for the device receiving the
interference.
5. Try combinations of the above.

Product overview

This instrument and collection optics. Refer to Figure 1. Room air is pulled through the particle counter by an attached, external vacuum system.
Multiple instruments can be installed at different locations in a clean room to monitor the air quality. Count data is sent to the user-supplied central monitoring software through the applicable communication protocols. The central monitoring software is used to remotely operate the instrument.
The sensor flow path is resistant to vaporous hydrogen peroxide (VHP) for VHP-based standard clean room disinfection and cleaning cycles.
counts airborne particles with a laser diode light source
English 5
Figure 1 Product overview
Table 1 Status indicator light (continued)
Color Indication System status
Blue On Sensor failure
One short flash, one long flash Air flow failure
Flashing Communication failure
Red On or flashing Count alarm
Yellow On Initialization
Flashing Count alert
Purple Flashing Setup utility is being used
1
The user-supplied central monitoring software can be used to make the yellow light flash when a count alert occurs with ModBus protocol, not FX protocol. The count alert settings are selected with the central monitoring software.
1
1 Power input and communication
connector, 10-pin
2 Vacuum source fitting (or quick-
connect fitting)
3 Sample air inlet fitting 9 Connection indicator lights
4 Status indicator light (Table 1) 10 Ethernet RJ45 connector 5 Service port and optional light stack
port
6 DIP switch, network address
1
All units except Ethernet
2
Ethernet units only
1
1
7 Relative humidity (RH) and
temperature sensor port
8 Vacuum source fitting (alternate
location)
(Table 2)
11 Power input connector, 5-pin
Table 1 Status indicator light
Color Indication System status
Green Flashing (3 seconds) Normal, sampling
On Normal, not sampling
6 English
Table 2 Ethernet indicator lights
Color Indication Status
Yellow On Connected
2
2
2
Green Off 10Base-T
On 100Base-T
Isokinetic probe
For the best accuracy in laminar flow environments, always use the supplied isokinetic probe with this
instrument. The velocity of air in the probe is similar to that of a typical vertical or horizontal laminar flow environment such as a clean room or clean hood. The supplied isokinetic probe supplies the same vertical (or horizontal) flow speed of the air in order to collect representative samples of the clean room laminar flow for the instrument. Refer to Figure 2 for a comparison of sampling with and without the isokinetic probe.
Figure 2 Isokinetic probe function
1 No probe in non-laminar air flow 3 No probe in laminar air flow—
particles are missed
2 To particle counter 4 Isokinetic probe in laminar air flow
—most accurate

Instrument configurations

This instrument is available in many configurations. Each configuration has a different part number. Figure 3 shows the part number structure.
Table 3 gives descriptions of the part number codes.
Figure 3 Part number structure
1 Flow rate 3 Exhaust location 5 Communication 2 Sensitivity (minimum) 4 Flow measurement
Table 3 Parameter codes
Parameter Code Description Parameter Code Description
Flow rate 0 0.1 cfm
(for 0.3 µm and 0.5 µm sensitivity)
1 1.0 cfm
(for 0.5 µm sensitivity only)
Sensitivity (minimum)
Exhaust location
Example: An instrument with a 0.1 cfm flow rate, 0.5 μm sensitivity, bottom exhaust port, flow measurement and RS485 communication will have the part numbers 2088605-DF-S and 20888600-485. The second part number is necessary to identify the type of serial communication (RS232 = 20888600-232, RS485 = 20888600-485 or Pulse = 20888600-PLS). The second part number is not necessary for any other communication type.
3 0.3 µm Communication E Ethernet
5 0.5 µm S Serial I/O
D Down
(bottom)
S Side
Flow measurement
F With flow
measurement
N Without flow
measurement
options
A Analog
English 7

Product components

Make sure that all components have been received. Refer to Figure 4. If any items are missing or damaged, contact the manufacturer or a sales representative immediately.
Figure 4 Instrument components
1 MET ONE 6000 series particle
counter
2 Sample (isokinetic) probe with
1
tube
3 Sample (isokinetic) probe with
2
tube
4 DIN rail mounting kit 8 Service port cable (8-pin DIN to 9-
1
1.0 cfm units only
2
0.1 cfm units only
3
All units except Ethernet
4
Ethernet only
5
Only one service port cable is supplied per order.
5 10-pin connector with clam shell
6 5-pin connector with clam shell
7 Setup utility CD
pin serial connector)
5
3
4

Installation

Installation guidelines

N O T I C E
Before a cleaning or disinfecting cycle is started, stop the vacuum pump and put a cover on the air inlet fitting.
High internal temperatures cause damage to the instrument components.
• Install the instrument indoors in a clean, dry, well ventilated,
temperature controlled location with minimum vibration.
If the room is washed down at regular intervals, install the instrument outside of the room. Only the air inlet and vacuum tubes will go into the clean room. As an alternative, put the instrument in the clean room in a sealed box. Connect all tubes and cables to the instrument through the box. Operation of the instrument in an enclosed box may increase the temperature around the instrument and decrease the performance and life of the instrument.
• Do not operate the instrument in direct sunlight or next to a heat
source.
• Install the instrument as close to the sample source as possible. Make
sure that the distance is not more than 3 m (10 ft). An inlet tube length longer than 3 m (10 ft) can cause a loss of particles larger than 1 μm. If an inlet tube length longer than 3 m (10 ft) is necessary, compare the results between a portable particle counter and this instrument.
• Keep the air flow in a constant downward direction. When possible,
mount the instrument directly below the sample point.

