any other party automatically voids the factory warranty.
June 6, 2013
HAAS SERVICE AND OPERATOR MANUAL ARCHIVE
Electrical Service Manual 96-0284 RevH English January 2010
•This content is for illustrative purposes.
•Historic machine Service Manuals are posted here to provide information for Haas machine owners.
•Publications are intended for use only with machines built at the time of original publication.
•As machine designs change the content of these publications can become obsolete.
•You should not do mechanical or electrical machine repairs or service procedures unless you are qualied
and knowledgeable about the processes.
•Only authorized personnel with the proper training and certication should do many repair procedures.
WARNING: Some mechanical and electrical service procedures can be
extremely dangerous or life-threatening.
Know your skill level and abilities.
All information herein is provided as a courtesy for Haas machine owners
for reference and illustrative purposes only. Haas Automation cannot be held
responsible for repairs you perform. Only those services and repairs that are
provided by authorized Haas Factory Outlet distributors are guaranteed.
Only an authorized Haas Factory Outlet distributor should service or repair a
Haas machine that is protected by the original factory warranty. Servicing by
Line Voltage Adjustments ................................................................................................................................5
Front Panel ........................................................................................................................................................9
sl-10 Pendant coMPonents access ..........................................................................................................9
Jog handle ............................................................................................................................................. 11
PoweR on/oFF switches ..........................................................................................................................12
PoweR tRansFoRMeR asseMbly (t1) .........................................................................................................23
PoweR suPPly asseMb ly .......................................................................................................................... 25
low voltage PoweR suPPly ..................................................................................................................... 25
Rs-232 seRial inteRFace ......................................................................................................................... 26
Spare User M Code Interface .........................................................................................................................27
M Function Relays (M-Fin) .....................................................................................................................28
Control Memory ..............................................................................................................................................30
Diagnostic Data ...............................................................................................................................................32
Cable List .........................................................................................................................................................37
oPeRato R Pendant ................................................................................................................................... 75
PaRaMeteR list ......................................................................................................................................180
Install lock-out clasp
and lock with padlock
to secure Circuit
Breaker in the
OFF position.
To avoid possible shock, make sure circuit breakers are appropriately locked off before attempting any
electrical work.
CAUTION! Working with the electrical services required for the machine can be extremely
hazardous. The electrical power must be off and steps must be taken to ensure
that it will not be turned on while you are working with it. In most cases this means
turning off a circuit breaker in a panel and then locking the panel door. However ,
if your connection is different or you are not sure how to do this, check with the
appropriate personnel in your organization or otherwise obtain the necessary
help before you continue.
WARNING!
The electrical panel should be closed and the three screws/latches on the
door should be secured at all times except during installation and service. At
those times, only qualied electricians should have access to the panel. When
the main circuit breaker is on, there is high voltage throughout the electrical
panel (including the circuit boards and logic circuits) and some components
operate at high temperatures. Therefore extreme caution is required.
GENERAL ELECTRICAL TROUBLESHOOTING
MACHINE NOT RUNNING
Machine cannot be powered on.
• Check input voltage to machine.
• Check main circuit breaker at top right of electrical cabinet; switch must be at the on position.
• Check overvoltage fuses.
• Check wiring to Power Off button on front control panel.
• Check wiring to Auto Off relay to I/O PCB.
• Check connection between 24V transformer (T5) and K1 contactor.
• Check 24V transformer (T5) bracket has jumper in correct position (measure voltage at main circuit breaker
and connect jumper to corresponding connector on T5 transformer bracket).
Machine can be powered on, but turns off by itself.
• Check Settings #1 and #2 for Auto Off Timer or Off at M30.
• Check alarm history for Overvoltage or Overheat shutdown.
• Check AC power supply lines for intermittent supply.
• Check low voltage power supply for intermittent supply.
• Check wiring to Power Off button on front control panel.
• Check connection between 24V transformer and K1 contactor.
• Check I/O PCB.
• Check Parameter 57 for Power off at E-Stop.
• Check MOTIF or MOCON PCB.
Machine turns on, keyboard beeps, but no LCD/CRT display.
• Check for power connections to LCD/CRT from I/O PCB (LVPS power from Power PCB for 15” monitor).
Check for green Power LED at front of CRT.
• Close doors and zero return machine (possible bad monitor).
• Check video cable from Video PCB to LCD/CRT.
• Check for lights on the processor.
• Replace LCD/CRT.
Machine turns on, LCD works, but keyboard keys do not work.
• Check keyboard cable (700) from Video to SKBIF PCB.
• Check keypad.
• Check SKBIF PCB.
Constant E-Stop Condition (will not reset) (Vertical Machines).
• Check hydraulic counterbalance pressure, low pressure switches, and cabling.
Quad APC trouble shooting
The Quad APC uses an additional PC board to control pallets 3 and 4.
The pallet chain motor receives 160VDC from plug 6A on this board (32-3078A). The PC board receives
power (115V) from the power card, which plugs into P4 on the APC board.
The solenoid for the left, air operated, automatic door plugs into P3; this cable is part of 33-6038A. Pallet 3
and 4 signals are sent through cable 33-1516, which plugs into P1. The cable’s other end plugs into the I/O
board P62.
ELECTRICAL ALARM TROUBLESHOOTING
Axis Drive Fault Alarm
• Blown amplier - indicated by light at bottom of amplier when power is on. Replace the fuse in the amplier.
• Amplier or MOCON is noise sensitive. If this is the case, the alarm can be cleared and the axis will run
normally for a while.
To check an amplier, switch the motor leads and control cables between the amplier and the one next to
it. If the same problem occurs with the other axis, the amplier must be replaced. If the problem stays on the
same axis, either the MOCON or control cable. The problem could also be the axis motor itself, with leads
• Amplier faulting out for valid reason, such as overtemp, overvoltage, or +/-12V undervoltage condition. This
usually results from running a servo intensive program, or unadjusted 12V power supply. Adjust voltage to
correct specications or replace the power supply.
Overvoltage could occur if regen load is not coming on, but this does not usually happen. The problem could
also be the axis motor itself, with leads either shorted to each other or to ground.
Axis Overload
• The fuse function built into the MOCON has been overloaded. This may be caused by a lot of motor accel/
decels, or hitting a hard stop with the axis. This safety function protects the amplier and motor. If the current
program is the cause, change the program. If the axis hits a hard stop the travel limits may be set wrong.
Phasing Error
• The MOCON did not receive the proper phasing information from the motors. Do not reset the machine if
this alarm occurs. Power the machine down and back up. If the problem persists, it is probably a broken wire
or faulty MOCON connectors. This problem could also be related to the Low Voltage Power Supply. Check to
see if the LVPS is functioning properly.
