GSI GS880F36T-14I, GS880F36T-14, GS880F36T-12I, GS880F36T-12, GS880F36T-11I Datasheet

...
Rev: 1.03 3/2000 1/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
512K x 18, 256K x 36
8Mb Sync Burst SRAMs
10ns - 14ns
3.3V VDD
100 Pin TQFP Commercial Temp Industrial Temp
Features
• Flow through mode operation.
• 3.3V +10%/-5% Core power supply.
• 2.5V or 3.3V I/O supply.
• LBO pin for linear or interleaved burst mode.
• Internal input resistors on mode pins allow floating mode pins. Default to Interleaved Pipelined Mode.
• Byte write (BW) and/or global write (GW) operation.
• Common data inputs and data outputs.
• Clock Control, registered, address, data, and control.
• Internal Self-Timed Write cycle.
• Automatic power-down for portable applications.
• 100-lead TQFP package
Functional Description
Applications
The GS880F18/32/36T is a 9,437,184 bit (8,388,608 bit for x32 version) high performance synchronous SRAM with a 2 bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPU’s, the device now finds application in synchronous SRAM applications ranging from DSP main store to networking chip set support.
Controls
Addresses, data I/O’s, chip enables (E1, E2, E3), address burst control inputs (ADSP, ADSC, ADV) and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive edge triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.
Designing For Compatibility
The JEDEC Standard for Burst RAMS calls for a FT mode pin option (pin 14 on TQFP). Board sites for Flow through Burst RAMS should be designed with VSS connected to the FT pin location to ensure the
broadest access to multiple vendor sources. Boards designed with FT pin pads tied low may be stuffed with GSI’s Pipeline/Flow through configurable Burst RAMS or any vendor’s Flow through or configurable Burst SRAM. Bumps designed with the FT pin location tied High or floating must employ a non-configurable Flow through Burst RAM, like this RAM, to achieve Flow through functionality.
88018/32/36TByte Write and Global Write Byte write operation is performed by using byte write enable (BW)
input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs.
Sleep Mode
Low power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.
Core and Interface Voltages
The GS880F18/32/36T operates on a 3.3V power supply and all inputs/outputs are 3.3V and 2.5V compatible. Separate output power (V
DDQ
) pins are used to de-couple output noise from the internal
circuit.
-10 -11 -11.5 -12 -14
Flow Through
2-1-1-1
t
KQ
tCycle
I
DD
10ns 10ns
225mA
11ns 15ns
180mA
11.5ns 15ns
180mA
12ns 15ns
180mA
14ns 15ns
175mA
Rev: 1.03 3/2000 2/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
GS880F18 100 Pin TQFP Pinout
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
VDDQ
VSS
DQB1 DQB2
VSS
VDDQ DQB3 DQB4
VDD NC
VSS DQB5 DQB6
VDDQ
VSS DQB7 DQB8 DQB9
VSS
VDDQ
VDDQ VSS
DQA8 DQA7 VSS VDDQ DQA6 DQA5 VSS NC VDD ZZ DQA4 DQA3 VDDQ VSS DQA2 DQA1
VSS VDDQ
LBO
A5
A4
A3
A2
A1
A0
NC
NC
VSS
VDD
NC
A17
A10
A11
A12
A13
A14
A16
A6
A7
E1
E2
NC
NC
BB
BA
E3
CK
GW
BW
VDD
VSS
G
ADSC