Vacuum system guidelines

• Put the vacuum pump in a central location. There must be sufficient
vacuum for all instruments in the network.
• Use a distribution manifold that keeps vacuum loss to a minimum.
Typical materials used for vacuum distribution include brazed copper pipe, schedule 80 PVC pipe or tubing such as Cobolite®.
N O T I C E
8 English
• Use short tubing lengths to supply the vacuum from the distribution manifold to the individual barb fitting of the correct dimension at each instrument location.
• Keep the number of junctions, elbows and the tubing length from the vacuum source to the instruments to a minimum to keep the vacuum loss in a system to a minimum.
instrument. Use a distribution valve and a

Mechanical installation

Instrument mounting
Install the instrument on a level surface or on a wall with one of these mounting kits:
• DIN rail kit (supplied with the instrument)—use to quickly remove the instrument from the wall.
• Wall mounting bracket (optional)—use for permanent installation. Refer to the instructions supplied with the kit.
Refer to the illustrated steps in Figure 5 for DIN rail installation. To remove the instrument from the rail, lift the bottom of the instrument.
Figure 5 DIN rail installation
English 9
Install the sample probe
Refer to Sample probe guidelines on page 10 prevent contamination of the instrument and to get a representative sample of the area. The position of the sample (isokinetic) probe is important for count accuracy.
Sample probe options
Optional kits are available for sample probe installation. Refer to
Figure 6.
Direct mount—No kit is necessary. The sample probe is installed on
a short piece of tubing directly on top of the sample air inlet fitting on the instrument. Use direct mount installation when the instrument can be put in the location where the sample is collected. Use the direct mount installation to keep particle loss to a minimum.
Wall mount, 90 degree—The probe is connected to a stainless steel
tube (90 degree) and a wall bracket.
T-type wall bracket—The sample probe is installed in a wall bracket.
The tubing is cut to connect the probe to the counter.
Vertical wall mount—The sample probe is connected to a stainless
steel tube and bracket. Use vertical wall mount installation on equipment with stainless steel tubing.
before the installation to
Figure 6 Sample probe installation options
1 Direct mount 3 Vertical wall mount 2 Wall mount, 90 degree 4 T-type wall bracket
Sample probe guidelines
N O T I C E
Do not use this instrument to monitor air that contains vapors from drying adhesives or other chemicals. These vapors can permanently coat the sensor optics or other internal parts.
Do not use this instrument to monitor air that contains vapors with corrosives. These vapor will quickly cause permanent damage to the optics or electronics of the counter.
• Laminar flow—Install at least one sample probe for every 2.3 m
N O T I C E
2
(25 ft2) of surface area.
10 English
• Turbulent flow—Install at least two sample probes in each clean room.
Make sure that the sample (isokinetic) probe points to the direction of flow. Refer to Figure 2 on page 7.
• Keep the sample probe a minimum of 30 cm (12 in.) from loose materials, dust, liquids and sprays.
• Keep the sample probe a minimum of 30 cm (12 in.) from potential contamination sources such as an instrument exhaust fan.
• Do not use this instrument to monitor air that contains the substances shown in Table 4.
Table 4 Contaminants
Substance Damage
Powders Contaminates the sensor and causes incorrect results or
Liquids Contaminates the internal optics of the sensor and changes the
Smoke Contaminates the sensor
instrument failure
calibration of the instrument
Note: Liquids can be in the air in the form of oil droplets.
Install the tubing
Use tubing hooks or cable ties to hold the tubing and prevent a bend in the tubing. A bend in the tubing will decrease the air flow and cause the problem that follow
• A decrease in air inlet flow can cause particles to collect on the interior walls of the tubing. The particles will not be counted. The collected particles can release at random, which will cause spikes in the count level.
Items to collect:
• Air inlet tubing—Hytrel® Bevaline, Tygon® or equivalent
• Vacuum tubing—Hytrel Bevaline, Tygon or equivalent
• Tubing hooks or cable ties
1. Cut the air inlet tubing to a length sufficient to connect the instrument
to the sample probe. Keep the tube length to a minimum. Make sure that the length is not more than 3 m (10 ft).
s:
2. Cut the vacuum tubing to connect the counter to the vacuum source.
Keep the tube length to a minimum.
3. Put a cover on the tube ends to make sure that unwanted material
does not go in the tubes during installation.
4. Attach the tubing with hooks or cable ties at intervals that are not
more than 1.2 m (4 ft) apart. Make sure that the tubing has a minimum bend radius of 10 cm (4 in.) so air flow is not decreased.
5. Connect the air inlet tubing to the air inlet fitting on the
instrument.
Connect the other end of the tubing to the supplied sample probe.
6. Connect the vacuum tubing to the fitting on the bottom (or side) of
the counter. Do not connect the other end to the vacuum until the room is ready for sampling.

Electrical installation

Wiring safety information
W A R N I N G
Electrocution hazard. Make sure that there is easy access to the local power disconnect.
N O T I C E
Always disconnect power to the instrument before electrical connections are made.
Obey all safety statements while connections are made to the instrument.
Connect to power
Connect an external power source (24 VDC) to the 5-pin or 10-pin connector. Refer to Figure 7 and Table 5 or Figure 8 and Table 6 for wiring information. Make sure that the output voltage of the external power source does not exceed 28 VDC.
The maximum number of power source can change with the communication option. Contact technical support for more information.
Refer to the illustrated steps in Figure 9 for 5-pin connector wiring. Refer to the illustrated steps in Figure 10 for 10-pin connector wiring.
instruments that can connect to one external
English 11
Figure 7 5-pin connector
Table 5 5-pin connector wiring
Pin Description Pin Description
1 4 Unit main power (9–28 VDC, 1 A
maximum)
2 5 Common
3 Common (shield ground)
Figure 8 10-pin connector
Table 6 10-pin connector wiring
Pin RS485 unit RS232 unit Pulse unit Analog unit
1 RS485 A Ch 1+ 24 VDC external loop power
source
2 RS485 B Ch 1- Channel 1 loop out
3 RS485 A RS232 TX Ch 2+ Channel 2 loop out
4 RS485 B RS232 RX Ch 2- Channel 3 loop out
Table 6 10-pin connector wiring (continued)
Pin RS485 unit RS232 unit Pulse unit Analog unit
5 Channel 4 loop out
6 Status +
7 Status -
8 Common (shield ground)
9 Unit main power (9–28 VDC, 1 A maximum)
10 Common
12 English
Figure 9 5-pin connector wiring Figure 10 10-pin connector wiring
English 13
Install serial communications
Refer to Figure 8 on page instrument with serial communication (RS485, RS232 or pulse).
Network wiring
Up to 32 instruments (12 K load each) can be included in a RS485 (EIA-485) network with RS485 Modbus or FXB communication. Use a high-grade wire for serial communications such as Belden 9841. The manufacturer recommends that the length of the network is not more than 1200 m (3937 ft).
Figure 11 shows a typical network wiring diagram.
Figure 11 Network wiring
1 Particle counter 5 Cable 2 Particle counter 6 RS232 to RS485 converter 3 To additional particle counters 7 Network cable 4 PC
12 and Table 6 on page 12 to connect an
Connect to the Ethernet
Connect standard 10Base-T or 100Base-T network. Make sure that the wiring is applicable for the speed of the network to prevent intermittent problems.
instruments with Ethernet communication to an Ethernet
For this instrument, Ethernet standard 10Base-T is sufficient to transmit data and is more tolerant of installation errors.
Length—100 m (328 ft) maximum, single wire length (repeaters can be used to increase the distance)
• Repeaters—4 (maximum)
• Connector type—RJ45 (standard Ethernet wiring convention T-568B)
Connect the analog outputs
Connect instruments with the analog output feature to a data acquisition system. Refer to Figure 8 on page 12 and Table 6 on page 12 for wiring information.
When a +24 VDC power supply is used, the power supply can also be used as the 4–20 mA loop power source if there is sufficient output for the loop. Refer to Figure 12. Figure 13 shows the maximum limit of total loop resistance (load and wiring combined) that is allowed.
Instruments with the analog output feature send a 4–20 mA signal that is proportional to the number of counts in a given sampling time. The analog outputs are updated at the end of each sample period. A data acquisition system receives the signal. Instruments with the analog output feature can have two or four channel sizes. Analog units cannot be used in a network configuration.
Use the setup utility software to set the maximum number of counts that correspond to the 20 mA signal. Refer to Configure the instrument on page 17.
When power is applied, the analog outputs on the channels is 4 mA. When power is removed or there is a sensor failure or flow failure, the analog output on the channels is less than 2 mA. If a channel is disabled by the user, the channel output is less than 2 mA. Any signal less than 4 mA (zero count value) causes a negative number in the data acquisition system which identifies that there is a problem with the signal from the instrument.
Configure the central monitoring software to alarm on any signal less than 4 mA (zero count value) to get a sensor, flow or power loss alarm as necessary.
14 English
Figure 12 Configuration for loop power
Figure 13 Maximum limit for current loop operation
1 Configuration for common loop
power supply
2 Configuration for separate loop
power supply
3 24 VDC loop power supply 7 24 VDC power supply 4 + Loop supply 8 + Power
5 Common
6 4–20 mA collection system
1 Loop supply voltage 3 Outside the operating range (below
2 Acceptable operating range (above
line)
line)
4 Maximum limit of total loop
resistance

