GSI GS88032T-11.5, GS88032T-11, GS88032T-100I, GS88032T-100, GS88032T-80I Datasheet

...
Rev: 1.11 8/2000 1/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
512K x 18, 256K x 32, 256K x 36
8Mb Sync Burst SRAMs
100 MHz–66 MHz
3.3 V V
3.3 V and 2.5 V I/O
100-Pin TQFP Commercial Temp Industrial Temp
Features
• FT pin for user-configurable flow through or pipelined operation
• Single Cycle Deselect (SCD) operation
• 3.3 V +10%/–5% core power supply
• 2.5 V or 3.3 V I/O supply
• LBO pin for Linear or Interleaved Burst mode
• Internal input resistors on mode pins allow floating mode pins
• Default to Interleaved Pipelined mode
• Byte Write (BW) and/or Global Write (GW) operation
• Common data inputs and data outputs
• Clock Control, registered, address, data, and control
• Internal self-timed write cycle
• Automatic power-down for portable applications
• 100-lead TQFP package
Functional Description
Applications
The GS88018/32/36T is a 9,437,184-bit (8,388,608-bit for x32 version) high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support.
Controls
Addresses, data I/Os, chip enables (E1, E2, E3), address burst control inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may be configured to count in either linear or
interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.
Flow Through/Pipeline Reads
The function of the Data Output Register can be controlled by the user via the FT mode pin (Pin 14). Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM in Pipeline mode, activating the rising­edge-triggered Data Output Register.
SCD Pipelined Reads
The GS88018/32/36T is a SCD (Single Cycle Deselect) pipelined synchronous SRAM. DCD (Dual Cycle Deselect) versions are also available. SCD SRAMs pipeline deselect commands one stage less than read commands. SCD RAMs begin turning off their outputs immediately after the deselect command has been captured in the input registers.
Byte Write and Global Write
Byte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs.
Sleep Mode
Low power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.
Core and Interface Voltages
The GS88018/32/36T operates on a 3.3 V power supply and all inputs/outputs are 3.3 V- and 2.5 V-compatible. Separate output power (V
DDQ
) pins are used to decouple output noise
from the internal circuit.
-11 -11.5 -100 -80 -66
Pipeline
3-1-1-1
tCycle
t
KQ
I
DD
10 ns
4.0 ns
225 mA
10 ns
4.0 ns
225 mA
10 ns
4.0 ns
225 mA
12.5 ns
4.5 ns
200 mA
15 ns
5 ns
185 mA
Flow
Through
2-1-1-1
t
KQ
tCycle
I
DD
11 ns 15 ns
180 mA
11.5 ns 15 ns
180 mA
12 ns 15 ns
180 mA
14 ns 15 ns
175 mA
18 ns 20 ns
165 mA
Rev: 1.11 8/2000 2/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
GS88018 100-Pin TQFP Pinout
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
V
DDQ
V
SS
DQB1 DQB2
V
SS
V
DDQ
DQB3 DQB4
V
DD
NC
V
SS
DQB5 DQB6
V
DDQ
V
SS
DQB7 DQB8 DQB9
V
SS
V
DDQ
V
DDQ
V
SS
DQA8 DQA7 V
SS
V
DDQ
DQA6 DQA5 V
SS
NC V
DD
ZZ DQA4 DQA3 V
DDQ
V
SS
DQA2 DQA1
V
SS
V
DDQ
LBO
A5
A4
A3
A2
A1
A0
NC
NC
V
SS
V
DD
NC
A17
A10
A11
A12
A13
A14
A16
A6
A7
E1
E2
NC
NC
BB
BA
E3
CK
GW
BW
V
DD
V
SS
G
ADSC
ADSP
ADVA8A9
A15
512K x 18
Top View
DQA9
A18
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
FT
Rev: 1.11 8/2000 3/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
GS88032 100-Pin TQFP Pinout
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
V
DDQ