ADSP
ADV
A8
A9
A15
512K x 18
Top View
DQA9
A18
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
NC
Rev: 1.03 3/2000 3/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
GS880F32 100 Pin TQFP Pinout
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
VDDQ
VSS
DQC4 DQC3
VSS
VDDQ DQC2 DQC1
VDD NC
VSS DQD1 DQD2
VDDQ
VSS DQD3 DQD4 DQD5
VSS
VDDQ
VDDQ VSS
DQB4 DQB3 VSS VDDQ DQB2 DQB1 VSS NC VDD ZZ DQA1 DQA2 VDDQ VSS DQA3 DQA4
VSS VDDQ
LBO
A5
A4
A3
A2
A1
A0
NC
NC
VSS
VDD
NC
A17
A10
A11
A12
A13
A14
A16
A6
A7
E1
E2
BD
BC
BB
BA
E3
CK
GW
BW
VDD
VSS
G
ADSC
ADSP
ADV
A8
A9
A15
256K x 32
Top View
DQB5
NC
DQB7
DQB8
DQB6
DQA6
DQA5
DQA8
DQA7
NC
DQC7
DQC8
DQC6
DQD6
DQD8
DQD7
NC
DQC5
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
NC
Rev: 1.03 3/2000 4/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
GS880F36 100 Pin TQFP Pinout
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
VDDQ
VSS
DQC4 DQC3
VSS
VDDQ DQC2 DQC1
VDD NC
VSS DQD1 DQD2
VDDQ
VSS DQD3 DQD4 DQD5
VSS
VDDQ
VDDQ VSS
DQB4 DQB3 VSS VDDQ DQB2 DQB1 VSS NC VDD ZZ DQA1 DQA2 VDDQ VSS DQA3 DQA4
VSS VDDQ
LBO
A5
A4
A3
A2
A1
A0
NC
NC
VSS
VDD
NC
A17
A10
A11
A12
A13
A14
A16
A6
A7
E1
E2
BD
BC
BB
BA
E3
CK
GW
BW
VDD
VSS
G
ADSC
ADSP
ADV
A8
A9
A15
256K x 36
Top View
DQB5
DQB9
DQB7
DQB8
DQB6
DQA6
DQA5
DQA8
DQA7
DQA9
DQC7
DQC8
DQC6
DQD6
DQD8
DQD7
DQD9
DQC5
DQC9
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
NC
Rev: 1.03 3/2000 5/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
TQFP Pin Description
Pin Location Symbol Type Description
37, 36 A0, A1 I Address field LSB’s and Address Counter preset Inputs
35, 34, 33, 32, 100, 99, 82, 81, 44, 45,
46, 47, 48, 49, 50, 43
A2-17 I Address Inputs
80 A18 I Address Inputs
63, 62, 59, 58, 57, 56, 53, 52 68, 69, 72, 73, 74, 75, 78, 79
13, 12, 9, 8, 7, 6, 3, 2
18, 19, 22, 23, 24, 25, 28, 29
DQA1-DQA8 DQB1-DQB8 DQC1-DQC8 DQD1-DQD8
I/O Data Input and Output pins. (x32, x36 Version)
51, 80, 1, 30
DQA9, DQB9,
DQC9, DQD9
I/O Data Input and Output pins.
51, 80, 1, 30 NC - No Connect (x32 Version)
58, 59, 62, 63, 68, 69, 72, 73, 74
8, 9, 12, 13, 18, 19, 22, 23, 24
DQA1-DQA9
DQB1- DQB9
I/O Data Input and Output pins.
51, 52, 53, 56, 57
75, 78, 79,
1, 2, 3, 6, 7
25, 28, 29, 30
NC - No Connect
16 DP I Parity Input. 1 = Even, 0 = Odd. 66 QE O Parity Error Out. Open Drain Output. 87 BW I Byte Write. Writes all enabled bytes. Active Low.
93, 94 BA, BB I Byte Write Enable for DQA, DQB Data I/O’s. Active Low. 95, 96 BC, BD I
Byte Write Enable for DQC, DQD Data I/O’s. Active Low. (x32, x36
Version)
95, 96 NC - No Connect (x18 Version)
89 CK I Clock Input Signal. Active High. 88 GW I Global Write Enable. Writes all bytes. Active Low.
98, 92 E1, E3 I Chip Enable. Active Low.
97 E2 I Chip Enable. Active High. 86 G I Output Enable. Active Low. 83 ADV I Burst address counter advance enable. Active Low.
84, 85 ADSP, ADSC I Address Strobe (Processor, Cache Controller). Active Low.
64 ZZ I Sleep Mode control. Active High. 31 LBO I Linear Burst Order mode. Active Low.
15, 41, 65, 91
V
DD
I Core power supply.