Servo Error Too Large
• This alarms occurs when the difference between the commanded axis position and the actual position
becomes larger than the maximum that is set in the parameter.
This condition occurs when the amplier is blown, is not receiving the commands, or the 320V power source
is dead. If the MOCON is not sending the correct commands to the amplier, it is probably due to a broken
wire, or a Phasing Error that was generated.
Axis Z Fault or Z Channel Missing
• During a self-test, the number of encoder counts was found to be incorrect. This is usually caused by a noisy
environment, and not a bad encoder. Check all shields and grounds on the encoder cables and the motor
leads that come into the ampliers. An alarm for one axis can be caused by a bad grounding on the motor
leads of another axis.
Axis Cable Fault
• During self-test, encoder cable signals were found to be invalid. This alarm is usually caused by a bad cable,
or a bad connection on the motor encoder connectors. Check the cable for any breaks, and the encoder
connectors at the motor controller board. Machine noise can cause this alarm, although it is less common.
Alarm 101, “MOCON Comm. Failure”
• During self-test of communications between the MOCON and main processor, the main processor does not
respond, and is suspected to be dead. This alarm is generated and the servos are stopped. Check all ribbon
cable connections, and all grounding. Machine noise can also cause this alarm, although it is less common.
Alarm 157, MOCON Watchdog Fault
• The self-test of the MOCON has failed. Replace the MOCON.
Alarm 212, Program Integrity Error/Alarm 250, Program Data Error
• If a program has been corrupted in the system or a corrupted program has been loaded into the machine,
a Program Data Error (250) or Program Integrity Error (212) might occur. This occurrence can be recognized
by an exclamation point (!) next to a program when turning to the list program page. Following is the common
procedure to perform when this happens.
1. Save all programs to disk except the program with the exclamation point error signal. The exclamation
point (!) indicates the program that is corrupt. This will be your back-up disk to reload the programs into the
machine.
2. Delete all the programs. This should delete all the programs including the one with the “!” error signal.
3. If the program with the exclamation point (!) does not erase then the control needs to be initialized.
4. If the machine still has the program with the exclamation point or the control now refuses to load a good
program, it may be necessary to clear memory and reload software.
5. If problem persists, replace main processor board.
Alarm 261, Rotary CRC Error (Horiz & Vert)
This alarm is normally the result of an incomplete software installation. To correct this error:
Press Emergency Stop.1.
Turn Setting 7 to OFF. 2.
Go to Setting 30 and select HRT210. Make note of this and all following changes. 3.
Go to Parameter 43 and change the rst bit from 0 to 1. 4.
Go to setting 30 and select HRT310. 5.
Go back to Parameter 43 and change the second bit from 0 to 1. 6.
Now reverse the changes you have made. 7.
Cycle power to the machine. The alarm will now be cleared. 8.
If the alarm persists, repeat the above steps before calling for assistance.
Alarm 354, Aux Axis Disconnected (Lathe)
When this alarm is generated, do not press Reset. Turn Setting 7 Off. Enter Debug mode, then view the
Alarms/Messages page. On the Messages page, a code will appear similar to WO1. The list of codes and
their descriptions follows :
WO1Power was just turned on or failed. Check the ribbon cables from the Aux Axis PCB to the proces-
sor for correct routing. Check for communication problems between the processor and the Aux
Axis PCB.
WO2Servo following error too large. Check the encoder for contamination or dirt. Check for an
intermittent connection at both ends of the motor cable.
WO3 Emergency Stop. The E-STOP button was pressed, or an E-STOP condition occurred.
WO4 High load. Check for binding in the tool changer gearbox and motor. Rotate the carousel by hand
and feel for any binding. Make sure the toolholders are the correct weight.
WO5Remote RS-232 commanded off. Check the ribbon cable and the voltage to the Aux Axis PCB.
Check for 115V AC (minimum) to the Aux Axis PCB from the main transformer. Check the fuse
holder and the fuse that is protecting this circuit.
WO6Air or limit switch or motor overheat. Check that the motor is not hot. Check for any binding in the
motor. Check for overweight tooling.
WO7Z channel fault. Either the encoder or the cable is bad. Change the encoder rst, as it is easier to
change than the cable. If the problem persists, change the cable.
WO8Over-current limit, stalled or PCB fault. Check for binding in the tool changer gearbox. Make sure
the belt is not too tight. Ohm out the motor cable, checking pins G to F (should be open), G to H
(should be open), and F to H (should read between 2.5 and 5 ohms). Check all the connections
on the Aux Axis PCB and motor cable.
WO9 Encode ES. Z channel is missing. Bad encoder or cable. See WO7.
WOA High voltage. Check the incoming voltage to the Aux Axis PCB. Incoming voltage must be 115V
AC. See WO5.
WOB Cable fault. Check the cable from the motor to the Aux Axis PCB. Check for loose connections at
Please read this section in its entirety before attempting to adjust the line voltage.
Tools Required: Large at tip screwdriver, Digital voltmeter
NOTE: The machine must have air pressure at the air gauge, or a “Low Air Pressure” alarm
will be present on power up.
T5 Transformer
MOCON-2
(if equipped)
LCD Video/Floppy
MOCON-1
Processor
3-Phase Breaker
Power PCB
Power Amplifiers
X, Y, Z, A,B&PC
Optional Servo
Tool Changer Amp
SERVODRIVE
ASSEMBLY
Haas Vector Drive
Wye-Delta Cont
(underneath)
I/O Board
Single Axis Brake PCB
(if so equipped)
Transformer
Control Cabinet General Overview
ELECTRICAL CONNECTIONS
Ouput
Power
Ground
Line
Main
Circuit
L1L2
L3
TB2
240VOUT
D
A
488-458V
N
G
E
R
!
120VOUT
457-429V
260-244V
INCOMINGLINE VOLTAGETAPS(74, 75,76)
428-403V
243-227V
!
!
H
I
G
H
V
O
L
TB1
T
A
402-377V
226-211V
376-354V
210-195V
G
E
D
A
N
G
E
R
!
!
!
Input
Power
Breaker
1. Place the main circuit breaker in the Off position and hook up the three power lines to the terminals on top
of the main circuit breaker at the upper right-hand side of the electrical panel. Connect the separate ground
line to the ground bus to the left of the terminals.
NOTE: Ensure service wires go into terminal-block clamps. (Do not miss clamp and tighten
screw. Connection looks ne but machine runs poorly - servo overloads.) To check,
2. After the line voltage is connected to the machine, make sure that main circuit breaker is off. Turn on the
power at the source. Using an accurate digital voltmeter and appropriate safety procedures, measure the
voltage between all three pair phases at the main circuit breaker and write down the readings. The voltage
must be between 195 and 260V (360 and 480V for high voltage option).