Startup

Clean the exterior surfaces

N O T I C E
Never spray the instrument directly with liquid or a vaporous hydrogen peroxide (VHP) stream. When liquid solutions get into the counter flow path or electronics, sensor damage occurs.
Do not allow disinfecting chemical vapor to get into the instrument enclosure and come in contact with the
instrument electronics.
Wipe the exterior surfaces with a lint-free tissue made moist with isopropyl alcohol (IPA). The sample (isokinetic) probe can be autoclaved for cleaning.
N O T I C E
English 15

Clean the interior surfaces

Use a
zero count filter to remove contaminants such as particles, lint or dust from the interior surfaces of the instrument and the air inlet tubing. When the count goes to zero, the interior surfaces and inlet air tubing are clean.
Items to collect: zero count filter
1. Attach the zero count filter to the air inlet tube.
The zero count filter prevents any external particles from going in the instrument.
2. Start sample collection and operate the instrument for at least
30 minutes. Refer to Manual operation on page 22.
3. Monitor the room air in 5-minute intervals and continue until the
particle count is 0–1. Optional: To record the data, set the Sample Timing: Sample setting
to 5 minutes. Refer to Configure the instrument on page 17.
4. If the particle count does not go to 0–1 after nine or ten 5-minute
sample periods, purge the instrument overnight. Refer to Purge the
instrument on page 16.

Purge the instrument

Do a purge to get a particle count of 0–1. Typically, a purge is done before a test to make sure that there is a baseline reference for the instrument.
1. Remove approximately 2.5 cm (1 in.) of tubing from the sample
probe-end of the air inlet tube to remove any stretched or scored section.
2. Attach a zero count filter to the air inlet tube.
3. Operate the instrument for 24 hours.
4. If a particle count of 0–1 is not shown after 24 hours, identify if the
source of the particles is the air inlet tubing.
a. Install the zero count filter directly on the air inlet fitting. b. Operate the instrument for another 15 minutes.
c. Monitor the room air for 5 minutes and record the results. Do this
step up to four times until the particle count is 0–1 in a 5-minute sample.
d. If a particle count of 0–1 is shown, the air inlet tubing is the
source of the particles. Replace the air inlet tubing.
e. If the particle count does not go to 0–1, contact technical support.

