Goodman APG 13, GPG 15, A/GPG1324-60***M41AA series, A/GPG1324-60***M41AB series, GPG1336/48/60***M43AA series Service Instructions Manual

...
Page 1
Service Instructions
APG/GPG 13 and 15
Gas Electric Package Units
with R-410A Refrigerant
& Accessories
®
C
US
This Forced Air Central Unit Design Complies With Requirements Embodied in The American National Standard / National Standard of Canada Shown Below.
ANSI Z21.47•CSA-2.3 Central Furnaces
This manual is to be used by qualified, professionally trained HVAC technicians only. Goodman does not assume any responsibility for property damage or personal injury due to improper service procedures or services performed by an unqualified person.
Copyright © 2007 - 2010 Goodman Manufacturing Company, L.P.
RS6300007r7
March 2010
Page 2
TABLE OF CONTENTS
IMPORTANT INFORMATION .........................2 - 3
SCHEDULED MAINTENANCE ..................29 - 31
PRODUCTION IDENTIFICATION ..................4 - 5
ACCESSORIES...........................................6 - 14
PRODUCT DESIGN ..................................15 - 20
SYSTEM OPERATION ..............................21 - 28
TROUBLESHOOTING CHARTS ...............32 - 33
SERVICING TABLE OF CONTENTS ............... 34
SERVICING ............................................... 32 - 61
ACCESSORIES WIRING DIAGRAMS ..............62
IMPORTANT INFORMATION
Pride and workmanship go into every product to provide our customers with quality products. It is possible, however, that during its lifetime a product may require service. Products should be serviced only by a qualified service technician who is familiar with the safety procedures required in the repair and who is equipped with the proper tools, parts, testing instruments and the appropriate service manual. REVIEW ALL SERVICE INFORMATION IN THE APPROPRIATE
SERVICE MANUAL BEFORE BEGINNING REPAIRS.
IMPORTANT NOTICES FOR CONSUMERS AND SERVICERS
RECOGNIZE SAFETY SYMBOLS, WORDS AND LABELS
WARNING
This unit should not be connected to, or used in conjunction with, any devices that are not design certified for use with this unit or have not been tested and approved by Goodman. Serious property damage or personal injury, reduced unit performance and/or hazardous conditions may result from the use of devices that have not been approved or certified by Goodman.
WARNING
Do not store com bustible materials or use gasoline or other flammable liquids or vapors in the vicinity of this appliance as property damage or personal injury could occur. Have your contractor point out and identify the various cut-off devices, switches, etc., that serves your co mfort equipment.
WARNING
Goodman will not be responsible for any injury or property damage arising from improper service or service procedures. If you perform service on your own product, you assum e responsibility for any personal injury or property dam age wh ich ma y result.
HIGH VOLTAGE! Disconnect ALL power before servicing or installing this unit. Multiple power sources may be present. Failure to do so may cause property damage, personal injury or death.
To locate an authorized servicer, please consult your telephone book or the dealer from whom you purchased this product. For further assistance, please contact:
CONSUMER INFORMATION LINE GOODMAN® BRAND PRODUCTS
TOLL FREE 1-877-254-4729 (U.S. only)
email us at: hac.consumer.affairs@goodmanmfg.com
fax us at: (713) 856-1821
(Not a technical assistance line for dealers.)
Outside the U.S., call 1-713-861-2500
(Not a technical assistance line for dealers.)
Your telephone company will bill you for the call.
2
email us at: hac.consumer.affairs@amanahvac.com
Your telephone company will bill you for the call.
CONSUMER INFORMATION LINE
AMANA® BRAND PRODUCTS
TOLL FREE 1-877-254-4729 (U.S. only)
fax us at: (931) 438-4362
(Not a technical assistance line for dealers.)
Outside the U.S., call 1-931-433-6101.
(Not a technical assistance line for dealers.)
Page 3
IMPORTANT INFORMATION
SAFE REFRIGERANT HANDLING
While these items will not cover every conceivable situation, they should serve as a useful guide.
WARNING
Refrigerants are heavier than air. They can "push out" the oxygen in your lungs or in any enclosed space.To
avoid possible difficulty in breathing or death:
Never purge refrigerant into an enclosed room or
space. By law, all refrigerants must be reclaimed.
If an indoor leak is suspected, thoroughly ventilate
the area before beginning work.
• Liquid refrigerant can be very cold. To avoid possible frostbite or blindness, avoid contact with refrigerant and wear gloves and goggles. If liquid refrigerant does contact your skin or eyes, seek medical help immediately.
• Always follow EPA regulations. Never burn refrig­ erant, as poisonous gas will be produced.
WARNING
To avoid possible injury, explosion or death, practice safe handling of re frige rants.
WARNING
The compressor POE oil for R-410A units is extremely susceptible to moisture absorption and could cause compressor failure. Do not leave system open to atmosphere any longer than necessary for installation.
WARNING
To avoid pos sible exp los ion:
Never apply flame or steam to a refrigerant cylinder. If you must heat a cylinder for faster charging, partially immers e it in wa rm w ate r.
Never fill a cylin de r m ore than 80% fu ll of liqu id refrigerant.
• Never add anything other than R-22 to an R-22 cylinder or R-410A to an R-410A cylinder. The service equipment used must be listed or certified for the type of refrigerant used.
• Store cylinders in a cool, dry place. Never use a cylinder as a plat form or a roller.
WARNING
To avoid possible explos ion, use only returnable (not disposable) service cylinders when removing refrig­erant f rom a syst em.
• Ensure the cylinder is free of damage which could lead to a leak or explosion.
• Ensure the hydrostatic test date does not exceed 5 years.
• Ensure the pressure rating meets or exceeds 400 lbs.
When in doubt, do not use cylinder.
WARNING
System contamina nts, improper se rvice procedure and/or physical abuse affecting hermetic com pressor electrical terminals may cause dangerous s ystem venting.
The successful development of hermetically sealed refrigera­tion compressors has completely sealed the compressor's moving parts and electric motor inside a common housing, minimizing refrigerant leaks and the hazards sometimes associated with moving belts, pulleys or couplings.
Fundamental to the design of hermetic compressors is a method whereby electrical current is transmitted to the compressor motor through terminal conductors which pass through the compressor housing wall. These terminals are sealed in a dielectric material which insulates them from the housing and maintains the pressure tight integrity of the hermetic compressor. The terminals and their dielectric embedment are strongly constructed, but are vulnerable to careless compressor installation or maintenance proce­dures and equally vulnerable to internal electrical short circuits caused by excessive system contaminants.
In either of these instances, an electrical short between the terminal and the compressor housing may result in the loss of integrity between the terminal and its dielectric embed­ment. This loss may cause the terminals to be expelled, thereby venting the vaporous and liquid contents of the compressor housing and system.
A venting compressor terminal normally presents no danger to anyone, providing the terminal protective cover is properly in place.
If, however, the terminal protective cover is not properly in place, a venting terminal may discharge a combination of
(a ) hot lubricating oil and refrigerant (b ) flammable mixture (if system is contaminated
with air)
in a stream of spray which may be dangerous to anyone in the vicinity. Death or serious bodily injury could occur.
Under no circumstances is a hermetic compressor to be electrically energized and/or operated without having the terminal protective cover properly in place.
See Service Section S-17 for proper servicing.
3
Page 4
PRODUCT IDENTIFICATION
A
The model number is used for positive identification of component parts used in manufacturing. Please use this number when requesting service or parts information.