NOTE: Wide voltage uctuations are common in many industrial areas; you need to know
the minimum and maximum voltage which will be supplied to the machine while it is
in operation. U.S. National Electrical Code species that machines should operate
with a variation of +5% to -5% around an average supply voltage. If problems with
the line voltage occur, or low line voltage is suspected, an external transformer may
be required. If you suspect voltage problems, the voltage should be checked every
hour or two during a typical day to make sure that it does not uctuate more than
+5% or -5% from an average.
CAUTION! Make sure the main circuit breaker is set to off and the power is off at the supply
panel before changing the transformer connections. Make sure that all three
black wires are moved to the correct terminal block and are tight.
3. Check the connections on the transformer at the bottom-right corner of the rear cabinet. The three black
wires labeled 74, 75, and 76 must be moved to the terminal block triple which corresponds to the average
voltage measured in step 2 above. There are four positions for the input power for the 260V transformer and
ve positions for the 480V transformer. The labels showing the input voltage range for each terminal position
are as shown in the previous illustration.
4. Transformer T5 supplies 24VAC used to power the main contactor. There are two versions of this
transformer for use on 240 and 400V machines (32-0964B and 32-0965B, respectively). The 240V
transformer has two input connectors located on the transformer bracket, which allow it to be connected
to either a 221-240V range or 180 to 220V range. Users that have 180-240V input power should place the
jumper on the appropriate connector.
The 400V transformer has three input connectors located on the transformer bracket, which allow it to be
connected to either a 441-480V range, 381-440V range or 340-380V range. Users with the External High
Voltage Option should place the jumper on the connector marked with the appropriate input voltage. Failure to
place the jumper on the correct input connector will result in either overheating of the main contactor or failure
to reliably engage the main contactor.
A jumper must also be placed on the plate covering the T5 transformer, Measure voltage at the main circuit
breaker and connect the supplied shorting plug to the corresponding connector on the T5 transformer plate.
5. Set the main circuit breaker to ON and check for evidence of problems, such as the smell of overheating
components or smoke. If such problems are indicated, immediately set the main circuit breaker to OFF and
Through the Spindle Coolant (TSC) pump is a three phase pump and must
be phased correctly! Improper phasing will cause damage to the TSC pump
and void the warranty. Refer to the TSC start up section if your machine is
equipped with TSC.
6. After the power is on, measure the voltage across the bottom terminals on the main circuit breaker. It
should be the same as the measurements where the input power connects to the main circuit breaker. If there
are any problems, check the wiring.
7. Apply power to the control by pressing the Power On switch on the front panel. Check the high voltage
buss on the Vector Drive (pin 2 with respect to pin 3 on the terminal bus at the bottom of the drive). It must be
between 310 and 360V. If the voltage is outside these limits, turn off the power and recheck steps 2 and 3.
If the voltage is still outside these limits, call the factory. Next, check the DC voltage displayed in the second
page of the Diagnostic data on the display screen. It is labeled DC BUS. Verify that the displayed voltage
matches the voltage measured at pins 2 and 3 of the Vector Drive +/- 7V DC.
If the displayed voltage exceeds the measured voltage by 12 volts or more, install a ferrite EMI lter (65-1452)
to the current command cable near its connection to the vector drive. Secure with a cable tie (See photo).
Recheck voltage.
WARNING!
8. Electrical power must be phased properly to avoid damage to your equipment. The Power Supply
Assembly PC board incorporates a “Phase Detect” circuit with neon indicators, shown below (disregard for
single phase machines). When the orange neon is lit (NE5), the phasing is incorrect. If the green neon is lit
(NE6), the phasing is correct. If both neon indicators are lit, you have a loose wire. Adjust phasing by placing
the main circuit breaker in the Off position and swapping L1 and L2 of the incoming power lines at the main
circuit breaker.
PHASE DETECT
(FOR3PHASE ONLY)
PASSFAIL
NE5NE6
WARNING!
All power must be turned off at the source prior to adjusting phasing.
9. Close the door, lock the latches, and turn the power back on.
10. Remove the key from the control cabinet and give it to the shop manager.
Please read this section in its entirety before attempting to replace any fuses.
The Power PCB contains two ½-amp fuses located at the top right (FU1, FU3). If the machine is subject to a
severe overvoltage or a lightning strike, these fuses may blow and turn off all power. Replace these fuses only
with the same type and ratings.
15” and Thin Pendant Machines
Size Fuse Name Type Rating (amps) Voltage Location
5x20mm F1/F3 Fast Acting 1 250V PSUP pcb, upper right
O
VERVOLTAGE FUSES
The electrical panel will have residual voltage, even after power has been
shut off and/or disconnected . Never work inside this cabinet until the small
green Power On light on the servo ampliers (servo drive assembly on brush
machines) goes out. The servo ampliers/servo drive assembly is on the left
side of the main control cabinet and about halfway down. This light(s) is at the
top of the circuit card at the center of the assembly. Until this light goes out,
there are dangerous voltages in the assembly even when power is shut off.
1. Turn machine power off.
2. Place the main circuit breaker (upper right of electrical cabinet) in the off position.
WARNING!
Main
Switch
3. Open the cabinet door and wait until the red charge light on the servo drive assembly goes out before
beginning any work inside the electrical cabinet.
4. The two overvoltage fuses are located beside each other at the upper right of the Power Supply board.
An orange light will be on to indicate the blown fuse(s). If these fuses are blown, check incoming voltage to
ensure it matches the jumper setting on T5.
5. Using a at tip screwdriver, turn the fuse(s) counterclockwise to remove the fuses. Replace the fuse(s) with
one having the same type and rating (½ amp, type AGC, 250V).
FRONT PANEL
Please read this section in its entirety before attempting to replace any control panel component.
SL-10 PENDANT COMPONENTS ACCESS
The SL-10 pendant door hinges on the left side. Remove the two (2) screws on top of the pendant in order to
open the pendant door.
CAUTION! Do not pinch the cable as the door is closed.
CAUTION! Use an electrostatic discharge (ESD) strap on wrist when working inside the
pendant.
1. Turn the power off and disconnect power to the machine.
2. Remove the screws holding the cover on the back of the operator’s pendant. Take care to hold the cover in
place until all screws have been removed.
3. Disconnect the video out cable (J16) from the SKBIF PC board and backlight cable.
4. Remove the four (4) hex nuts and washers beginning with the bottom, then remove the LCD assembly and
set aside in a safe place.