5,10,17, 21, 26, 40, 55, 60, 67, 71, 76, 90
V
SS
I I/O and Core Ground.
4, 11, 20, 27, 54, 61, 70, 77
V
DDQ
I Output driver power supply.
14, 16, 38, 39, 42, 66 NC - No Connect.
Rev: 1.03 3/2000 6/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
GS880F18/32/36 Block Diagram
A1
A0
A0
A1
D0 D1
Q1
Q0
Counter
Load
D Q
D Q
Register
Register
D Q
Register
D Q
Register
D Q
Register
D Q
Register
D Q
Register
D Q
Register
DQ
Register
DQ
Register
A0-An
LBO
ADV CK
ADSC ADSP
GW
BW BA
BB
BC
BD
E1
G
ZZ
Power Down
Control
Memory
Array
4
A
Q D
E2 E3
1
0
36 36
DQx0-DQx9
Note: Only x36 version shown for simplicity.
Rev: 1.03 3/2000 7/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
Note: There is a pull up device on the LBO pin and a pull down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.
Burst Counter Sequences
BPR 1999.05.18
Byte Write Truth Table
Note:
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.
2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes.
3. All byte I/O’s remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
4. Bytes “C” and “D” are only available on the x32 and x36 versions.
Mode Pin Functions
Mode Name Pin Name State Function
Burst Order Control LBO
L Linear Burst
H or NC Interleaved Burst
Power Down Control ZZ
L or NC Active
H
Standby, IDD = I
SB
Function GW BW BA BB BC BD Notes
Read H H X X X X 1
Read H L H H H H 1 Write byte a H L L H H H 2, 3 Write byte b H L H L H H 2, 3 Write byte c H L H H L H 2, 3, 4 Write byte d H L H H H L 2, 3, 4
Write all bytes H L L L L L 2, 3, 4 Write all bytes L X X X X X
Linear Burst Sequence
Note: The burst counter wraps to initial state on the 5th clock.
I
nterleaved Burst Sequence
Note: The burst counter wraps to initial state on the 5th clock.
A[1:0] A[1:0] A[1:0] A[1:0]
1st address 00 01 10 11
2nd address 01 10 11 00
3rd address 10 11 00 01 4th address 11 00 01 10
A[1:0] A[1:0] A[1:0] A[1:0]
1st address 00 01 10 11
2nd address 01 00 11 10
3rd address 10 11 00 01 4th address 11 10 01 00
Rev: 1.03 3/2000 8/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. N
Preliminary
GS880F18/36T-10/11/11.5/12/14
Synchronous Truth Table
Operation
Address
Used
State
Diagram
Key
5
E1
E2
2
(x36only)
ADSP ADSC ADV
W
3
DQ
4
Deselect Cycle, Power
Down
None X H X X L X X High-Z
Deselect Cycle, Power Down None X L F L X X X High-Z
Deselect Cycle, Power
Down
None X L F H L X X High-Z
Read Cycle, Begin Burst External R L T L X X X Q
Read Cycle, Begin Burst External R L T H L X F Q Write Cycle, Begin Burst External W L T H L X T D
Read Cycle, Continue Burst Next CR X X H H L F Q
Read Cycle, Continue Burst Next CR H X X H L F Q
Write Cycle, Continue Burst Next CW X X H H L T D
Write Cycle, Continue Burst Next CW H X X H L T D Read Cycle, Suspend Burst Current X X H H H F Q Read Cycle, Suspend Burst Current H X X H H F Q
Write Cycle, Suspend Burst Current X X H H H T D Write Cycle, Suspend Burst Current H X X H H T D
Note:
1. X = Don’t Care, H = High, L = Low.
2. For x36 Version, E = T (True) if E2 = 1 and E3 = 0; E = F (False) if E2 = 0 or E3 = 1.
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active driv­ers (shown as “Q” in the Truth Table above).
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish basic synchronous or synchronous burst operations and may be avoided for simplicity.
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Loading...
+ 17 hidden pages