P G 13 24 070 M 4 1 * *G / A
BRAND:
G: Good ma n Brand or Distincti ons
: Ama na
Brand
®
®
PRODUCT
TYPE:
Single Pac k age
Cooling/Heating
PRODUCT FA MILY:
13: Up to 13 SEER
G: Ga s/ Electric
PRODUCT
SERIES:
NOMINAL CAPA CITY:
24: 24,000 BTUH 30: 30,000 BTUH 36: 36,000 BTUH 37: 36,000 BTUH 42: 42,000 BTUH 48: 48,000 BTUH 49: 48,000 BTUH 60: 60,000 BTUH
CONFIGURATION:
M: Multi-positio n
HEATING INPUT
070: 69,000 BTUH
090: 92,000 BTUH 115: 115,000 BTUH 140: 138,000 BTUH
REFRIGERANT:
4: R- 410A
VOLTAGE:
1: 208-230V/1ph/60Hz 3: 208-230v/3ph/60Hz 4: 460v/3ph/60Hz
MINOR REVISION:
MAJOR REVISION:
Mo del # Descrip t ion
A/GPG1324-60** *M41AA
A/GPG1324-60** *M41AB
Mo del # Descrip t ion
GPG1336/48/60***M43AA
GPG1336/48/60***M43AB
Single Phase Pa ck age Gas Units
mana® Brand/Goodma n® B r a nd Package Gas up to 13 Seer R410A
A
ga s/electric unit. Init ial r elease.
A
mana® Brand/Goodma n® B r a nd Package Gas up to 13 Seer R410A
ga s/electric unit. Re lease of models with Hone y well V alve.
Thr e e Phase Pa ck age Gas Units
G
oodman® Brand Package Gas up to 13 Seer R410A gas /electric unit. 208-
23 0/3/ 60. Init ial re lease.
oodman® Brand Package Gas up to 13 Seer R410A gas /electric unit. 208-
G
23 0/3/ 60. Rele as e of models wit h Honeywell Valve.
These units have R410A refrigerant
4
Page 5
PRODUCT IDENTIFICATION
The model number is used for positive identification of component parts used in manufacturing. Please use this number when requesting service or parts information.
P G 15 24 070 4 1 * *G / A
BR AND:
G: Goodm a n Brand or Distinctions
A: Ama na Brand
®
®
PRODUCT
TYPE:
Single Package
Cooling/Heating
PRODUCT FAMILY:
15 : Up to 15 SE E R
G: Gas/E l ectric
PRODUCT
SERIES:
NOMINAL CAP ACI TY:
24: 24,000 BTUH 30: 30,000 BTUH 36: 36,000 BTUH 37: 36,000 BTUH 42: 42,000 BTUH 48: 48,000 BTUH 49: 48,000 BTUH 60: 60,000 BTUH
EFRIGERANT:
4: R-410A
HEATING INPUT
070: 69,000 BTUH
090: 92,000 BTUH 115: 115,000 BTUH 140: 138,000 BTUH
MINOR REVISION:
MAJOR RE VI S ION:
VOLTAGE:
1: 208-230V/1ph/ 60Hz 3: 208-230v/3 ph /60Hz 4 : 460v/3ph/60Hz
Mo del # Descrip t ion
A/GPG1524-60 ***1AA
A/GPG1536-60 ***1AB
A/GPG1530***1AA A/GPG1537***1AA A/GPG1542***1AA A/GPG1549***1AA
Package Gas Units
mana® Brand/Goodma n® B r a nd Package Gas up to 15 Seer R410a
A
ga s/electric units. Initial release.
A
mana® Brand/Goodma n® B r a nd Package Gas up to 15 Seer R410a
ga s/electric units. Sound impr ovements. Change con denser m otor and blade.
mana® Brand/Goodma n® B r a nd Package Gas up to 15 Seer R410a
A
ga s/electric units. In it ial r elease of 8 models that w ill co mplete 2009 Tax Reb ate li neup.
These units have R410A refrigerant
5
Page 6
ACCESSORIES
ACCESSORIES
Part Nu mber Description
LPT-03
LPM-05 Propane Conversion Kit (*PG15) HA-02 High Altitud e Kit PGC101/102/103 Roof Curb PG ED101/102 Downflow Economizer, Small and Medium Chassis PGED103 Downflow Economizer, Larg e Chassis PGEH101/102 Hori zontal Economizer, Small and Medium Chassis PGEH103 Horizontal Economizer, Large Chassis PGM DD101 /10 2 Manual 25% Fresh Air Damper Downflow Application, Smal l and Medium Chassis PGM DD103 Manual 25% Fresh Air Damper Downflow Application, Large Chassis PGM DH101 Manual 25% Fresh Air Damper Horizontal Application, Small Chassis PGM DH102 Manual 25% Fresh Air Damper Horizontal Application, Medium Chassis PG MDH103 Manual 25% Fresh Air Damper Horizontal Application, Large Chassis PG MDMD101/102 Motorized 25% Fresh Air Damper Downflow Application,Small and Medium Chassis PGM DM D10 3 Motorized 25% Fresh Air Downflow Application, Large Chassis
Propane Conversion Kit (*PG13) (LPT-00A may be used on models with AA revisions)
LPT-03 can be used with either White-Rodgers or Honeywell gas valve.
PGM DM H101 Motorized 25% Fresh Air Damper Horizontal Application, Small Chassis PGMDMH102 Motorized 25% Fresh Air Damper Horizontal Application, Medium Chassis PG MDMH103 Motorized 25% Fresh Air Damper Horizontal Application, Large Chassis SQRPG101/102 Square to Round Adapter w/ 16" Round Downflow Application, Small and Medium Chassis SQRPG103 Squar e to Round Adapter w/ 18" Round Downflow Application, Large Chassis SQ RPGH101/102 Square to Round Adapter w/ 16" Round Horizontal Application, Small and M e dium Chassis SQRPGH103 Square to Round Adapter w/ 18" Round Horizontal Application, Large Chassis PGFR101/102/103 Internal Filter Rack All Chassis
GP GHFR101-103
CDK36 Flush Moun t Co ncentr ic Du ct Kit CDK36515 Flush Mount Concentric Duct Kit w/ Filter CDK36530 Step Down Concentric Duct Kit CDK36535 Step Down Concentric Duct Kit w/ Filter CDK4872 Flush Moun t Co ncentr ic Du ct Kit CDK4872515 Flush Mount Conc entric Duct Kit w/ Fi lter
External Horizontal Filter Rack for Goodman/Amana Gas/Electr ic & Multi-position Package Units All Chassis
CD K4872530 Step Down Concentric Duct Kit CDK4872535 Step Down Concentric Duct Kit w/ Filter
NOTE: Complete lineup of thermostats can be found in the Thermostat Specification Sheets.
6
Page 7
LIGHTING INSTRUCTIONS *PG13**M*AA
FOR YOUR SAFETY RE A D BEFORE OPER ATING
If you do not follow these instructions exactly, a fire or explos ion may result caus i ng property damage , perso nal injury or loss of life.
A. This appliance does not have a pilot. It is equipped with an ignition device which automatically lights the burners. Do n try to l i gh t th e bur n e rs by han d .
B. BEFORE OPERATING smell around the ap plia n ce area for gas . Be sure to smel l ne xt t o the floor becau se s o me ga s is heavier than air and will settle on the floor.
WHAT TO DO IF YOU SMELL GAS
Do not try to light any appliance. Do not touch any electric switch; do not use any tel ephone in your building.
Immed iately call your supplier from a neighbor’s phone. Follow the gas suppliers instructions.
ot
If you cannot reach your gas supplier, cal l the fire de p a r tm ent.
C. Use only your hand to move the gas control switch or kno b. Never use tools. If the gas control switch or knob will not oper ate, don’t try to repa ir it, call a qualified service technician. Force or att empted repair may resul t in a fire or explosion.
D. Do not use this appliance if any part has been under water. Imme diately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control which has been und er water.
OP ERATING I NST RUCTIONS
1. S TOP! Read the safety information above on this label.
2. Set the therm ostat to l owest setting.
3. Turn off all electric power to the appliance.
4. This appliance is equipped with an automatic ignition system which automatically lights the burners. Do n try to l i gh t th e burners by ha nd .