CAUTION! Do not drop or damage the LCD when removing it from the control panel.
5. Use gloves to avoid getting ngerprints on the new LCD. Position the assembly onto the four bolts (two
each on top and bottom). Place the washers and hex nuts on the bolts to hold in place. Once all washers
have been attached and nuts have been hand-tightened, tighten down completely.
Video Out
to LCD
Pnl
J13
SKBIF
J16
Video In
Kybd
Data
In
Power In
Backlight cable
to inverter board
RS-232 Data
to/from
Microprocessor
Back of Operator’s Pendant
6. Plug the keyboard cables into the new receiver board (P1) and the power supply (TB2). Plug the power
cable into the power supply board (TB1) and attach the green wire to ground. Plug the data cable into the
receiver board (J3).
7. Replace the back cover panel and attach with the four screws previously removed.
Some LCD panel replacement kits include a panel with the inverter and data cables connected to a piggyback
board on the panel itself, under the display shield. To properly connect such a display:
1. Power off the machine and install the new LCD panel in the control pendant. Disconnect the data and
inverter cables from the piggyback board (they are accessible through the rectangular cutouts in the display
shield shown in the following photo).
2. Connect these cables directly to the SKBIF PCB. If the cables that came with the new display are not long
enough, reuse the cables from the old display.
3. Power on the machine and check the display. If the image is blurry, toggle the switches at SW2 on the
SKBIF PCB to correct the problem.
JOG HANDLE
The Jog handle is actually a 100-line-per-revolution encoder, used to move one axis at a time. If no axis
is selected for jogging, turning the handle has no effect. When the axis moved reaches its travel limits, the
handle inputs will be ignored in the direction that would exceed the travel limits. Parameter 57 bit 0 can be
used to reverse the direction of operation of the handle.
Jog Handle Replacement
1. Turn the machine power off.
2. Remove the screws holding the cover on the back of the pendant. Take care to hold the cover in place until
all screws have been removed.
3. Unplug the cable leading to the jog handle encoder.
Blank pin goes to this
side of connector
+5V
BLK
Jog Handle Encoder Jog Handle Removal Jog Handle Wiring Diagram
A
RED
GND
WHT
+5V
RED
B
GRN
4. Using the 5/64” allen wrench, loosen the two screws holding the knob to the control panel and remove.
5. Remove the three screws holding the jog handle encoder to the control panel and remove.
A
YEL
GND
WHT/
RED
B
BRN
A
WHT/
YEL
B
WHT/
BRN
6. Replacement is reverse of removal. Important! The blank pin side of the connector must face as shown
when reconnecting; otherwise, damage may occur to the machine.
The Power On switch engages the main contactor. The On switch applies power to the contactor coil and the
contactor thereafter maintains power to its coil. The Power Off switch interrupts power to the contactor coil
and turns power off. Power On is a normally open switch and Power Off is normally closed. The maximum
voltage on the Power On and Power Off switches is 24V AC and is present any time the main circuit breaker
is on.
EMERGENCY STOP SWITCH
The Emergency Stop switch is normally closed. If the switch opens or is broken, servo power is removed
instantly. This will also shut off the turret, spindle drive, and coolant pump. The Emergency Stop switch will
shut down motion even if the switch opens for as little 0.005 seconds. Note that if Parameter 57 bit 3 is set to
1, it will cause the control to be powered down when Emergency Stop is pressed.
You should not normally stop a tool change with Emergency Stop as this will leave the tool changer in an
abnormal position that takes special action to correct
If the lathe turret or mill tool changer (T/C) becomes jammed, the control will automatically come to an alarm
state. To correct this, push the Emergency Stop button and remove the cause of the jam. Push the Reset key
to clear any alarms. Push Zero Return and the Auto All Axes to reset the Z-axis and turret or T/C. Never put
your hands near the turret or T/C when powered unless E-Stop is pressed.
KEYBOARD BEEPER
There is a beeper under the control panel that is used as an audible response to pressing keyboard buttons
and as a warning beeper. The beeper is a one kHz signal that sounds for about 0.1 seconds when any
keypad key, Cycle Start, or Feed Hold is pressed. The beeper also sounds for longer periods when an autoshutdown is about to occur and when the “Beep at M30” setting is selected.
If the beeper is not audible when buttons are pressed, the problem could be in the keypad, keyboard interface
PCB or in the speaker. Check that the problem occurs with more than one button and check that the beeper
volume is not turned down or disconnected. If lamps do not turn on, check the GFCI plug.
LAMP ON/OFF SWITCH
An on/off switch is supplied for the work lamp. It is located on the side of the operator’s pendant. The lamp
uses 115V AC taken from P19 on the main power distribution board.
SWITCH REPLACEMENT
1. Turn the machine power off. Remove the screws holding the cover on the back of the pendant. Take care to
hold the cover in place until all screws have been removed.
2. Disconnect all leads to the switch connectors. Ensure all leads are properly marked for reconnecting later.
3. Unscrew the two small set screws, one on top and one on the bottom, and turn the switch counterclockwise
to loosen. Separate from the front portion and pull out.
4. To replace, screw the front and rear portions together (reverse of removal) and tighten down the two small
set screws when the switch is properly positioned.
NOTE: The Power On, Power Off, and Emergency Stop switches must all have the connectors
Load meter measures load on spindle motor as a percentage of rated continuous power of motor, with a slight
delay between a load and actual meter reection. The eighth A-to-D input also provides a measure of spindle
load for cutter wear detection. Second page of diagnostic data displays % of spindle load. Meter should
agree with display within 5%. Spindle drive display #7 should also agree with load meter within 5%. There
are different types of spindle drives used in the control, all are equivalent in performance but are adjusted
differently.
Spindle Load Meter Replacement
1. Turn the power off and disconnect power to the machine. Remove the screws holding the cover panel on
the back of the pendant. Take care to hold the cover panel in place until all screws are removed.
2. Disconnect the two leads at the back of the spindle load meter assembly. Ensure the two leads are properly
marked for reconnecting later.
3. Unscrew the four screws that hold the spindle load meter assembly to the control panel. Take care to hold
the assembly in place until all screws have been removed. Remove the assembly.
4. Installation is reverse of removal. Ensure leads go to the correct location.
K
EYPAD REPLACEMENT
1. Turn the power off and disconnect power to the machine. Remove the screws holding the rear cover to the
back of the pendant. Take care to hold the cover in place until all screws are removed.
2. Unplug the keypad’s 24-pin ribbon cable from the Keyboard Interface board.
3. Remove the screws from the front of the pendant. Take care to hold the cover in place until all screws have
been removed. Remove the pieces and set aside in a safe place.