V
SS
DQC4 DQC3
V
SS
V
DDQ
DQC2 DQC1
V
DD
NC
V
SS
DQD1 DQD2
V
DDQ
V
SS
DQD3 DQD4 DQD5
V
SS
V
DDQ
V
DDQ
V
SS
DQB4 DQB3 V
SS
V
DDQ
DQB2 DQB1 V
SS
NC V
DD
ZZ DQA1 DQA2 V
DDQ
V
SS
DQA3 DQA4
V
SS
V
DDQ
LBO
A5
A4
A3
A2
A1
A0
NC
NC
V
SS
V
DD
NC
A17
A10
A11
A12
A13
A14
A16
A6
A7
E1
E2
BD
BC
BB
BA
E3
CK
GW
BW
V
DD
V
SS
G
ADSC
ADSP
ADVA8A9
A15
256K x 32
Top View
DQB5
NC
DQB7
DQB8
DQB6
DQA6
DQA5
DQA8
DQA7
NC
DQC7
DQC8
DQC6
DQD6
DQD8
DQD7
NC
DQC5
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
FT
Rev: 1.11 8/2000 4/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
GS88036 100-Pin TQFP Pinout
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
V
DDQ
V
SS
DQC4 DQC3
V
SS
V
DDQ
DQC2 DQC1
V
DD
NC
V
SS
DQD1 DQD2
V
DDQ
V
SS
DQD3 DQD4 DQD5
V
SS
V
DDQ
V
DDQ
V
SS
DQB4 DQB3 V
SS
V
DDQ
DQB2 DQB1 V
SS
NC V
DD
ZZ DQA1 DQA2 V
DDQ
V
SS
DQA3 DQA4
V
SS
V
DDQ
LBO
A5
A4
A3
A2
A1
A0
NC
NC
V
SS
V
DD
NC
A17
A10
A11
A12
A13
A14
A16
A6
A7
E1
E2
BD
BC
BB
BA
E3
CK
GW
BW
V
DD
V
SS
G
ADSC
ADSP
ADVA8A9
A15
256K x 36
Top View
DQB5
DQB9
DQB7
DQB8
DQB6
DQA6
DQA5
DQA8
DQA7
DQA9
DQC7
DQC8
DQC6
DQD6
DQD8
DQD7
DQD9
DQC5
DQC9
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
FT
Rev: 1.11 8/2000 5/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
TQFP Pin Description
Pin Location Symbol
Typ
e
Description
37, 36 A0, A1 I Address field LSBs and Address Counter preset Inputs
35, 34, 33, 32, 100, 99, 82, 81, 44, 45, 46,
47, 48, 49, 50, 43
A2–A17 I Address Inputs
80 A18 I Address Inputs
63, 62, 59, 58, 57, 56, 53, 52 68, 69, 72, 73, 74, 75, 78, 79
13, 12, 9, 8, 7, 6, 3, 2
18, 19, 22, 23, 24, 25, 28, 29
DQA1–DQA8 DQB1–DQB8 DQC1–DQC8 DQD1–DQD8
I/O Data Input and Output pins (x32, x36 Version)
51, 80, 1, 30
DQA9, DQB9,
DQC9, DQD9
I/O Data Input and Output pins
51, 80, 1, 30 NC No Connect (x32 Version)
58, 59, 62, 63, 68, 69, 72, 73, 74
8, 9, 12, 13, 18, 19, 22, 23, 24
DQA1–DQA9 DQB1–DQB9
I/O Data Input and Output pins
51, 52, 53, 56, 57
75, 78, 79,
1, 2, 3, 6, 7
25, 28, 29, 30
NC No Connect
87 BW I Byte WriteWrites all enabled bytes; active low
93, 94 BA, BB I Byte Write Enable for DQA, DQB Data I/Os; active low
95, 96 BC, BD I
Byte Write Enable for DQC, DQD Data I/Os; active low (x32, x36
Version)
95, 96 NC No Connect (x18 Version)
89 CK I Clock Input Signal; active high 88 GW I Global Write EnableWrites all bytes; active low
98, 92 E1, E3 I Chip Enable; active low
97 E2 I Chip Enable; active high 86 G I Output Enable; active low 83 ADV I Burst address counter advance enable; active low
84, 85 ADSP, ADSC I Address Strobe (Processor, Cache Controller); active low
64 ZZ I Sleep Mode control; active high 14 FT I Flow Through or Pipeline mode; active low 31 LBO I Linear Burst Order mode; active low
15, 41, 65, 91
V
DD
I Core power supply
5,10,17, 21, 26, 40, 55, 60, 67, 71, 76, 90
V
SS
I I/O and Core Ground
4, 11, 20, 27, 54, 61, 70, 77
V
DDQ
I Output driver power supply
16, 38, 39, 42, 66 NC No Connect
Rev: 1.11 8/2000 6/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
GS88018/32/36 Block Diagram
A1
A0
A0
A1
D0 D1
Q1
Q0
Counter
Load
D Q
D Q
Register
Register
D Q
Register
D Q
Register
D Q
Register
D Q
Register
D Q
Register
D Q
Register
DQ
Register
DQ
Register
A0An
LBO ADV
CK ADSC
ADSP GW
BW BA
BB
BC
BD
E1
G
ZZ
Power Down
Control
Memory
Array
4
A
Q D
E2 E3
1
FT
36 36
DQx0DQx9
Note: Only x36 version shown for simplicity.