Operation

Configuration

For initial configuration, connect the After initial configuration, change the configuration settings as necessary
by direct connection to a PC or through a ModbusTCP connection. For configuration through a network, only the LAN settings can be changed. Refer to Configure the LAN settings through a network on page 19.
Connect to a PC
Items to collect:
• Setup utility CD
• Service port cable
• PC with Windows® 2000 Professional, Windows XP Professional, Windows Vista (32-bit), Windows 7 (32-bit or 64-bit in XP emulation mode)
• USB to RS232 adapter if the PC does not have a RS232 port
1. Make sure that Microsoft .Net Framework is installed on the PC. If
not installed, open the dotnetfx.exe file on the setup utility CD and install the application.
Note: The user must be logged on to the PC as an Administrator.
2. Copy and paste the SetupUtility.exe file from the setup utility CD to
the PC.
3. Connect the Service port cable to the Service port on the instrument
and a COM port on the PC.
instrument to a PC.
16 English
Configure the instrument
Use the setup utility software to configure the parameters kept on each instrument configuration. If a new configuration is not found, the previously saved configuration is used.
1. Open the SetupUtility.exe file that is installed on the PC to start the
2. Select the Basic Setup tab.
3. Find the Port field on the right side of the window. Select the COM
4. Click Read Instrument. The utility reads the data that is saved on
5. Make sure that the data in the Instrument Information section is
6. In the General section, select the settings.
. When power is applied to the instrument, it looks for a new
setup utility program.
port on the PC to which the instrument is connected.
the instrument.
correct (model number, communication option, firmware version and communication address, if applicable).
Option Description
Count Mode Sets the count mode. Does not affect the analog
Sample Timing: Sample
Sample Timing: Hold Sets the length of time that data collection stops
Count Cycles Sets the number of samples taken before data
output of analog units. Differential—The particle counts shown for each
channel are the counts for each channel size. Cumulative (default)—The particle counts shown
for each channel are the counts for each channel size plus the larger channel sizes. For example, if the channel is 0.3 µm, particles that are 0.3 µm and larger in size are included in the count.
Sets the length of time for each sample (default = 00:01:00 = 1 minute).
after samples are taken (default = 00:00:00).
collection stops and the hold time starts (0 = continuous sampling).
Option Description
Slave Address/Location ID
Comm Timeout Sets the number of seconds after a communication
Location Name Sets a unique identifier for the instrument.
System Date/Time Sets the date (YYYY/MM/DD) and time
Moving Cumulative Counts
Store Partial Records Enables partial sample data to be saved to the
Temp Units °C Changes the temperature units from Fahrenheit
Remote LCD Not available (disabled)
Count Alarms Sets the minimum number of particles for each
Do not change (default = 1).
failure before a communication (Comm) alarm occurs. To disable communication alarms, set to 0. For instruments with the analog output feature, set to 0.
(HH:MM:SS, 24-hour format).
Sets the number of sample counts for Channel 1 or Channel 2 that are added together and shown in Channel 3 and Channel 4. Channel 3 shows the cumulative counts for Channel 1. Channel 4 shows the cumulative counts for Channel 2.
buffer. Partial sample data occurs when a sample is stopped before it is completed.
(default) to Celsius.
channel that will trigger a count alarm. To see the channel sizes, select the Data Display tab. Refer to Figure 15 on page 22.
English 17
Option Description
Sample Mode Sets the sample mode.
Flow Units Sets the air flow units. Options: CFM (cubic feet per
7. If an optional external light stack is connected to the
Auto—Sample data collection starts automatically when power is applied to the instrument.
Manual—Sample data collection does not start automatically when power is applied to the instrument. Sample data collection must be started manually. Refer to Manual operation on page 22.
Note: Ethernet units with analog output cannot be set to Manual because there is no bi-directional communication with the central monitoring software. These units always start in Auto mode.
minute) or LPM (liters per minute).
instrument, use the Diagnostics section to set the status indicator light to flash or not flash for one of the colors to identify that the wiring is correct.
Note: It is not possible to save the diagnostic settings and they have no effect on the instrument operation.
8. For units with analog output, change the settings for the 4–20 mA
analog output in the Analog section.
Option Description
Full Scale Sets the particle count for each channel that corresponds to a
Output State
20 mA output signal (default = 1000). A zero particle count corresponds to a 4 mA output signal.
Note: Count alarms are not reported to the central monitoring software. Configure the central monitoring software to trigger count alarms as necessary.
Sets the output state. Set to Normal for normal operation. Zero—Holds the output at 4 mA.
Span—Holds the output at 20 mA.
9. For serial communication (RS485 units only), change the
communication setting in the Serial section. Options: FXB, Modbus, R48XX Compatibility, FXB1. If Modbus is selected, enter the slave address. When the address is 31 or less, use the dip switches on the
bottom of the instrument to set the address. Refer to RS485 serial
output with Modbus RTU protocol on page
Note: If an address of 32 or higher is entered, the dip switch setting are ignored and the entered value is used.
20.
10. For pulse communication (RS485 units only), select the channel size
for the Channel 2 pulse output in the Pulse section (default = Count Channel 2). The Channel 1 pulse output always corresponds to the Channel 1 particle size.
11. For Ethernet communication (Ethernet units only), refer to Configure
the Ethernet settings on page 18.
12. Click Save Settings to save the changes.
Configure the Ethernet settings
1. For Ethernet units without the analog output feature, change the
Ethernet settings in the Ethernet section. The Ethernet settings should only be changed by a network professional.
Option Description
MAC Media access control—Shows the unique permanent
DHCP/APIPA Enables or disables static or dynamic IP addressing by
IP Address For static IP addresses, each LAN-based instrument
Subnet Mask Instruments of the same type that communicate with a
hardware address (read-only)
connection to a DHCP server (default = disabled). When enabled, the instrument gets an IP address and subnet mask automatically when power is applied.
If a DHCP server is not available, the instrument uses APIPA for an IP address and subnet mask.
• APIPA IP address range: 169.254.0.0 to
169.254.255.255
• Subnet mask: 255.255.0.0 (Class B network)
must have a unique IP address. Range: 169.254.0.0 to
169.254.255.255 (default = 169.254.1.2).
single software package (i.e., FMS) use the same subnet mask (default = 255.255.0.0). Range: 0 to 255, integer only.
18 English
Option Description
Server Port ModbusTCP server listen port (default = 502). Range:
Client Port Not available (disabled)
Gateway Router or access point to another network (default =
Remote ServerIPNot available (disabled)
Ethernet Protocol
0 to 65535, integer only.
169.254.1.5)
Sets the Ethernet protocol to Modbus or FXB.
2. For Ethernet units with the analog output feature, refer to Configure
the LAN settings through a network on page 19
to configure the
Ethernet settings.
3. Click Save Settings to save the changes.
Configure the LAN settings through a network
1. In the setup utility software, select the LAN Setup tab. The software
looks for LAN instruments. The LAN instruments found are shown.
2. Select an instrument to show the LAN instrument settings.
3. Change the LAN settings. Refer to the options table in Configure the
Ethernet settings on page 18.
4. Click Save Settings to save the changes.
Do an analog output test
For instruments with the analog output feature, do an analog output test.
1. Connect the analog outputs to the load resistors of the data
acquisition system.
Note: As an alternative, install a set of load resistors with 0.1% accuracy and at least 0.25 W capability across the analog output. Load resistor values of 100, 250 or 500 ohms are typically used.
2. Let a tiny amount of particles flow through the instrument to get a
count in the test channel.
Note: One method to get counts is to use a zero count filter, and put a pin-hole in the tubing that is between the filter and the
instrument.
3. On the Basic Setup tab of the setup utility software, temporarily set:
• Count Cycles—1
• Sample Timing: Hold—10 seconds or more
4. Click Save Settings.
5. Select the Data Display tab, then click Monitor if shown so the data
shown can update continuously as each sample is taken.
6. Click Sample if shown to start sample collection.
7. When the Status value changes from "Count" to "Stop", measure the
voltage across the load resistors for each channel. Also note the counts shown in the display for each channel.
8. Use the equation that follows to calculate the expected voltage from
the counts shown. Make sure that the measured and calculated voltages agree.
Voltage = (((SC ÷ FC × 16) + 4) ÷ 1000) × RL Where: SC = sample count at the end of the sample period FC = full-scale channel count. Refer to the analog settings in the
setup utility software. RL = value of the load resistor in ohms The expected output voltage when the full-scale channel count is
1000 with a 100, 250 and 500-ohm resistor is shown in Table 7.
9. To do the test again, do steps 78.
10. For units with a flow monitor, temporarily remove the central vacuum
from the instrument.
11. While a flow alarm is active, measure the voltage across the load
resistors for each channel.
12. Use the equation that follows to calculate the expected voltage.
Make sure that the measured and calculated voltages agree. Voltage = < (0.002 × RL)
Where: RL = value of the load resistor in ohms Example: for a 100-ohm resistor, the voltage should be less than
0.20 V.
English 19
13. On the Basic Setup tab, change the settings back to the previous
values.
14. Click Save Settings. Table 7 Output voltage with 100, 250 and 500-ohm resistors
Sample count 100 Ω 250 Ω 500 Ω
0 0.40 V 1.00 V 2.00 V
100 0.56 V 1.40 V 2.80 V
200 0.72 V 1.80 V 3.60 V
300 0.88 V 2.20 V 4.40 V
400 1.04 V 2.60 V 5.20 V
500 1.20 V 3.00 V 6.00 V
600 1.36 V 3.40 V 6.80 V
700 1.52 V 3.80 V 7.60 V
800 1.68 V 4.20 V 8.40 V
900 1.84 V 4.60 V 9.20 V
1000 2.00 V 5.00 V 10.00 V