4. Using a at, blunt tool, such as putty knife, pry the keypad away from the control panel. Pull the ribbon
cable through the opening in the control to remove.
5. To replace, rst put the bezel spacer in place and fasten temporarily with screws in the top corners.
6. Insert the ribbon cable through the opening in the control panel. Expose the adhesive strip on the back of
the keypad and press it into place in the upper right corner of the keypad recess. Press to the control panel to
mount. Plug the ribbon cable into the Keyboard Interface board, taking care to not bend the pins.
7. Replace the front and rear cover panels and fasten with the screws that were previously removed.
SERIAL KEYBOARD INTERFACE REPLACEMENT
NOTE: Refer to “Cable Locations” for a diagram of this board.
1. Follow all precautions noted previously before working in the control cabinet.
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Remove the four screws on the back of the control box, then remove the cover panel. Take care to hold the
panel in place until all screws have been removed.
4. Disconnect all leads to the Serial Keyboard Interface (SKBIF) board. Ensure all cables are properly labeled.
5. After all cables have been disconnected, unscrew the four screws holding the Serial KBIF board to the
control box. Take care to hold the board in place until all screws have been removed. Place the screws and
standoffs aside for later use.
6. Replace the Serial KBIF board, using the four screws previously removed. Starting at the top right, attach
each screw and standoff loosely, until all are mounted, then tighten down.
7. Reconnect all cables to the Serial KBIF board at their proper locations.
8. Verify whether the machine is equipped with either a speaker or a beeper. Align the toggle switches of
Switch 1 on the Serial KBIF board to their appropriate positions. Beeper operation requires that both S1
switches be set to ‘B’; speaker operation requires that both S1 switches be set to ‘S’.
2. a. Lathe: Disconnect the lube line from the spindle lube air solenoid assembly.
b. Mill: Disconnect the air lines from the spindle lube air solenoid assembly.
3. Disconnect the electrical leads from the main air line pressure switch.
4. Lathe: Unscrew the solenoid assembly pressure gauge from the assembly.
5. Unscrew the entire solenoid assembly from the T-tting.
Lube Line
Main Air Line
Pressure Switch
Installation
1. Reattach the solenoid assembly at the T-tting.
2. a. Lathe: Replace the pressure gauge on the solenoid assembly and reconnect the lube line.
b. Mill: Reconnect all air lines.
3. Reconnect the electrical leads to the main air line pressure switch.
1. Turn machine power off and remove the air supply from the machine.
2. Pneumatic Chuck: Disconnect the two air hoses from the pneumatic chuck clamp/unclamp solenoid.
Turret: Disconnect the three air hoses from the turret clamp/unclamp solenoid (see the Turret In/Out
Adjustment), and disconnect exhaust lines.
3. Unplug the solenoid electrical lead (located on the rear of the lube air panel).
4. Remove the two SHCS holding the assembly to the bracket and remove the assembly.
Installation
1. Replace the air solenoid assembly and attach it to the bracket with the two SHCS. Tighten securely.
2. Reconnect the electrical connection to the solenoid at the switch bracket.
3 Reconnect the two (three for Turret) air lines and turret exhaust lines, ensuring that all connections are tight
and do not leak.
4. Restore the air supply to the machine.
S
MART AMPLIFIER
The Smart Amplier has a microprocessor incorporated in the design. This allows the amplier to detect and
report detailed alarms. The software level necessary to display these new alarms is 15.02A or newer.
The Smart Amplier is backward compatible to any machine that has a Vector Drive. New Smart Ampliers
and standard ampliers may be used in any combination in the machine. However, if the machine does not
have at least 15.02A software or newer the specic Smart Amplier will not be displayed. The Smart Amplier
and the standard amplier use the same Parameters. On non-thin pendant machines, at least two of the
standard ampliers must be used.
The Smart Amplier does not have a 12VDC connector, and both the Fault (Red LED) and the Run (Green
LED) are relocated. The 320VDC (H+ and H-) and the X, Y and Z-axis connections are also relocated.
The smart amplier will calibrate utilizing the microprocessor that is present in each of the Smart Ampliers
at power up. When power is applied to the Control Cabinet the Fault (Red LED) will illuminate and stay
illuminated for a short time (approximately 5 seconds), this is called the “A” Phase Calibration. Then both
LEDs will be out for a few seconds; this is called the “B” Phase Calibration. Next the Run (Green LED) will
illuminate, indicating the Smart Amplier is ready with no faults.
SMART VECTOR DRIVE
The smart vector drive features a microprocessor that allows it to detect and display specic alarms (software
version 15.02A or newer only). It is backward compatible to any machine with a vector drive regardless of
software version; however, the drive-specic alarms will not display in older software. Such alarms will dis-
play in the same way as with old-style drives.
Smart vector drives installed in new machines include a cover, and the machines electrical cabinet door is
cut to accommodate it. Service drives are shipped without the cover for installation in older machines. When
replacing a drive in a machine built to accommodate the cover, use the cover from the old drive.
When installing a smart vector drive without the cover, install the cover plate to the front of the vector drive.
When installing with the cover, install the cover plate to the top of the vector drive.
You will also need several cables. Please see 93-32-5558A for the 40 HP drive and 93-32-5559A for the 20
HP drive.
Trouble Shooting
To properly troubleshoot the Vector Drive, use the following questions as a guide:
• What alarms are generated?
• When does the alarm occur?
• Is the Vector Drive top fault light on?
• Is there a fault light on any of the servo ampliers?
• Does the alarm reset?
• Does the spindle motor turn at all?
• Does the spindle turn freely by hand?
• Have the C-axis parameters been conrmed?
• What is the input voltage to the vector drive unit?
• What does the DC Bus voltage measure? (320 VDC to 345 VDC)
• Does the DC Bus voltage displayed on the diagnostic page match the measured DC Bus voltage?
All of the questions above must be answered. The DC Bus voltage should be between 320 VDC to 345 VDC
with the machine powered up but not running. If the voltage is not in this range, adjust the taps on the main
line transformer until this voltage range is achieved. There is a possibility the drive is faulty, but low Bus volt-
age can also be caused by a shorted REGEN load or a shorted amplier.
If the DC Bus voltage is below 50 VDC and never goes any higher, perform Steps 1-6.
1. With the machine powered up, is the green “POWER-ON” L.E.D. lit? If not, replace the Vector Drive unit.
2. Power down the machine. Disconnect the REGEN load (terminals 1 and 2 on the Vector Drive unit) and
measure the resistance from each wire-to-chassis ground (open) and between the wire leads. The resis-
tance should be 8.6 ohms for machines with 20/15 Vector drives and HT10K mills equipped with 40/30
drives. All other machines with 40/30 drives should measure 6 ohms. If not, replace the REGEN load or
cabling.