Rev: 1.11 8/2000 7/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
Note: There are pull-up devices on the LBO and FT pins and a pull down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above table.
Burst Counter Sequences
BPR 1999.05.18
Byte Write Truth Table
Notes:
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.
2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes.
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
4. Bytes “C” and “D” are only available on the x32 and x36 versions.
Mode Pin Functions
Mode Name Pin Name State Function
Burst Order Control LBO
L Linear Burst
H or NC Interleaved Burst
Output Register Control FT
L Flow Through
H or NC Pipeline
Power Down Control ZZ
L or NC Active
H
Standby, IDD = I
SB
Function GW BW BA BB BC BD Notes
Read H H X X X X 1
Read H L H H H H 1 Write byte a H L L H H H 2, 3 Write byte b H L H L H H 2, 3 Write byte c H L H H L H 2, 3, 4 Write byte d H L H H H L 2, 3, 4
Write all bytes H L L L L L 2, 3, 4 Write all bytes L X X X X X
Linear Burst Sequence
Note: The burst counter wraps to initial state on the 5th clock.
I
nterleaved Burst Sequence
Note: The burst counter wraps to initial state on the 5th clock.
A[1:0] A[1:0] A[1:0] A[1:0]
1st address 00 01 10 11
2nd address 01 10 11 00
3rd address 10 11 00 01 4th address 11 00 01 10
A[1:0] A[1:0] A[1:0] A[1:0]
1st address 00 01 10 11
2nd address 01 00 11 10
3rd address 10 11 00 01 4th address 11 10 01 00
Rev: 1.11 8/2000 8/25 © 2000, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS88018/32/36T-11/11.5/100/80/66
Synchronous Truth Table
Operation
Address
Used
State
Diagram
Key
5
E1
E2
2
(x36only)
ADSP ADSC ADV
W
3
DQ
4
Deselect Cycle, Power Down None X H X X L X X High-Z
Deselect Cycle, Power Down None X L F L X X X High-Z
Deselect Cycle, Power Down None X L F H L X X High-Z
Read Cycle, Begin Burst External R L T L X X X Q
Read Cycle, Begin Burst External R L T H L X F Q
Write Cycle, Begin Burst External W L T H L X T D
Read Cycle, Continue Burst Next CR X X H H L F Q
Read Cycle, Continue Burst Next CR H X X H L F Q
Write Cycle, Continue Burst Next CW X X H H L T D
Write Cycle, Continue Burst Next CW H X X H L T D Read Cycle, Suspend Burst Current X X H H H F Q Read Cycle, Suspend Burst Current H X X H H F Q
Write Cycle, Suspend Burst Current X X H H H T D Write Cycle, Suspend Burst Current H X X H H T D
Notes:
1. X = Don’t Care, H = High, L = Low
2. For x36 Version, E = T (True) if E2 = 1 and E3 = 0; E = F (False) if E2 = 0 or E3 = 1
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown as “Q” in the Truth Table above).
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish basic synchronous or synchronous burst operations and may be avoided for simplicity.
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Loading...
+ 17 hidden pages