RS485 serial output with Modbus RTU protocol

Instruments with the RS485 Modbus communication option use industry­standard Modbus RTU protocol. In this communication mode, a series of registers hold data about measurement results and operation parameters.
When a ModbusTCP connection is made, the user can use all the configuration options in the Modbus register map. Refer to the company website for the Modbus register map. Write drivers to communicate with the instrument through these registers with the Modbus RTU protocol.
The RS485 serial network circuit supplies communications for a maximum of 32 instrument instrument can transmit data at a time. Each instrument must have a unique instrument address.
s and a control computer. Only one
1. Turn the instrument over. The DIP switch is on the bottom of the
instrument.
2. Change the DIP switch setting to select a unique network address for
the instrument. Refer to Table 8.
Note: Address 0 can only be used with FXB protocol. Address 0 is reserved for use as a broadcast address for Modbus RTU. If address 0 is set with Modbus protocol, the instrument will use address 1.
Table 8 DIP switch settings for network address
Network address Switch 1 Switch 2 Switch 3 Switch 4 Switch 5
0 Off Off Off Off Off
1 On Off Off Off Off
2 Off On Off Off Off
3 On On Off Off Off
4 Off Off On Off Off
5 On Off On Off Off
6 Off On On Off Off
7 On On On Off Off
8 Off Off Off On Off
9 On Off Off On Off
10 Off On Off On Off
11 On On Off On Off
12 Off Off On On Off
13 On Off On On Off
14 Off On On On Off
15 On On On On Off
16 Off Off Off Off On
17 On Off Off Off On
20 English
Table 8 DIP switch settings for network address (continued)
Network address Switch 1 Switch 2 Switch 3 Switch 4 Switch 5
18 Off On Off Off On
19 On On Off Off On
20 Off Off On Off On
21 On Off On Off On
22 Off On On Off On
23 On On On Off On
24 Off Off Off On On
25 On Off Off On On
26 Off On Off On On
27 On On Off On On
28 Off Off On On On
29 On Off On On On
30 Off On On On On
31 On On On On On

RS485 serial output with FXB protocol

Instruments with the RS485 FXB communication option use industry­standard FXB protocol. Refer to the company website for FXB protocol information.
1 particle size is detected. Channel 2 sends a pulse signal when the channel size that is selected by the user is detected.
Pulse communication includes a status output signal that goes from low to high when there is an active alarm. Pulse communication cannot be used in a network configuration.
Set the network address for pulse communication
instruments to 1.
Refer to Table 8 on page 20. The pulse signal can be sent in one of two count modes:
Differential mode (default)—A signal is sent on Channel 1 when a
particle is between the first and the second channel size thresholds. A signal is sent on the Channel 2 when a particle is larger than the user­selected channel size threshold.
Cumulative mode—A signal is sent on Channel 1 when a particle is
larger than the first or second channel size threshold. A signal is sent on Channel 2 when a particle is larger than the user-selected channel size threshold.
Figure 14 Differential versus cumulative count mode example

Pulse communication

Instruments with the pulse communication option send an 8-µs pulse signal when a particle is detected. Refer to Figure 14. An external pulse counter or data acquisition system receives the pulse signal and counts the pulses as particles.
Instruments with pulse communication have two pulse output channels (Ch 1 and Ch 2). Channel 1 sends a pulse signal when the Channel
1 Pulse signal sent from counter 4 Channel 1 2 Data transfer in differential versus
cumulative mode
3 Channel 2 6 Cumulative count—three 0.3 µm
5 Differential count—one 0.3 µm and
two 5.0 µm particles
and two 5.0 µm particles
English 21

Manual operation

Use the setup utility software with a direct PC connection or over a LAN connection to manually operate the
1. Open the SetupUtility.exe file to start the setup utility software.
2. Select the Data Display tab. Refer to Figure 15 for the data shown.
3. Use the buttons to operate the instrument.
Note: The buttons change depending on the system status.
Option Description
Monitor Shows the updated data continuously in real time.
Stop Monitor Stops changes to the data shown.
Sample Starts sample collection. Samples are taken according
Stop Count Stops sample collection.
Active Mode Sets the internal laser to on. Enables alarms.
Inactive Mode Sets the internal laser to off. Disables alarms.
Display Buffered Data
Download Buffer Saves a copy of the data records in the buffer to the
Erase Buffer Erases all data records from the buffer.
to the settings on the Basic Setup tab. Changes the instrument to active mode if in inactive mode.
Shows the data from the last sample completed. Updates as each sample is completed.
PC as a text (CSV) file.
instrument.
Figure 15 Real-Time data display
1 Active alarms (Sensor, Flow,
Comm, Count1)
2 Channel sizes and particle counts 8 Air volume collected for the sample
3 Sample time 9 Values from the optional relative
4 Last sample start time and date 10 Not available 5 System status 11 Cal voltage—identifies the 6 Service use only
1
When a count alarm occurs, the high particle count is shown in red.
7 Air flow (cfm or L/min)
(cfm or L/min)
humidity (RH) and temperature sensor
cleanliness of the sensor optics
22 English

Calibration

The instrument manufacturer for instrument calibration.
cannot be calibrated by the user. Contact the

Maintenance

C A U T I O N
Personal injury hazard. Only qualified personnel should conduct the tasks described in this section of the manual.
Do not disassemble the instrument for maintenance. If the internal components must be cleaned or repaired, contact the manufacturer.