3. Disconnect cable 490 at terminals 2 and 3 of the Vector Drive and from the servo ampliers. With a mul-
timeter in the diode mode, place the red meter lead to the +HV terminal and the black meter lead to the
-HV terminal of each amplier. The meter should read open.
4. Reverse the leads: Place the red meter lead on the -HV terminal and the black lead on the +HV terminal.
The meter should read .7 ohms in both instances. If not, replace the faulty amplier.
5. Measure the resistance between terminals 1 and 3 of the Vector Drive. The meter should read greater
than 100K ohms. If not, the Vector Drive is faulty.
6. If the green “POWER-ON” L.E.D. was lit (from Step 2), leave both 490 cables (2 and 3) disconected from
the drive and power up the machine.
a. Does the DC Bus voltage come up? If not, the Vector Drive is faulty.
b. Measure the voltage between terminals 1 and 3. The voltage should be 300 VDC or more. If not, the
Vector Drive is faulty.
If both ‘a’ and ‘b’ check out okay, there is a problem with either the ampliers or the REGEN load.
If the fault occurs upon acceleration -or- the spindle accelerates slowly -or- the spindle
makes noise, do the following:
7. Disconnect the output cables to the spindle motor. Turn on the machine and press <RESET>. Do not
command the spindle to turn. With a volt meter, measure the DC voltage between each output phase (ter-
minals 9, 10, and 11) to the 320V RTN (terminal 3). The meter should read 165 VDC in each case, else
one phase is faulty.
8. Measure the resistance across the motor wires from phase to phase and from each phase to chassis. The
meter should read .1 ohms phase-to-phase and open phase-to-chassis. If the fault occurs upon decel-
eration or acceleration just as the spindle reaches its specied speed, or if an overvoltage alarm (119)
occurred, do the following:
9. Disconnect the REGEN load resistors (terminals 1 and 2) and measure the resistance from each wire
lead-to-chassis ground and between the wire leads. The meter should read open lead-toground, and 6
ohms between the leads for machines with 40/30 Vector drives and 8.6 ohms between the leads on ma-
chines with 20/15 Vector drives and HT10K mills.
10. Measure the resistance from terminal 1 to terminal 3. If the resistance is less than 100K, the drive is
faulty.
11. With the REGEN load left disconnected, power-up the machine and command a spindle speed of 700
RPM (300 RPM for lathes in high gear). Press <RESET> while monitoring the DC voltage between termi-
nal 1 and terminal 3. The voltage should read 330 VDC and then drop to less than 50 VDC momentarily. If
not, that drive is faulty. If the voltage at RESET was okay and the alarm was resettable, the REGEN load
should be replaced even if the resistance appears to be okay.
Please read this section in its entirety before attempting to replace any PCBs
MICROPROCESSOR ASSEMBLY
The microprocessor assembly is in the control cabinet at the top left position. It contains three large boards.
They are: Microprocessor, the Video/Keyboard and the MOCON. All three boards of the processor assembly
receive power from the low voltage power supply. The three PCBs are interconnected by a local buss on dual
50-pin connectors. At power-on, some diagnostic tests are performed on the processor assembly and any
problems found will generate Alarms 157 or 158. In addition, while the control is operating, it continually tests
itself and a self test failure will generate Alarm 152.
MOCON, VIDEO/KEYBOARD, & MICROPROCESSOR
The electrical panel will have residual voltage, even after power has been
shut off and/or disconnected. Never work inside this cabinet until the small
red Charge light on the servo ampliers go out. The servo ampliers are on
the left side of the main control cabinet and about halfway down. This light
is at the top of the circuit card at the center of the assembly. Until this light
goes out, there are dangerous voltages in the assembly even when power
is shut off.
Ground straps must be used when handling boards.
WARNING!
NOTE: Board arrangement may differ from the order of replacement that follows. Steps for
MOTORCONTROLLER (MOCON)
Machines are equipped with a microprocessor-based brushless motor controller board (MOCON) that
replaces the motor interface in the brush type controls. It runs in parallel with the main processor, receiving
axis commands and closing the loop around the axis motors.
In addition to controlling the axis and detecting axis faults, the motor controller board (MOCON) is also in
charge of processing discrete inputs, driving the I/O board relays, commanding the spindle, and processing
the jog handle input. It also controls 6 axes, so there is no need for an additional board for a 5-axis machine.
Four LEDs are used to diagnose MOCON problems:
The RUN” LED will turn on, indicating that Mocon code was found in ROM and is being executed. This LED
will turn off if a processor exception causes the Mocon code to abort execution.
replacement will only differ in which board may need to be removed before getting
to the necessary board.
The “STAT” LED indicates the following (Specic to Mocon 11.00 or later software)
a. Continuously ON - Normal status. board passed all power-on tests; no problems encountered
b. Blinks 3 times - Communication with main processor failed
c. Blinks 4 times - Internal ±12V testing failed
d. Blinks 5 times - Internal watchdog circuit failed
e. Blinks rapidly - EPROM CRC failed
The “Halt” LED glows when the board is in use (processing).
The “+5” LED lights when the board has power.
MOCON Board Replacement
1. Turn machine power off and turn the main switch (upper right of electrical cabinet) to the off position.
2. Open the cabinet door enough to safely work on the electrical panel. Wait until the red charge light on the
servo ampliers (servo drive assembly on brush machines) goes out before beginning any work.
3. Disconnect all leads to the Motor Controller (MOCON) board, and ensure all cables are properly labeled.
4. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until
all standoffs have been removed.
NOTE: If the Video/Keyboard or Processor boards need replacing, skip the next step.
5. Replace the MOCON board, attaching it to the Video/Keyboard (beneath the MOCON board) with the
standoffs, and reconnect all leads (previously removed) to their proper connections.
6. If a second MOCON board is present, be sure to connect the jumper on the second MOCON board.
V
IDEO/KEYBOARD
The Video/Keyboard PCB generates the video data signals for the monitor and the scanning signals for the
keyboard. In addition, the keyboard beeper is generated on this board. There is a single jumper on this board
used to select inverse video. The video PCB connectors are:
P1 Power connector J11 SPARE
J3 Keyboard (700) J12 Floppy
J4 Address bus J13 Video (760)
J5 Data J14 RS422 B
J10 Floppy V+ J15 RS422 A
Video/Keyboard Replacement
1. Remove the MOCON board as previously described.
2. Disconnect all leads to the Video/Keyboard. Ensure all cables are properly labeled for reconnecting later.
3. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until
all standoffs have been removed.