5. Remove control access panel.
6. Move the g as control switch or knob to "OFF".
GAS CONTROL SWITCH SHOWN IN "ON" POSITION
GAS CONTROL KNOB
ot
7. Wait five (5) minutes to clear out any gas. If you then sme ll gas, STOP! Follow "B" in the safety information above on this la be l. If you don’t smell gas, go to th e ne xt step.
8. Move the gas cont rol switch or knob to "ON".
9. Replace control access panel.
10. Turn on all electric power to the appliance.
11. Set the thermostat to the desired setting.
12. If the appliance will not operate, follow the instructions "To Turn Off Gas T o Appliance" and call your service technician or gas supplier.
GAS CONTROL SWITCH SHOWN IN "ON " POSITION
TO TURN OFF GA S TO APPLIANCE
1. Set the thermostat to its lowest setting.
2. Turn off all electric power to the appliance if service is to be performed.
3. Remove cont ro l access panel.
4. Move the gas control switch or knob to "OFF". Do not force.
5. Replace control access panel.
WARNING:
alteration, service or maintenance can cause injury or property damage. Refer to the user’s information manual provided with this
consult a qualified or the gas supplier.
This furnace must be
instructions and local codes. In the absence of local codes, follow the National Fuel Gas
Co de , ANSI Z2 23.1 .
Fo r ou td oo r installation only.
WARNING:
install ed, operated and maintained in accordance with the manufacturer’s ins t ructions , thi s product could ex po se you to substances in fuel combustion which can cause death or serious illness and which are kno wn to the St at e o f Ca l ifo r ni a to cause cancer, birth defects or other reproduc tive harm. This product contains fiberglas s insulation. Fiberglass insulation contains a chemical
California to cause cancer .
Improper
If not
FOR Y O UR S AFETY
other flamm able v a pors and liquids in the v ic inity of this or any other appliance.
Do not store or use gas o line o r
B14933-239
7
Page 8
LIGHTING INSTRUCTIONS *PG13**M*AB
FOR YOUR SAFETY READ BEFORE OPERATING
If you do not follow these instructions exactly, a fire or explosion may result causing pro p e r ty dam age, pers onal injury or loss of li fe.
A. This appliance does not have a pilot. It is equipped with an ignition device which automatically lights the burners. Do not try to light the burners by h and.
B. BEFORE OPERATING smell around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor.
WHA T TO DO IF YOU SMELL GAS
Do not try to ligh t any appliance. Do not touch any elect r ic swi t ch; do not use any telephone in your
building. Immediately call your supplier
from a neighbor's phone. Follow the gas suppliers instructions .
If you cannot reach your gas supplie r,
call the fire department.
C. Use only your hand to mov e the gas control switch or knob. Nev e r use tools. If the gas control switch or knob will not operate, don't try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.
D. Do not use this appli an c e if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control which has been under water.
OPE RATING INSTRUCTIONS
1. ST OP! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. Turn off all electric power to the appliance.
4. This appliance is equipped with an automatic ignition system which automatically l ight s the burne rs. Do not try to light the burners by hand.
5. Remove cont rol access panel.
6. Move the gas control switch or knob to "OFF".
GAS CONTROL SWITCH SHOWN IN "ON" POSITION
7. Wait five (5) minutes to clear out any gas. If you then smell gas, STOP! Follow "B" in the safety information above on this label. If you don't smell gas, go to the next step .
8. Move the gas control switch or knob to "ON".
9. Replace control access p anel.
10. Turn on all elect ric power to the appliance.
11. Set the therm o stat to the desired setting.
12. If the a ppliance will not operate, follow the instruction s "To Turn Off Gas To Appliance" and call your service technician or gas supplier.
TO TURN OFF GAS TO A PPLIANCE
1. Set the thermostat to its lowest setting.
2. Turn o ff all electric power to the appliance if service is to be performed.
3. Remove control access panel.
4. Move the gas control switch or knob to "OFF". Do not force.
5. Replace control access panel.
WARNING :
alteration, service or maintenance can cause injury or property damage. Refer to the user's infor mation ma nual provided with this
consu lt a qu alified or the gas supplier.
This furnace must be
instructions and local codes. In the absence of local codes, follow the National Fuel Gas
Code , ANSI Z22 3.1.
WARNING :
installed, operated and maintained in accordance with the manufacturer's inst r uctions, thi s product could expose you to subst ances in fu el combustion which can cause death or serious illness and which are known to the State of California to cause cancer, birth defects or other repr oductive harm. This product contains fiberglass insulation. Fiberg lass insu la tion cont ains a chemical
California to cause cancer.
Improper
If not
FOR YOUR SAFETY
other fla mmable vapors and liquids in the v icinity of this or any other appliance.
8
Do not store or use gasoline or
0140F00688 Rev A
Page 9
LIGHTING INSTRUCTIONS *PG15
G
A
I
N
L
R
A
R
I
D
U
O
R
B
T
E
I
N
A G
A
Z
O
E
P
U
A
M
E
N
L
,
"
O
N
/
M S E
T
E
E
V
Z
G
A
M
A
N
U
A
L
E
V
E
R
I
"
N
O
A
G
A
L
S
S
H
O
W
N
P
N
"
O
S
S
N
R
C
H
E
"
9
Page 10
ACCESSORIES
ROOF CURBS
B
A
R
S
C
1 5/8
14 1/2
1 3/8
MODEL A B C RETURN SUPPLY
PGC101/102/103 46 1/4 39 3/8 14 1/2 12 1/2 x 23 15 x 22 1/2
DOWNFLOW FILTER RACK
(PGFR101/102/103)
25
1 1/2
2
3
26 1/2
Filter Size: 14" x 25" x 2"
Measurement in inches.
14
NOTE: PGFR cannot be used with downflow economizers.
10
Page 11
ACCESSORIES
16 X 20 x 2”
FILTER
+
16 X 20
MIST ELIMINATOR
PGED103
(DOWNFLOW ECONOMIZER)
PGED103
A B
16 18
A
14 X 25 FILTER ATTACHMENT
25
B
ECONOMIZER
(HORIZONTAL APPLICATIONS)
B
18
A
E
C
MODEL A B C D E FILTER
PG E H101/102 25 1/4 18 1/8 18 13 3/4 16 1/8 16 x 25 x 1
PG E H103 35 1/4 18 1/8 18 18 1/4 16 1/8 16 x 25 x 1
16 1/8
D
Measurement in inches.
11
Page 12
ACCESSORIES
MOTORIZED/MANUAL FRESH AIR DAMPERS -
(HORIZONTAL APPLICATIONS)
B
7 5/8
5 3/4
A
MANUAL
MODEL A B
PGM DH101 26 1/2 29 3/4 PGM DH102 31 1/2 29 3/4
PGMDH103 30 29 3/4
MOTORIZED
MODEL A B
PGMDMH101 26 1/2 29 3/4 PGMDMH102 31 1/2 29 3/4
PG M D MH 103 3 0 2 9 3/4
MOTORIZED/MANUAL FRESH AIR DAMPERS
B
(DOWNFLOW APPLICATIONS)
12 1/8
10
1
PGMDD103
6
BOTTOM VIEW
A
11 7/8
5 3/4
B
A
11 7/8
A
12
BOTTOM VIEW
12 1/8
10
1
PGMDD101/102
6
5 3/4
A
11 7/8
B
MANUAL
MODEL A B
PGMDD101/102 16 16
PGMDD103 18 16
MOTORIZED
MODEL A B
B
PGMDMD101/102 16 16
PGMDMD103 18 1 6
Page 13
ACCESSORIES
A
SQUARE TO ROUND CONVERTER
(DOWNFLOW APPLICATIONS)
12 1/4 14 3/4
C
D
S
R
B
MODEL A B C D RETURN SUPPLY
SQRPG101/102 22 3/4 12 1/4 22 1/4 14 3/4 16 16
SQRPG103 22 3/4 12 1/4 22 1/4 14 3/4 18 18
22 3/4 22 1/4
22 3/4 22 1/4
16 ø 16 ø
12 1/4 14 3/4
18 ø 18 ø
SQUARE TO ROUND CONVERTER
(HORIZONTAL APPLICATIONS)
B
C
A
MODEL A B C
SQRPG101/102 16 16 1/2 16 1/2
SQRPG103 18 18 1/2 18 1/2
Measurements are in inches.