Maintenance schedule

Table 9 shows the recommended schedule of maintenance tasks.
Facility requirements and operating conditions may increase the frequency of some tasks.
Table 9 Maintenance schedule
Task 1 year
Replace the inlet tubing on page
Calibration on page 23 X

Replace the inlet tubing

Replace the air inlet tubing regularly to prevent organic growth or inorganic particle contamination on the tube walls. Contamination can result in false high particle counts.
The manufacturer recommends that the air inlet tubing of typical FMS installations in life science and pharmaceutical manufacturing clean rooms be replaced at least once a year.
N O T I C E
23 X
English 23

Table des matières

Caractéristiques à la page 24 Mise en marche à la page 38
Généralités à la page 25 Fonctionnement à la page 39
Installation à la page 30 Maintenance à la page 47

Caractéristiques

Les caractéristiques techniques peuvent être modifiées sans préavis.
Caractéristique Détails
Dimensions (l x P x H)
Boîtier Acier inoxydable 304
Source lumineuse Diode Long Life Laser™ , laser classe 3B
Poids 0,82 kg (1,8 lb)
Niveau de pollution 2
Catégorie d’installation
Classe de protection III
Alimentation requise 9–28 VCC (source: Classe 2 limitation d'énergie, <
Consommation électrique (maximum)
Température de fonctionnement
Température de stockage
Humidité Fonctionnement et stockage : humidité relative 5 à 95 %,
Altitude 2 000 m (6 562 pieds) maximum
13,56 x 8,93 x 12,06 cm (5,34 x 3,52 x 4,75 pouces)
I
150 VA)
Unités série et impulsions : 3,3 W ; unité Ethernet : 4,3W ; sortie analogique : 3,5 W ; 1 A maximum
5 à 40 °C (40 à 104 °F) ; meilleures performances : 10 à 32 °C (50 à 90 °F)
–40 à 70 °C (–40 à 158 °F)
sans condensation
Caractéristique Détails
Tailles des ports Modèle 6003, 6005 : raccord cannelé sur 0,32 cm
Options de signal de sortie
Stockage des données
Débit d'échantillon Modèle 6003, 6005 : 0,1 cfm (2,83 Lpm) ± 5 %
Pression d’alimentation
Exigences du vide ≥ 406 mm (16 po) Hg (542 mbar) : vide minimum mesuré
Plage de mesures Modèle 6003 : de 0,3 μm à 10,0 μm à 0,1 cfm
Sensibilité Modèle 6003 : 0,3 μm à 0,1 cfm (2,83 l/min)
(1/8 po) Diamètre intérieur du tuyau d'arrivée : 0,64 cm (¼ po) Diamètre intérieur du tuyau d'évacuation
Modèle 6013, 6015 : raccord cannelé sur 0,64 cm (¼­po.) Diamètre intérieur du tuyau d'arrivée : 0,64 cm (¼ po) Diamètre intérieur du tuyau d'évacuation
Impulsion, 4 à 20 mA analogique, RS232 série avec protocole (sans mise en réseau) de communication FXB ou Modbus RTU, RS485 série avec protocole de communication FXB ou Modbus RTU, Ethernet avec protocole Modbus TCP
1 000 échantillons/enregistrements (les enregistrements les plus anciens sont écrasés lorsque le tampon est saturé)
Modèle 6013, 6015 : 1,0 cfm (28,3 Lpm) ± 5 %
Ambiant à to 2.5 mm (0.1 in) Hg de vide
à chaque instrument lorsqu'un débit traverse tous les instruments.
(2,83 l/min) Modèle 6005 : de 0.5 μm à 10,0 μm à 0,1 cfm
(2,83 l/min) Modèle 6013, 6015 : de 0,5 μm à 10,0 μm à 1,0 cfm
(28,3 l/min)
Model 6005 : 0,5 μm à 0,1 cfm (2,83 /min) Modèle 6013 : 0,3 μm à 1 cfm (28,3 l/min) Modèle 6015 : 0,5 μm à 1 cfm (28,3 l/min)
24 Français
Caractéristique Détails
Efficacité de comptage
Erreur de coïncidences
Faux comptage Un ou moins en 5 minutes
Certifications CE
1
Totalement conforme à la norme ISO21501-4.
Modèle 6003 : 50 % (± 20 %) pour 0,3 μm, (100 % ± 10 % à 1,5 fois la sensibilité minimum)1.
Modèles 6005, 6013, 6015 : 50 % (± 20 %) pour 0,5 μm, (100 % ± 10 % à 1,5 fois la sensibilité minimum)1.
Modèles 6003, 6005 (toutes les options de sortie) : 10 % à 140 000 000 particules / m3 (4 000 000 particules / pied3)
Modèles 6013, 6015 (toutes les options de sortie sauf l'impulsion) : 10 % à 20 000 000 particules / m (566 000 / pied3)
3

Généralités

En aucun cas le constructeur ne saurait être responsable des dommages directs, indirects, spéciaux, accessoires ou consécutifs résultant d'un défaut ou d'une omission dans ce manuel. Le constructeur se réserve le droit d'apporter des modifications à ce manuel et aux produits décrits à tout moment, sans avertissement ni obligation. Les éditions révisées se trouvent sur le site Internet du fabricant.

Version enrichie de ce manuel

Pour plus d'informations, reportez-vous au CD qui contient la version enrichie de ce manuel.