NOTE: If the Processor board needs replacing, skip the next step.
4. Replace the Video/Keyboard, attaching it to the Processor board with the standoffs.
5. Reconnect all leads (previously removed) to their proper connections.
6. Replace the MOCON board.
MICROPROCESSOR PCB (68ECO30)
The Microprocessor PCB contains the 68ECO30 processor running at 40 MHz, one 128K EPROM; between
1MB and 16MB of CMOS RAM and betwen 512K and 1.5MB of Fast Static RAM. It also contains a dual serial
port, a battery to backup RAM, buffering to the system buss, and eight system status LED’s.
Two ports on this board are used to set the point at which an NMI is generated during power down and the
point at which Reset is generated during power down.
The eight LEDs are used to diagnose internal processor problems. As the system completes power up testing,
the lights are turned on sequentially to indicate the completion of a step. The lights and meanings are:
RUN Program Running Without Fault Exception. (Normally On) - If this light does not come on, or goes
out after coming on, there is a problem with the microprocessor or the software running in it. Check all
of the buss connectors to the other two PCBs and ensure all three cards are getting power.
PGM Program Signature Found in Memory. (Normally On) - If this light does not come on, it means that
the main CNC program package was not found in memory, or that the auto-start switch was not set.
Check that Switch S1-1 is on and the EPROM is plugged in.
CRT CRT/LCD Video Initialization Complete. (Normally On) - If the light does not come on, there is a
problem communicating with the Video PCB. Check buss connectors to ensure it is getting power.
MSG Power-on Serial I/O Message Output Complete. (Normally On) - If light does not come on, a
problem exists with serial I/O or interrupts. Disconnect anything on the external RS-232 and retest.
SIO Serial I/O Initialization Complete. (Normally On) - If this light does not come on, there is a problem
with the serial ports. Disconnect anything on the external RS-232 and test again.
POR Power-On-Reset Complete. (Normally On) - If this light does not come on, there is a problem with
the Processor PCB. Check that the EPROM is plugged in. Test the card with buss connectors off.
HALT Processor Halted in Catastrophic Fault. (Normally Dim) - If this light comes on, there is a problem
with the Processor PCB. Check that the EPROM is plugged in. Test the card with buss connectors off.
+5V +5V Logic Power Supply is Present. (Normally On) - If this light does not come on, check the low
voltage power supply and check that all three phases of 230V input power are present.
There is 1 two-position DIP switch on the Processor PCB labled S1. Switch S1-1 must be ON to auto-start the
CNC operational program. If S1-1 is OFF, the PGM light will remain off. Switch S2-1 is used to enable Flash.
If it is disabled it will not be possible to write to Flash.
The processor connectors are:
J1 Address buss J5 Serial port #2 (for auxiliary 5th axis) (850A)
J2 Data buss J3 Power connector
J4 Serial port #1 (for upload/download/DNC) (850) J6 Battery
Alarm 124 indicates an imminent battery failure. To preserve CMOS RAM contents while the machine is pow-
ered off, the 3.3V lithium battery must be replaced within 30 days of the rst alarm. To replace the battery:
1. Backup all parameters, settings, programs, offsets, history, and macro variables.
2. Haas kit 32-1010 includes a temporary battery with a jumper connector. Plug this jumper into J6 (68K PCB)
or J15 (Coldre PCB). This ensures that memory contents are retained during the procedure.
NOTE: Do not remove the existing battery before the backup battery is installed, or remove
the backup before a fresh battery has been installed. This will result in complete machine memory loss, which cannot be reversed.
3. Properly ground yourself and unsolder the battery from the processor board.
4. Clean the battery contact areas and solder the new battery in place, observing correct battery orientation
(the positive battery connector is marked on the board and circled in the previous photograph).
5. With the new battery in place, disconnect the backup battery jumper.
1. Remove the MOCON board, and the Video/Keyboard as previously described.
2. Disconnect all leads to the Processor board. Ensure all cables are properly labeled for reconnecting later.
3. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until
all standoffs have been removed.
4. Replace the Processor board, attaching it to the electrical cabinet with the standoffs, reconnect all leads
(previously removed) to their proper connections, and replace Video/Keyboard and MOCON board.
INPUT/OUTPUT ASSEMBLY
The Input/Output Assembly consists of a single printed circuit board called the I/O PCB.
The I/O PCB also contains a circuit for sensing a ground fault condition of the servo power supply. If more
than 1.75 amps is detected owing through the grounding connection of the 160V DC buss, a ground fault
alarm is generated and the control will turn off servos and stop.
Relay K6 is for the coolant pump 230V AC. It is a plug-in type and is double-pole. Relays K9 through K12 are
also plug-in types for controlling the tool changer motors.
I/O Board Replacement
1. Follow all precautions noted previously before working in the electrical cabinet.
2. Disconnect all leads to the Input/Output board and move aside for removal. Ensure all cables are properly
labeled for reconnecting later.
3. Remove the board by rst removing the twelve screws that fasten it to the cabinet. Take care to hold the
board in place until all screws have been removed.
4. Replace the I/O board, attaching it to the cabinet with the twelve screws previously removed, and reconnect
all leads to the I/O board. Check for any additional jumper settings per I/O release notes.
POWER TRANSFORMER ASSEMBLY (T1)
The power transformer assembly converts three-phase input power (50/60Hz) to three-phase 230V and
115V power. Two transformers are used, depending on the input voltage range. The low voltage transformer
has four input connections to allow for a range of voltages from 195V RMS to 260V RMS. The high voltage
transformer has ve input connections and will accept a range of voltages from 354V RMS to 488V RMS.
The 230V is used to power the spindle drive. THe 230V also supplies the power to the vector drive, which
supplies 325V DC power for the axis servo ampliers. The 115V is used by the video monitor, solenoids, fans
and pumps, in addition to supplying power to the main LVPS used by the control electronics.
The transformer assembly is located in the lower right hand corner of the main cabinet. Besides the high/low
voltage variations, two different power levels are available depending on the spindle motor used. The small
and large transformers have power ratings of 14 KVA and 28 KVA, respectively, and are protected by the main
Input power to T1 is supplied through CB1, the main circuit breaker. Three-phase 230 to T1 is connected to
the rst three terminals of TB10.
Circuit breaker CB1 protects the spindle drive and shuts off all power to the control. A trip of this breaker
indicates a serious overload problem and should not be reset without investigating the cause of the trip.