13
Page 14
ACCESSORIES
GPGHFR101-103
(EXTERNAL HORIZONTAL FILTER RACK)
16” x 25" x 2" FILTER
14
Page 15
PRODUCT DESIGN
Locations and Clearances
NOTE: To ensure proper condensate drainage, unit must be
installed in a level position.
In installations where the unit is installed above ground level and not serviceable from the ground (Example: Roof Top installations) the installer must provide a service platform for the service person with rails or guards in accordance with local codes or ordinances or in their absence with the latest edition of the National Fuel Gas Code ANSI Z223.1.
IMPORTANT NOTE: If using bottom discharge with roof curb, ductwork should be attached to the curb prior to installing the unit.
Refer to Roof curb Installation Instructions for proper curb installation. Curbing must be installed in compliance with the National Roofing Contractors Association Manual.
Lower unit carefully onto roof mounting curb. While rigging unit, center of gravity will cause condenser end to be lower than supply air end.
NOTE: Roof overhang should be no more than 36".
Minimum clearances are required to avoid air recirculation and keep the unit operating at peak efficiency. A minimum 12 inch clearance is required to the condenser coil.
NOTE: The flue outlet hood is packaged separately inside the unit and must be installed prior to operation.
WARNING
TO PREVENT POSSIBLE DAMAGE, THE UNIT SHOULD REMAIN I N AN UPRIGH T POSI TION DURI NG ALL RIGGING AND MOVI NG OPERATI ONS. TO FACIL ITATE LIFTING AND MOVI NG IF A CR ANE IS USED , PLAC E THE UN IT IN AN AD EQUATE CAB LE SL I DE .
NOTE: A roof curb can be used to utilize bottom discharge. APG/GPG Package Units are designed for outdoor installa­tions only in either residential or light commercial applica­tions.
NOTE: To ensure proper condensate drainage, unit must be
installed in a level position.
The connecting ductwork (Supply and Return) can be con­nected for either horizontal or down discharge airflow. In the down discharge applications a matching Roof Curb is recom­mended .
A return air filter must be installed behind the return air grille(s) or provision must be made for a filter in an accessible location within the return air duct. The minimum filter area should not be less than those sizes listed in the Specification Section. Under no circumstances should the unit be operated without return air filters.
15
Page 16
PRODUCT DESIGN
A 3/4" - 14 NPT drain connector is provided for removal of condensate water from the indoor coil. In order to provide proper condensate flow, do not reduce the drain line size. NOTE: Tighten drain to a maximum torque of 10 in-lbs.
Refrigerant flow control is achieved by use of thermostatic expansion valves (TXV) or flowrator.
The single phase models use permanent split capacitors (PSC) design compressors. Starting components are there­fore not required. A low MFD run capacitor assists the compressor to start and remains in the circuit during opera­tion.
A/GPG three phase units use three phase compressors. Starting components and run capacitors are therefore not required.
A/GPG Package Gas Units are designed for outdoor instal­lations only in either residential or light commercial applica­tions and are available in 2, 2.5, 3, 3.5, 4 & 5 ton sizes. They are designed for 208/230 volt single phase applications or 208/230 volt 3 phase applications.
The connecting ductwork (Supply and Return) can be con­nected for either horizontal or vertical airflow. In the vertical application, a matching Roof Curb is recommended.
A return air filter must be installed behind the return air grille(s) or provision must be made for a filter in an accessible location within the return air duct (3 phase models have an internal downflow filter rack). The minimum filter area should not be less than those sizes listed in the Specification Section. Under no circumstances should the unit be operated without return air filters.
A/GPG model units use either PSC or X13 type indoor blower motors. X-13 motors are constant torque motors with very low power consumption and are energized by a 24V signal from the ignition control board. The X-13 features an integrated control module.
Air for condensing (cooling cycle) is drawn through the outdoor coil by a propeller fan, and is discharged vertically out the top of the unit. The outdoor coil is designed for .0 static. No additional restriction (ductwork) shall be applied.
Conditioned air is drawn through the filter(s), field installed, across the coil and back into the conditioned space by the indoor blower.
Most A/GPG series package units use the Compliant Scroll compressor; there are a number of design characteristics which are different from the traditional reciprocating compres­sor.
- Due to their design Scroll compressors are inherently more tolerant of liquid refrigerant. NOTE: Even though the compressor section of a Scroll compressor is more tolerant of liquid refrigerant, continued flood back or flooded start conditions may wash oil from the bearing surfaces causing premature bearing failure.
- These Scroll compressors use "POE" or polyolester oil which is NOT compatible with mineral oilbased lubri­cants like 3GS. "POE" oil must be used if additional oil is required.
- Compliant scroll compressors perform “quiet” shutdowns that allow the compressor to restart immediately without the need for a time delay. This compressor will restart even if the system has not equalized.
- Operating pressures and amp draws may differ from standard reciprocating compressors. This information may be found in the “Cooling Performance Data” section.
Some models of the A/GPG15 series package units use a 2 stage scroll compressor. The basic scroll design has been modified with the addition of an internal unloading mecha­nism that opens a by-pass port in the first compression pocket, effectively reducing the displacement of the scroll. The opening and closing of the by-pass port is controlled by an internal electrically operated solenoid.
The ZPS modulated scroll uses a single step of unloading to go from full capacity to approximately 67% capacity. A single speed, high efficiency motor continues to run while the scroll modulates between the two capacity steps.
A scroll is an involute spiral which, when matched with a mating scroll form as shown, generates a series of crescent shaped gas pockets between the two members.
During compression, one scroll remains stationary (fixed scroll) while the other form (orbiting scroll) is allowed to orbit (but not rotate) around the first form.
16
Page 17
PRODUCT DESIGN
As this motion occurs, the pockets between the two forms are slowly pushed to the center of the two scrolls while simultaneously being reduced in volume. When the pocket reaches the center of the scroll form, the gas, which is now at a high pressure, is discharged out of a port located at the center.
During compression, several pockets are being compressed simultaneously, resulting in a very smooth process. Both the suction process (outer portion of the scroll members) and the discharge process (inner portion) are continuous.
ELECTRICAL WIRING
The units are designed for operation on 60 hertz current and at voltages as shown on the rating plate. All internal wiring is complete. Ensure the power supply to the compressor contactor is brought to the unit as shown on the supplied unit wiring diagram. The 24V wiring must be connected between the unit control panel and the room thermostat.
All line voltage connections must be made through weather proof fittings. All exterior power supply and ground wiring must be in approved weather proof conduit. Low voltage wiring from the unit control panel to the thermostat requires coded cable. See the following figures for ground level and rooftop wiring.
JUNCTION BOX
LINE VOLTAGE WIRING
Power supply to the unit must be N.E.C. Class 1, and must comply with all applicable codes. The unit must be electri­cally grounded in accordance with the local codes or, in their absence, with the latest edition of the National Electrical Code, ANSI/NFPA No. 70, or in Canada, Canadian Electri­cal Code, C22.1, Part 1. A fused disconnected must be provided and sized in accordance with the unit minimum circuit ampacity.
The best protection for the wiring is the smallest fuse or breaker which will hold the equipment on line during normal operation without nuisance trips. Such a device will provide maximum circuit protection.
WARNING
DO NOT EXCEED THE MAXIMUM OVERCURRENT DEVICE SIZE SHOWN ON THE UNIT DATA PLATE.
The unit transformer is connected for 230V operation. If the unit is to operate on 208V, reconnect the transformer primary lead and the induced draft blower leads as shown on the unit wiring diagram.