Consignes de sécurité

A V I S
Le fabricant décline toute responsabilité quant aux dégâts liés à une application ou un usage inappropriés de ce produit, y compris, sans toutefois s'y limiter, des dommages directs ou indirects, ainsi que des dommages consécutifs, et rejette toute responsabilité quant à ces dommages dans la mesure où la loi applicable le permet. L'utilisateur est seul responsable de la vérification des risques d'application critiques et de la mise en place de mécanismes de protection des processus en cas de défaillance de l'équipement.
Veuillez lire l'ensemble du manuel avant le déballage, la configuration ou la mise en fonctionnement de cet appareil. Respectez toutes les déclarations de prudence et d'attention. Le non-respect de cette procédure peut conduire à des blessures graves de l'opérateur ou à des dégâts sur le matériel.
Assurez-vous que la protection fournie avec cet appareil n'est pas défaillante. N'utilisez ni n'installez cet appareil d'une façon différente de celle décrite dans ce manuel.
Interprétation des indications de risques
Indique une situation de danger potentiel ou imminent qui, si elle n'est pas évitée, entraîne des blessures graves, voire mortelles.
A V E R T I S S E M E N T
Indique une situation de danger potentiel ou imminent qui, si elle n'est pas évitée, peut entraîner des blessures graves, voire mortelles.
Indique une situation de danger potentiel qui peut entraîner des blessures mineures ou légères.
Indique une situation qui, si elle n'est pas évitée, peut occasionner l'endommagement du matériel. Informations nécessitant une attention particulière.
D A N G E R
A T T E N T I O N
A V I S
Français 25
Étiquettes de mise en garde
Lisez toutes les étiquettes et tous les repères apposés sur l'instrument. Des personnes peuvent se blesser et le matériel peut être endommagé si ces instructions ne sont pas respectées. Un symbole sur l'appareil est désigné dans le manuel avec une instruction de mise en garde.
Si l'appareil comporte ce symbole, reportez-vous au manuel d'utilisation pour consulter les informations de fonctionnement et de sécurité.
S'il se trouve sur l’emballage d'un produit ou une barrière, ce symbole indique la présence d’un danger de choc électrique et/ou d’électrocution.
Ce symbole indique qu'un dispositif laser est utilisé dans l'équipement.
En Europe, depuis le 12 août 2005, les appareils électriques comportant ce symbole ne doivent pas être jetés avec les autres déchets. Conformément à la réglementation nationale et européenne (Directive 2002/96/CE), les appareils électriques doivent désormais être, à la fin de leur service, renvoyés par les utilisateurs au fabricant, qui se chargera de les éliminer à ses frais.
Remarque : Pour le retour à des fins de recyclage, veuillez contactez le fabricant ou le fournisseur d'équipement afin d'obtenir les instructions sur la façon de renvoyer l'équipement usé, les accessoires électriques fournis par le fabricant, et tous les articles auxiliaires pour une mise au rebut appropriée.
Informations de sécurité relatives à l'utilisation d'un laser
Cet instrument est un PRODUIT LASER DE CLASSE 1, référence CDRH 9022243-029. Un rayonnement laser invisible est émis à l'intérieur de l'appareil. Évitez toute exposition directe au faisceau laser. L'entretien des composants internes doit être mené exclusivement par un personnel autorisé par le fabricant.
Cet instrument est conforme aux normes IEC/EN 60825-1 et 21 CFR
1040.10, à l'exception des différences faisant suite à la notice Laser n°
50 datée du 24 juin 2007.

Certification

Règlement canadien sur les équipements causant des interférences radio, IECS-003, Classe A:
Les données d'essai correspondantes sont conservées chez le constructeur.
Cet appareil numérique de classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.
Cet appareil numérique de classe A répond à toutes les exigences de la réglementation canadienne sur les équipements provoquant des interférences.
FCC part 15, limites de classe A :
Les données d'essai correspondantes sont conservées chez le constructeur. L'appareil est conforme à la partie 15 de la règlementation FCC. Le fonctionnement est soumis aux conditions suivantes :
1. Cet équipement ne peut pas causer d'interférence nuisible.
2. Cet équipement doit accepter toutes les interférences reçues, y
compris celles qui pourraient entraîner un fonctionnement inattendu.
Les modifications de cet équipement qui n’ont pas été expressément approuvées par le responsable de la conformité aux limites pourraient annuler l’autorité dont l’utilisateur dispose pour utiliser cet équipement. Cet équipement a été testé et déclaré conforme aux limites définies pour les appareils numériques de classe A, conformément à la section 15 de la réglementation FCC. Ces limites ont pour but de fournir une protection raisonnable contre les interférences néfastes lorsque l’équipement fonctionne dans un environnement commercial. Cet équipement génère, utilise et peut irradier l'énergie des fréquences radio et, s'il n'est pas installé ou utilisé conformément au mode d'emploi, il peut entraîner des interférences dangereuses pour les communications radio. Le fonctionnement de cet équipement dans une zone résidentielle risque de causer des interférences nuisibles, dans ce cas l'utilisateur doit corriger les interférences à ses frais Les techniques ci-dessous peuvent permettre de réduire les problèmes d'interférences :
26 Français
1. Débrancher l'équipement de la prise de courant pour vérifier s'il est
ou non la source des perturbations
2. Si l'équipement est branché sur le même circuit de prises que
l'appareil qui subit des interférences, branchez l'équipement sur un circuit différent.
3. Éloigner l'équipement du dispositif qui reçoit l'interférence.
4. Repositionner l’antenne de réception du périphérique qui reçoit les
interférences.
5. Essayer plusieurs des techniques ci-dessus à la fois.