Main Contactor K1
Main contactor K1 is used to turn the control on and off. The Power On switch applies power to the coil of K1
and after it is energized, auxiliary contacts on K1 continue to apply power to the coil. The Power Off switch on
the front panel will always remove power from this contactor.
When the main contactor is off, the only power used by the control is supplied through two ½ amp fuses to
the circuit that activates the contactor. An overvoltage or lightning strike will blow these fuses and shut off the
main contactor.
The power to operate the main contactor is supplied from a 24V AC control transformer that is primary fused
at ½ amp. This ensures that the only circuit powered when the machine is turned off is this transformer and
only low voltage is present at the front panel on/off switches.
Voltage Selection Taps
There are four labeled plastic terminal blocks. Each block has three connections for wires labeled 74, 75, and
76. Follow the instructions printed on the transformer.
Secondary Connection To T1
The secondary output from T1 is 115V AC three-phase CB2 that protects the secondary of transformer T1 and
is rated at 25 amps.
The low voltage control transformer, T5, supplies power to the coil of the main contactor K1. It guarantees that
the maximum voltage leaving the Power Supply assembly when power is off is 12V AC to earth ground. It is
connected via P5 to the Power PCB.
Main transformer (T1) outputs 115V AC to the work light.
POWER SUPPLY ASSEMBLY
All control power passes through a power supply assembly on the upper right corner of the control cabinet.
Power PCB (PSUP)
Low voltage power distribution and high voltage fuses and circuit breakers are mounted on a circuit board
called the Power PCB.
Secondary Circuit Breakers
The following circuit breakers are located on the Power supply assembly:
CB2Controls the 115V power from the main transformer to the I/O PCB and, if tripped, will turn off all
inputs and outputs. CB2 could be tripped by a short circuit in the cables.
CB3Controls the power to coolant pump only. It can be tripped by an overload of the coolant pump
motor or a short in the wiring to the TSC motor, or lathe hydraulic pump.
CB4 Controls the power to chip conveyor only.
CB5 Controls power to the TSC coolant pump only. It can be tripped by an overload of the TSC coolant
pump motor or a short in the wiring to the motor.
CB6 Single-phase 115V protected ground fault interrupt circuit and output for the worklight.
Power PCB (PSUP) Replacement
1. Follow all precautions noted previously before working in the electrical cabinet
2. Disconnect all leads to the Power PCB (PSUP) and set aside for removal. Ensure all cables are properly
labeled for reconnecting later.
3. After all cables have been disconnected, remove the seven screws holding the Power board to the cabinet
and remove the board. Take care to hold the Power board in place until all screws have been removed.
NOTE: If replacing the Low Voltage Power Supply board, please skip the next step.
4. Replace the Power board, attaching it with the seven screws previously removed. Do not forget to use the
lower left screw for a ground connection.
5. Reconnect all cables to Power board at proper location. Refer to release notes for additional information.
LOW VOLTAGE POWER SUPPLY
The low voltage power supply provides +5V DC, +12V DC, and -12V DC to all logic sections of the control. It
operates from 115V AC nominal input power, and continues to operate correctly over 90 to 133V AC.
Low Voltage Power Supply (LVPS) Replacement
1. Remove the Power Distribution (Power) board as previously described.
2. Disconnect all leads to the Low Voltage Power Supply (LVPS) board. Ensure all cables are properly labeled
for reconnecting later.
3. After all cables are disconnected, unscrew the two standoffs at the bottom of the board. Unscrew the
remaining two screws at the top of the LVPS board. Hold the board in place until all screws are removed.
4. Replace the LVPS board, attaching it to the cabinet with the two screws and standoffs previously removed.
5. Replace the Power board as previously described.
There are two connectors used for the RS-232 interface. The RS-232 connector on most PCs is a male DB25, so only one type of cable is required for connection to the controller, or between controllers. This cable
must be a DB-25 male on one end and a DB-25 female on the other. Pins 1, 2, 3, 4, 5, 6, 7, 8, and 20 must
be wired one-to-one. It cannot be a Null Modem cable, which inverts pins 2 and 3. To check cable type use
a cable tester to check that communication lines are correct. The controller is DCE (Data Communication
Equipment). This means that it transmits on the RXD line (pin 3) and receives on the TXD line (pin 2). The
RS-232 connector on most PCs is wired for DTE (Data Terminal Equipment), requiring no special jumpers.
The Down Line DB-25 connector is only used when more than one controller is to be used. The rst
controller’s down line connector goes to the second controller’s up line connector, etc.
Interfacing a Haas Rotary Control to the mill
The RS-232 interface sends and receives seven data bits, even parity, and two stop bits. The interface must
be set correctly. The data rate can be between 110 and 19200 bits per second. When using RS-232, it is
important to make sure that Parameter 26 (RS-232 Speed) and 33 (X-on/X-off Enable) are set to the same
value in the controller and PC.
If Parameter 33 is set to on, the controller uses X-on and X-off codes to control reception, so be sure your
computer is able to process these. It also drops CTS (pin 5) at the same time it sends X-off and restores CTS
when is sends X-on. The RTS line (pin 4) can be used to start/stop transmission by the controller or the X-on/
Xoff codes can be used. The DSR line (pin 6) is activated at power-on of the controller and the DTR line (pin
20 from the PC) is not used. If Parameter 33 is 0, the CTS line can still be used to synchronize output.
When more than one Haas controller is daisy-chained, data sent from the PC goes to all of the controllers at
the same time, requiring an axis selection code (Parameter 21). Data sent back to the PC from the controllers
is ORed together so that, if more than one box is transmitting, the data will be garbled. Because of this, the
axis selection code must be unique for each controller.
RS-232 Remote Command Mode
Parameter 21 must be non-zero for the remote command mode to operate as the controller looks for an axis
select code dened by this parameter. The controller must also be in RUN mode to respond to the interface.
Since the controller powers-on in Run mode, remote unattended operation is thus possible.
RS-232 Line Noise
To minimize line noise on the serial port, reroute the cables straight up the left-hand side of the control to the
processor stack. Do not run them above the I/O PCB or up the center wire channel to the processor.
Transmission errors may be best minimized with a good common ground between the PC and CNC control.
RS-232 Loop Back Test
If you have a communications problem between Port #1 of the machine and your external computer, use the
following procedure to isolate the problem to either internal or external causes.
1. Unplug the cable from Port #1 of the Control Panel, and plug the cable tester in (port #1).
PLUG TESTER
BACK VIEW
The RS-232 Plug Tester is a 25-pin male connector with the following pins shorted.
Pins 2 & 3 and Pins 14 & 16
In order to properly perform the test, Setting 14 must be set to CTS/RTS.
2. If the machine is on, cycle the power (power down then turn back on).