17
Page 18
PRODUCT DESIGN
WARNING
TO AVOID THE RISK OF PROPERTY DAM AGE, PERSONAL INJURY OR FIRE, USE ONLY COPPER CONDUCTORS.
If it is necessary for the installer to supply additional line voltage wiring to the inside of the package unit, the wiring must comply with all local codes. This wiring must have a minimum temperature rating of 105°C. and must be routed away from the burner compartment. All line voltage splices must be made inside the unit control box.
GAS SUPPLY AND PIPING
CAUTION
THIS PACKAGE GAS UNIT IS FACTORY SET TO OPERATE ON NATURAL GAS AT THE ALTITUDES SHOWN ON THE RATING PLATE. IF OPERATION ON PROPANE IS REQUIRED, OBTAIN AND INSTALL THE PROPER CONVERS ION KIT(S) BEFORE OPERA TING THIS U NIT. FAILURE TO DO SO MAY RESULT IN UNSATISFACTORY OPERATION AND/OR EQUIPMENT DAMAGE.
The rating plate is stamped with the model number, type of gas, and gas input rating. Make sure the unit is equipped to operate on the type of gas available.
Inlet Gas Pressure
Natural Min. 5.0" W.C., Max. 10.0" W.C.
Propane Min. 11.0" W.C., Max. 13.0" W.C.
Inlet Gas Pressure Must Not Exceed the Maximum Value Shown in the table above.
The minimum supply pressure must not be varied downward because this could lead to unreliable ignition. In addition, gas input to the burners must not exceed the rated input shown on the rating plate. Overfiring of the unit could result in premature heat exchanger failure.
GAS PIPING
CAUTION
The gas pipe supplying the unit must be properly sized based on the cubic feet per hour of gas flow required, specific gravity of the gas and length of the run. The gas line installation must comply with local codes, or in the absence of local codes, with the latest edition of the National Fuel Gas Code ANSI Z223.1.
NATURAL GAS CAPACITY OF PIPE IN CUBIC FEET OF
GAS PER HOUR (CFH)
LENGTH OF
PIPE IN FEET
10 132 278 520 1050 1600 20 92 190 350 730 1100 30 73 152 285 590 980 40 63 130 245 500 760 50 56 115 215 440 670 60 50 105 195 400 610 70 46 96 180 370 560 80 43 90 170 350 530 90 40 84 160 320 490
100 38 79 150 305 460
CFH =
BTUH FURNACE INPUT
CALORIFIC VALUE OF GAS
NOMINAL BLACK PIPE SIZE
1/2" 3/4" 1" 1 1/4" 1 1/2"
CONNECTING THE GAS PIPING - NATURAL GAS
1. Use black iron or steel pipe and fittings for the building piping.
2. Use pipe joint compound on male threads only. Pipe joint compound must be resistant to the action of the fuel used.
3. Use ground joint unions.
4. Install a drip leg to trap dirt and moisture before it can enter the gas valve. The drip leg must be a minimum of three inches long.
5. Use two pipe wrenches when making connection to the gas valve to keep it from turning.
6. Install a manual shut off valve. This shut off valve should be conveniently located within six (6) feet of the unit, and between the meter and unit.
7. Tighten all joints securely.
8. Connect the unit to the building piping by one of the following methods.
a. Rigid metallic pipe and fittings. b. Semi-rigid metallic tubing and metallic fittings.
Aluminum alloy tubing shall not be used in exterior locations.
c. Listed gas appliance connectors used in accor-
dance with the terms of their listing that are completely in the same room as the equipment.
TO AVOID PO SSIBLE UNS ATISFACTOR Y OPERAT ION OR EQUIPMEN T DAM AGE D UE TO UND ERFIRING OF EQUIPMENT, DO NOT UNDERSIZE THE NATURAL GAS/PROPANE PIPING FROM THE METER/TANK TO THE FURNACE. WHEN SIZING A TRUNK LINE PER THE TABLES, INCLUDE ALL APPLIANCES ON THAT LINE THAT COULD BE OPERATED SIMULTANEOUSLY.
18
Page 19
PRODUCT DESIGN
NOTE: In "b" and "c", the connector or tubing must be
installed so as to be protected against physical and thermal damage. Aluminum-alloy tubing and connectors must be coated to protect against external corrosion where they are in contact with masonry, plaster, or insulation or are subject to repeated wettings by such liquids as water (except rain water), detergents, or sewage.
MANUAL SHUT-OFF VALVE
DRIP LEG
GROUND JOINT UNION (INSTALLED AHEAD OF GAS VALVE)
GROMMET
NOTE: The unit gas supply entrance is factory sealed with plugs. Keep plugs in place until gas supply is ready to be installed. Once ready, replace the plugs with the supplied grommets and install gas supply line.
CHECKING THE GAS PIPING
CAUTION
TO A VOID THE POSSIBILITY OF PROPERTY DAMAGE, PERSONAL INJUR Y OR FIRE, THE FOLLOWING INSTRUCTIONS MUST BE PERFORMED REGARDING GAS CONNECTIONS AND PRESSURE TESTING.
The unit and its gas connections must be leak tested before placing in operation. Because of the danger of explosion or fire, never use a match or open flame to test for leaks. Never exceed specified pressure for testing. Higher pressure may damage the gas valve and cause overfiring which may result in heat exchanger failure.
This unit must be isolated from the gas supply system by closing its individual manual shutoff valve during any pressure testing of the gas supply piping system at test pressures equal to or less than 1/2 psig (3.48 kPa).
TANKS AND PIPING - PROPANE UNITS
WARNING
PERSONAL INJURY HAZARD IRON OXIDE (RUST) CAN REDUCE THE LEVEL OF ODORANT IN PROPANE GAS. A GAS DETECTING DEVICE IS THE ONLY RELIABLE METHOD TO DETECT A PROPANE GAS LEAK. CONTACT YOUR LOCAL PROPANE SUPPLIER ABOUT INSTALLING A GAS DETECTING WARNING DEVICE TO ALERT YOU IN THE EVENT THAT A GAS LEAK SHOULD DEVELOP. FAILURE TO DETECT A PROPANE GAS LEAK COULD RESULT IN AN EXPLOSION OR FIRE WHICH COULD CAUSE SERIOUS PERSONAL INJURY OR DEATH.
All propane gas equipment must conform to the safety standards of the National Board of Fire Underwriters (See NBFU Manual 58) or Natural Standards of Canada B149.2, Installation Code for Propane Gas Burning Appliances and Equipment.
For satisfactory operation, propane gas pressure must be 10 inch W.C. at the unit manifold with all gas appliances in operation. Maintaining proper gas pressure depends on three main factors.
1. Vaporization rate, which depends on (a) temperature of the liquid, and (b) "wetted surface" area of the container or containers.
2. Proper pressure regulation. (Two-stage regulation is recommended from the standpoint of both cost and efficiency.)
3. Pressure drop in lines between regulators, and between second stage regulator and the appliance. Pipe size required will depend on length of pipe run and total load of all appliances.
Complete information regarding tank sizing for vaporization, recommended regulator settings, and pipe sizing is avail­able from most regulator manufacturers and propane gas suppliers.
Propane is an excellent solvent, and special pipe dope must be used when assembling piping for this gas as it will quickly dissolve white lead or most standard commercial com­pounds. Shellac base compounds resistant to the actions of liquefied petroleum gases such as Gasolac®, Stalactic®, Clyde's or John Crane are satisfactory.
19
Page 20
PRODUCT DESIGN
TYPICAL PROPANE PIPING
PROPANE GAS PIPING CHARTS
First Stage Regulator
200 PSIG Maximum
5 to 15 PSIG (20 PSIG Ma x.)
Continuous
Second Stage Regulator
11" W.C.