Présentation du produit

Cet instrument compte les particules en suspension dans l'air à l'aide d'une source lumineuse laser et d'un système optique d'acquisition. Reportez-vous à la Figure 1. L'air ambiant est amené à travers le compteur de particules à l'aide d'un
Plusieurs instruments peuvent être installés à différents emplacements d'une salle blanche pour surveiller la qualité de l'air. Les données de comptage sont envoyées au logiciel de surveillance centralisée fourni par l'utilisateur par le biais des protocoles de communication appropriés. Le logiciel de surveillance centralisée permet d'utiliser l'instrument à distance.
Le circuit d'écoulement du capteur résiste à la vapeur de peroxyde d'hydrogène (VHP) lors des cycles de nettoyage et de désinfection standard de la pièce par vapeur de peroxyde d'hydrogène.
système de vide externe fixé.
Figure 1 Présentation du produit
1 Alimentation et connecteur de
communication à 10 broches
2 Raccord de la source de vide (ou
système de raccordement rapide)
3 Raccord de l'arrivée d'air de
l'échantillon
4 Voyant d'état (Tableau 1) 10 Connecteur RJ45 Ethernet 5 Port de service et port de la
colonne lumineuse fournie en option
6 Commutateur DIP, adresse réseau
1
Toutes les unités sauf Ethernet
2
Unités Ethernet uniquement
7 Port du capteur de température et
1
d'humidité relative
8 Raccord de la source de vide (autre
emplacement)
9 Voyants de connexion2 (Tableau 2)
11 Connecteur d'alimentation à
5 broches
1
2
2
Français 27
Tableau 1 Voyant d'état
Couleur Indication Etat du système
Vert Clignotant (3 secondes) Normal, échantillonnage
On (Marche) Normal, sans échantillonnage
Bleu On (Marche) Panne de capteur
Un clignotement court, un clignotement long
Clignotant Panne de communication
Rouge Allumé ou clignotant Alarme comptage
Jaune On (Marche) Initialisation
Clignotant Alerte de comptage
Pourpre Clignotant L'utilitaire de configuration est en
1
A l'aide du logiciel de surveillance centralisée fourni par l'utilisateur, il est possible de faire clignoter le voyant jaune lorsqu'une alerte de comptage se produit avec le protocole ModBus et non le protocole FX. Les paramètres de l'alerte de comptage peuvent être sélectionnés à l'aide du logiciel de surveillance centralisée.
Défaillance du débit d'air
1
cours d'utilisation
Tableau 2 Voyants Ethernet
Couleur Indication Statut
Jaune On (Marche) Connecté
Vert Off (Arrêt) 10Base-T
On (Marche) 100Base-T
Sonde isocinétique
Pour une précision optimale du flux laminaire, utilisez toujours la sonde isocinétique fournie avec cet sonde est proche de celle du flux laminaire horizontal ou vertical d'une salle blanche. La sonde isocinétique fournie assure le même débit d'air vertical (ou horizontal) afin de collecter des échantillons représentatifs
instrument. La vélocité de l'air dans la
du flux laminaire de la salle blanche pour l'instrument. Se référer à la
Figure 2 pour une comparaison d'échantillon avec et sans sonde
isocinétique.
Figure 2 Fonctionnement de la sonde isocinétique
1 Pas de sonde pour un écoulement
d'air non laminaire
2 Vers le compteur de particule 4 Sonde isocinétique avec un
3 Pas de sonde pour un écoulement
d'air laminaire- des particules ne sont pas captées
écoulement d'air laminaire- plus de précision

Configurations de l'instrument

Cet instrument est disponible dans de nombreuses configurations. Un numéro de référence différent est associé à chaque configuration. La
Figure 3 explique la composition du numéro de référence. Le Tableau 3
fournit une description des codes de référence utilisés.
28 Français
Figure 3 Composition du numéro de référence
1 Débit 3 Emplacement de
l'évacuation
2 Sensibilité (minimum) 4 Mesure du débit
5 Communication
Tableau 3 Codes des paramètres
Paramètre Code Description Paramètre Code Description
Débit 0 0,1 cfm (pied
cube par minute)
(pour une sensibilité de 0,3 µm et 0,5 µm)
1 1,0 cfm (pied
cube par minute)
(pour une sensibilité de 0,5 µm)
Mesure du débit F Avec
mesure du débit
N Sans
mesure du débit
Tableau 3 Codes des paramètres (suite)
Paramètre Code Description Paramètre Code Description
Sensibilité (minimum)
Emplacement de l'évacuation
Exemple : un instrument avec un débit de 0,1 cfm, une sensibilité de 0,5 , un orifice d'évacuation situé au fond, une mesure du débit et une communication RS485 sera associé aux références 2088605-DF-S et 20888600-485. La deuxième partie de la référence sert à identifier le type de la communication série (RS232 = 20888600-232, RS485 = 20888600-485 ou Impulsion = 20888600-PLS). La deuxième partie de la référence est inutile pour les autres types de communication.
3 0,3 µm Communication E Ethernet
5 0,5 µm S Options E/S
série
D Bas (fond) A Analogique
S Latéral

Composants du produit

Assurez-vous d'avoir bien reçu tous les composants. Voir Figure 4. Si des éléments manquent ou sont endommagés, contactez immédiatement le fabricant ou un représentant commercial.
Français 29
Figure 4 Composants de l'instrument
1 Compteur de particules MET ONE
série 6000
2 Sonde d'échantillonnage
(isocinétique) avec tuyau
3 Sonde d'échantillonnage
(isocinétique) avec tuyau
4 kit de montage du rail DIN 8 Câble du port de service
1
Unités 1,0 cfm uniquement
2
Unités 0,1 cfm uniquement
3
Toutes les unités sauf Ethernet
4
Ethernet uniquement
5
Un seul câble de port Service est fourni par commande.
1
2
5 Connecteur à 10 broches avec
3
boîtier
6 Connecteur à 5 broches avec
4
boîtier
7 CD de l'utilitaire de configuration
(connecteur série 8 broches à 9 broches DIN)
5

Installation

Conseils d'installation

A V I S
Avant de démarrer un cycle de nettoyage ou de désinfection, arrêtez la pompe à vide et installez un couvercle sur le raccord d'arrivée d'air.
Des températures internes élevées endommagent les composants de l'instrument.
• Installez l'instrument en intérieur, dans un lieu propre, sec, bien aéré avec un contrôle de la température et un niveau de vibration minimum.
Si la pièce est régulièrement lavée à grande eau, installez l'instrument à l'extérieur de la pièce. Seuls les tubes d'arrivée d'air et de vide doivent être installés dans la salle blanche. L'instrument peut également être installé dans un boîtier hermétique puis dans la salle blanche. Raccordez toute la tuyauterie et les câbles à l'instrument à travers le boîtier. Tout fonctionnement de l'instrument à l'intérieur d'un boîtier hermétique risque d'augmenter la température autour de l'instrument et de diminuer ses performances et sa durée de vie.
• N'utilisez pas l'instrument à la lumière directe du soleil ou à proximité d'une source de chaleur.
• Installez l'instrument le plus près possible de la source d'échantillonnage. S'assurer que la distance n'est pas supérieure à 3 m (10 pieds). Tout tuyau d'arrivée d'une longueur supérieure à 3 m risque d'entraîner une perte des particules de plus de 1 μm. Si un tuyau d'arrivée d'une longueur de plus de 3 m est nécessaire, essayez d'utiliser un compteur de particules portatif et comparez les résultats avec cet instrument.
• Le flux d'air doit systématiquement être dirigé vers le bas. Si possible, montez l'instrument directement sous le point d'échantillonnage.
A V I S
30 Français

Directives pour le système de vide

• Mettre la pompe à vide dans un endroit central. Il doit y avoir un vide suffisant pour tous les instruments du réseau.
Loading...
+ 106 hidden pages