WARNING
IF YOUR PROPANE GAS APPLIANCE IS INSTALLED IN AN EXCAVATED AREA OR A CONFINED SPACE, W E STRONGLY RECOMMENDED THAT YOU CONTACT YOUR PROPANE SUPPLIER ABOUT INSTALLING A GAS DETECTING WARNING DEVICE THAT WOULD ALERT YOU TO A GAS LEAK.
• PROPANE GAS IS HEAVIER THAN AIR AND ANY LEAKING GAS CAN SETTLE IN ANY LOW AREAS OR CONFINED SPACES.
• PROPANE GAS ODORANT MAY FADE, MAKING THE GAS UNDETECTABLE EXCEPT WITH A WARNING DEVICE. AN UNDETECTED GAS LEAK WILL CREATE A DANGER OF EXPLOSION OR FIRE. IF YOU SUSPECT THE PRESENCE O F GAS, FOLLOW THE INSTRUCT­IONS ON PAGE 7. FAILURE TO DO S O COULD RESULT IN SERIOUS PERSONAL INJURY OR DEATH.
PROPANE TANK SIZING (MINIMUM)
TANK SIZE REQUIRED IF LOWEST OUTDOOR
MAXIMUM GAS TEMPERATURE (AVG. FOR 24 HOURS) REACHES
NEEDED TO
VAPORIZE*
125K BTU/HR
(50 CFH)
250K BTU/HR
(100 CFH)
375K BTU/HR
(150 CFH)
500K BTU/HR
(200 CFH)
750K BTU/HR
(300 CFH)
* AVERAGE RATE/HOUR WITHDRAWL IN 8 HOUR PERIOD
32°F 20°F 10°F 0°F -10°F -20°F -30°F
115
115
115
250
250
400
GAL
250
GAL
300
GAL
400
GAL
750
GAL
GAL
250
GAL
400
GAL
500
GAL
1000
GAL
GAL
250
GAL
500
GAL
750
GAL
1500
GAL
GAL
400
GAL
500
GAL 1000
GAL 2000
GAL
GAL
500
GAL 1000
GAL 1500
GAL 2500
GAL
GAL 1000
GAL 1500
GAL 2000
GAL 4000
GAL
600
GAL
1500
GAL
2500
GAL
3500
GAL
5000
GAL
Sizing Between First and Second Stage Regulator Maximum Propane Capacities listed are based on 1 PSIG Pressure Drop at 10 PSIG Setting. Capacities in 1,000 BTU/HR
PIPE OR
TUBING
LENGTH,
FEET
30 309 700 1,303 2,205 3,394 1,843 3,854 40 265 599 1,115 1,887 2,904 1,577 3,298 50 235 531 988 1,672 2,574 1,398 2,923 60 213 481 896 1,515 2,332 1,267 2,649 70 196 446 824 1,394 2,146 1,165 2,437 80 182 412 767 1,297 1,996 1,084 2,267
90 171 386 719 1,217 1,873 1,017 2,127 100 161 365 679 1,149 1,769 961 2,009 150 130 293 546 923 1,421 772 1,613 200 111 251 467 790 1,216 660 1,381 250 90 222 414 700 1,078 585 1,224 300 89 201 378 634 976 530 1,109 350 82 185 345 584 898 488 1,020 400 76 172 321 543 836 454 949
To convert to Capacities at 15 PSIG Settings -- Multiply by 1.130 To convert to Capacities at 5 PSIG Settings -- Multiply by 0.879
Sizing Between Single or Second Stage Regulator and Appliance* Maximum Propane Capacities Listed are Based on 1/2" W.C. Pressure Drop at 11" W.C. Setting. Capacities in 1,000 BTU/HR
PIPE OR
TUBING
LENGTH,
FEET
10 49 110 206 348 539 291 608 1,146 2,353 3,525 20 34 76 141 239 368 200 418 788 1,617 2,423 30 27 61 114 192 296 161 336 632 1,299 1,946 40 23 52 97 164 253 137 284 541 1,111 1,665 50 20 46 86 146 224 122 255 480 985 1,476 60 19 42 78 132 203 110 231 436 892 1,337
80 16 36 67 113 174 94 198 372 764 1,144 100 14 32 59 100 154 84 175 330 677 1,014 125 12 28 52 89 137 74 155 292 600 899 150 11 26 48 80 124 67 141 265 544 815 200 10 22 41 69 106 58 120 227 465 697 250 9 19 36 61 94 51 107 201 412 618 300 8 18 33 55 85 46 97 182 374 560 350 7 16 30 51 78 43 89 167 344 515 400 7 15 28 47 73 40 83 156 320 479
*DATA IN ACCORDANCE WITH NFPA PAMPHLET NO. 54
TUBING SIZE, O.D., TYPE L
3/8" 1/2" 5/8" 3/4" 7/8" 1/2" 3/4" 1" 1-1/4" 1-1/2"
TUBING SIZE, O.D., TYPE L
3/8" 1/2" 5/8" 3/4" 7/8" 1/2" 3/4"
NOMINAL PIPE SIZE,
NOMINAL PIPE SIZE,
SCHEDULE 40
SCHEDULE 40
COOLING
The refrigerant used in the system is R-410A. It is a clear, colorless, non-toxic and non-irritating liquid. R-410A is a 50:50 blend of R-32 and R-125. The boiling point at atmo­spheric pressure is -62.9°F.
A few of the important principles that make the refrigeration cycle possible are: heat always flows from a warmer to a cooler body. Under lower pressure, a refrigerant will absorb heat and vaporize at a low temperature. The vapors may be drawn off and condensed at a higher pressure and tempera­ture to be used again.
20
Page 21
SYSTEM OPERA TION
The indoor evaporator coil functions to cool and dehumidify the air conditioned spaces through the evaporative process taking place within the coil tubes.
NOTE: The pressures and temperatures shown in the refrigerant cycle illustrations on the following pages are for demonstration purposes only. Actual temperatures and pres­sures are to be obtained from the "Expanded Performance Chart".
Liquid refrigerant at condensing pressure and temperatures, (270 psig and 122°F), leaves the outdoor condensing coil through the drier and is metered into the indoor coil through the metering device. As the cool, low pressure, saturated refrigerant enters the tubes of the indoor coil, a portion of the liquid immediately vaporizes. It continues to soak up heat and vaporizes as it proceeds through the coil, cooling the indoor coil down to about 48°F.
Heat is continually being transferred to the cool fins and tubes of the indoor evaporator coil by the warm system air. This warming process causes the refrigerant to boil. The heat removed from the air is carried off by the vapor.
As the vapor passes through the last tubes of the coil, it becomes superheated. That is, it absorbs more heat than is necessary to vaporize it. This is assurance that only dry gas will reach the compressor. Liquid reaching the compressor can weaken or break compressor valves.
The compressor increases the pressure of the gas, thus adding more heat, and discharges hot, high pressure super­heated gas into the outdoor condenser coil.
In the condenser coil, the hot refrigerant gas, being warmer than the outdoor air, first loses its superheat by heat trans­ferred from the gas through the tubes and fins of the coil. The refrigerant now becomes saturated, part liquid, part vapor and then continues to give up heat until it condenses to a liquid alone. Once the vapor is fully liquefied, it continues to give up heat which subcools the liquid, and it is ready to repeat the cycle.
HEATING
The heating cycle is accomplished by using a unique tubular design heat exchanger which provides efficient gas heating on either natural gas or propane gas fuels. The heat exchangers compact tubular construction provides excellent heat transfer for maximum operating efficiency.
Inshot type gas burners with integral cross lighters are used eliminating the need for adjustable air shutters. The same burner is designed for use on either natural or propane gas fuels.
The induced draft blower draws fuel and combustion air into the burners and heat exchanger for proper combustion. A pressure switch is used in conjunction with the I. D. blower to detect a blocked flue condition.
Blower operation is controlled by the ignition control module. The module allows for field adjustment of the blower delay at the end of the heating cycle. The range of adjustment is for 90, 120, 150 or 180 seconds. The factory delay setting is 30 seconds delay on 150 seconds delay off.
Direct Spark Ignition (DSI) Systems
APG/GPG units are equipped with a direct spark ignition system. Ignition is provided by 22,000 volt electronic spark. A flame sensor then monitors for the presence of flame and closes the gas valve if flame is lost.
21
Page 22
SYSTEM OPERA TION
IGNITION CONTROL SEQUENCE OF OPERATION
A/GPG15
A. Heating Operation: Low stage heat
1. Thermostat type is set to two-stage.
2. Thermostat “W1” input initiates low stage heating.
3. Induced draft blower is energized at high speed for the pre-purge period. Pre-purge timer begins after control recognizes pressure switch has closed.
4. Trial-for-ignition period begins after pre-purge period expires. Low and high stage gas valves are energized along with the igniter for trial-for-ignition period. Igniter is de-energized when flame is detected.
5. Flame is achieved and detected during trial-for-ignition period. Flame stabilization period begins when flame is detected.
6. De-energize high stage gas valve and switch induced draft blower to low speed within five seconds of flame detection.
7. Air circulating blower is energized at low heat speed after heat ON delay time expires. Heat ON delay timer begins when flame is detected.
8. Control monitors thermostat, flame, limit, and pres­sure switch inputs during low stage heating.
9. Thermostat “W1” input is removed.
10. Low stage gas valve is de-energized.
11. Induced draft blower remains energized at low speed for post purge period.
12. Air circulating blower remains energized at low heat speed for heat OFF delay. Heat OFF delay begins when “W1” input is removed.
13. Control returns to Standby and awaits next thermostat request.
B. Heating Operation: High stage heat
1. Thermostat type is set to two-stage.
2. Thermostat “W1” and “W2” inputs initiate high stage heating.
3. Induced draft blower is energized at high speed for the pre-purge period. Pre-purge timer begins after control recognizes pressure switch has closed.
4. Trial-for-ignition period begins after pre-purge period expires. Low and high stage gas valves are energized along with the igniter for trial-for-ignition period. Igniter is de-energized when flame is detected.
5. Flame is achieved and detected during trial-for-ignition period. Flame stabilization period begins when flame is detected.
6. Gas valve and induced draft blower remain at high stage and high speed.
7. Air circulating blower is energized at high heat speed after heat ON delay time expires. Heat ON delay timer begins when flame is detected.
8. Control monitors thermostat, flame, limit, and pres­sure switch inputs during high stage heating.
9. Thermostat “W1” and “W2” inputs are removed.
10. High and low stage gas valves are de-energized.
11. Induced draft blower switches from high speed to low speed and remains energized for post purge period.
12. Air circulating blower remains energized at high heat speed for High Stage Heat OFF Delay period then switches to low heat speed for the remainder of the selected heat OFF delay. Heat OFF delay begins when “W1” and “W2” inputs are removed.
13. Control returns to Standby and awaits next thermostat request.
22
Page 23
SYSTEM OPERA TION
IGNITION CONTROL SEQUENCE OF OPERATION (CONT.)
A/GPG15
A. Cooling Operation: Low stage cool
1. Thermostat type is set to two-stage.
2. Thermostat “Y1” or thermostat “Y1” and “G” input initiates low stage cooling.
3. IDT/ODT/Pressure/Loss of Charge Switch circuits are checked for closed condition. Cooling operation can proceed only if these circuits are closed.
4. Low stage compressor output is energized.
5. Condenser fan motor is energized at low speed.
6. Air circulating blower is energized at low cool speed after cool ON delay expires. Cool ON delay timer begins when thermostat inputs are detected.
7. Control monitors thermostat, gas valve, flame, and IDT/ ODT/Pressure/Loss of Charge Switches during low stage cooling.
8. Thermostat “Y1” or “Y1” and “G” inputs are removed.
9. Low stage compressor output is de-energized. Low speed condenser fan motor is de-energized.
10. Air circulating blower remains energized at low cool speed for the cool OFF delay. Cool OFF delay timer begins when thermostat input is removed.
11. Control returns to Standby and awaits next thermostat request.
B. Cooling Operation: High stage cool
Thermostat type is set to two-stage. Thermostat “Y1” and “Y2” or “Y1”, “Y2” and “G” inputs
initiate high stage cooling.
IDT/ODT/Pressure/Loss of Charge Switch circuits are checked for closed condition. Cooling operation can proceed only if these circuits are closed.
1. Low and high stage compressor outputs are ener­gized.
2. Condenser fan motor is energized at high speed.
3. Air circulating blower is energized at high cool speed after cool ON delay expires. Cool ON delay timer begins when thermostat inputs are detected.
Control monitors thermostat, gas valve, flame, and IDT/ODT/Pressure/Loss of Charge Switches during high stage cooling operation.
Thermostat “Y1” and “Y2” or “Y1”, “Y2” and “G” inputs are removed.
Low and high stage compressor outputs are de­energized.
High speed condenser fan motor is de-energized.
4. Air circulating blower switches to low cool speed for the cool OFF delay. Cool OFF delay timer begins when thermostat input is removed.
Control returns to Standby and awaits next thermostat request.
A. Continuous Fan Operation
1. Thermostat “G” input initiates Continuous Fan opera­tion.
2. Air circulation blower shall be immediately energized at the continuous fan speed. For purposes of this specification, the continuous fan speed shall be the low heat speed.
3. Thermostat “G” input is removed.
4. Air circulation blower is immediately de-energized.
5. Control returns to Standby and awaits next thermostat request.
23
Page 24
SYSTEM OPERA TION
PCBAG100 CONTROL BOARD
DESCRIPTION
The ignition control is designed for use in gas heating/electric cooling package equipment (rooftop applications) and oper­ates with a two stage heat and two stage cooling system. It is a direct spark ignition system that uses a 22,000 volt spark to ignite the burners. A flame sensor is used to monitor the flame.
The board has the option of using a single or two stage ther­mostat. The board also controls the indoor blower and has an adjustable heat fan off delay.
There is also a fault recall button for recalling the last 5 fault codes. To recall the fault codes, depress the fault recall but­ton for at least 2 seconds but not more than 4 seconds. To clear the fault code memory, depress the fault recall button for at least 5 seconds.
L2
T1
INDUCER
LOW
K4
Q3
The following tables list the functions for the connectors and terminals, the timings, and the fault codes for the PCBAG100 control board.
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is uni t. M ult iple power sources may be present. Failure to do so may cause property damage, personal injury or death.
L1
HIGH
LOW
ODF
HIGH
PARK
K6
C9
FS
K3 K5
T2
K7
P2
U6
U1
U2
5
4
U7
3
2
1
U4
U5
U3
K2
K1
180
SPEED UP
SW1
FAULT
RECALL
150
120
90
BLOWER
OFF
NONE 5 MIN
10MIN
DELAY
STAGE
DELAY
24
F1
ECON
R C W1W2G Y2
Y1
Page 25
SYSTEM OPERA TION
Pin Voltage Function
1 24VAC Indoor/Outdoor Thermostat (IDT/ODT) Output 2 24VAC High Stage Compressor Output 3 24VAC Pressure Switch/Loss of Charge Switch Input 4 24VAC Indoor/Outdoor Thermostat (IDT/ODT) Input 5 24VAC Pressure Switch/Loss of Charge Switch Output 6 24VAC Low Stage Compressor Output
Table 1: Circuit Definitions and Voltage Ratings
Pin Voltage Function
1 24VAC Limit Switch Output 2 24VAC 24VAC Input to Control 3 24VAC Limit Switch Input 4 24VAC Unused 5 24VAC 24VAC Common 6 24VAC Pressure Switch Output 7 24VAC Main Valve High Output 8 24VAC Pressure Switch Input 9 Unused Main Valve Low Output
Table 2: Circuit Definitions and Voltage Ratings
for the 6-Circuit Connector Circuits
for the 9-Circuit Connector Circuits
Line Voltage L1 L1 Transformer Line L1 L1 Air Circulating Blower Line 1 L1 Induced Draft Blower Low Speed DI Low or "Inducer Low" Induced Draft Blower High Speed DI High or "Inducer High" Condenser Fan Motor Low Speed ODF Low Condenser Fan Motor High Speed ODF High Line Voltage L2 L2 Transformer Line L2 L2 Air Circulating Blower Line 2 L2 Induced Draft Blower Line 2 L2 Condenser Fan Motor Line 2 L2 Direct Spark Igniter T1 Flame Detection FS
Terminal Label
Table 3: High Voltage Terminals
25
Page 26
SYSTEM OPERA TION
Period Timing
Pre-Purge 15 Seconds Inter-Purge 30 Seconds Post Purge 30 Seconds Trial-for-Ignition (TFI) 7 Seconds Flame Stabilization Period 10 Seconds
Flame Failure Response Time Low to High Stage Delay Selectable 5 minutes or 10 minutes (Default = 10 minutes)
Heat ON Delay 30 Seconds Heat OFF Delay High Stage Heat OFF Delay 30 Seconds
Cool ON Delay 6 Seconds Cool OFF Delay 45 Seconds Continuous Fan ON Delay 0 Seconds Continuous Fan OFF Delay 0 Seconds Ignition Attempts 3 Recycles Infinite Automatic Restart 60 Minutes Pressure Switch Lockout Delay 5 Minutes Factory Test Mode Active Time 2 Minutes Maximum
2 Seconds within Flame Stabilization Period 2 Seconds or Per ANSI Z21.20 Outside of Flame Stabilization Period
Selectable 90, 120, 150, or 180 Seconds (Default = 150 Seconds)
Table 4: Control Timings
Color Function
Normal On Intrnal/Gas Valve Fault Off Lockout 1 Pressure Switch Stuck Closed 2 Pressure Switch Stuck Open 3
Red
Amber
Open High Temperature Limit 4 Flame Detected with Gas Valve De-Energized 5 Compressor Short Cycle Delay Active 6 Limit Opened 5 Times in Same Call For Heat 7 Indoor Thermostat/Outdoor Thermostat is Open 8 Pressure Switch/Loss of Charge Switch is Open 9 Normal Flame On No Flame Present Off Low Flame Current 1 Flame Detected with Gas Valve De-energized 2
Table 5: LED Status Codes and Corresponding System Condition
LED Flashes/Status
26
Page 27
SYSTEM OPERA TION
PCBAG123 IGNITION CONTROL SEQUENCE OF OPERATION
A/GPG13
Continous Fan
1. When the thermostat calls for continuous fan (G) with out a call for heat or cooling, the indoor the fan has a 7 second delay on make and energizes the “HEAT” speed. The fan remains energized as long as the call for fan remains without a call for heat or cooling. The fan call “G” has a 60 second delay on break. Note: When the Configuration tab is broken, the continuous fan mode “G” will have a 7 second delay on make and a 60 second delay on break and the “COOL” speed tap will be energized.
2. If a call for cool (Y) occurs during continuous fan, the blower will switch over to “COOL” speed.
3. If a call for heat (W) occurs during continuous fan, the blower will remain energized through the heat cycle or until “G” is de-energized.
4. The continuous fan operation will function while the control is in heat mode lockout.
Cool Mode
1. When the thermostat calls for cooling (“Y”), the control energizes the cooling speed fan after a 7 second on delay. The control provides a 3 minute anti-short cycle protection for the compressor. If the compressor has been off for 3 or more minutes, the compressor imme­diately energizes when the thermostat calls for cool. If the compressor has not been off for at least 3 minutes when a call for cool occurs, the control waits until 3 minutes has elapsed from the time the compressor was last de-energized before re-energizing the com­pressor.
2. When the thermostat removes the call for cooling (“Y”) the compressor is deenergized and the control deenergizes the cooling speed fan after a cooling off delay period of 60 seconds.
Note: A call for cooling has priority over continuous fan. If G is energized while Y is energized, during the cooling fan on delay, the fan will remain off until the delay is over.
Note: The cooling fan operation will continue to function while the control is in heat lockout.
Note: If a call for heat exist with a call for cooling, the call for heat shall proceed as normal except the fan remains energized on cool speed.
2. PRE-PURGE - The control energizes the induced draft motor, flashes code “2” on LED, and waits for the pressure switch to close. When the pressure switch has closed, the control stops flashing the LED and begins timing the 15 second pre-purge period. (Note: Under normal operation, the LED will not flash if the pressure switch closes immediately after energizing the induced draft motor.)
3. IGNITION - The control energizes the gas valve and spark. If flame is not established within 7 seconds, the gas valve and spark is de-energized and the control goes to an inter-purge. If flame is established, the spark is de-energized and the control goes to heat blower on delay.
4. Heat Blower On Delay - The control waits for 30 second heat fan on delay and then energizes the indoor blower heat speed. If the blower is already energized by a call for cooling or continuous fan, or in a blower off delay period, the on delay is skipped and control goes to steady heat.
5. STEADY HEAT - Control inputs are continuously monitored to ensure limit and pressure switches are closed, flame is established, and the thermostat call for heat remains.
6. POST PURGE - When the thermostat demand for heat is satisfied, the control immediately deenergizes the gas valve. The inducer output remains on for a 29 second post-purge period.
7. Heat Blower Off Delay - The indoor blower motor is de­energized after the selected blower off delay time. Blower timing begins when the thermostat is satisfied.
Blower Off Delay Setti ngs
L2 L2 L2
Diagnost ic LED
COOL HEAT
UNUSED
L2
L1 D1
L1
FS
2
3
54
6
987
121110
1
speed up
Heat Mode
1. CALL FOR HEAT - The thermostat calls for heat by energizing the “W” terminal. The control checks to see if the end switch is open. If the end switch is closed, the control will flash code “3” on the LED and wait indefi­nitely for the end switch to open. The control will lockout the call for heat if the end switch is closed before the induced draft motor is energized.
Transformer
27
Page 28
SYSTEM OPERA TION
Typical Package Cooling or Package Gas
Indoor
Coil
Thermostatic
Expansion
Valve
Restrictor
Orifice
Assy
Either a thermostatic expansion valve or restrictor orifice assembly may be used depending on model, refer to the parts catalog for the model being serviced.
Outdoor
Coil
Restrictor Orifice Assembly in Cooling Operation
In the cooling mode the orifice is pushed into its seat forcing refrigerant to flow through the metered hole in the center of the orifice.
28
Page 29
SCHEDULED MAINTENANCE
Package gas units require regularly scheduled maintenance to preserve high performance standards, prolong the service life of the equipment, and lessen the chances of costly failure.
In many instances the owner may be able to perform some of the maintenance; however, the advantage of a service contract, which places all maintenance in the hands of a trained serviceman, should be pointed out to the owner.
HIGH VOL TAGE! Disconnect ALL power before servicing or insta llin g this uni t. M ultip le po wer sources may be present. Failure to do so may cause property damage, personal injury or death.
ONCE A MONTH
1. Inspect the return filters of the evaporator unit and clean or change if necessary. NOTE: Depending on operation conditions, it may be necessary to clean or replace the filters more often. If permanent type filters are used, they should be washed with warm water and dried.
2. When operating on the cooling cycle, inspect the con­densate line piping from the evaporator coil. Make sure the piping is clear for proper condensate flow.
ONCE A YEAR
QUALIFIED SERVICE PERSONNEL ONLY
1. Clean the indoor and outdoor coils.
2. Clean the cabinet inside and out .
3. Motors are permanently lubricated and do not require oiling. TO AVOID PREMATURE MOTOR FAILURE, DO NOT OIL.
4. Manually rotate the outdoor fan and indoor blower to be sure they run freely.
5. Inspect the control panel wiring, compressor connec­tions, and all other component wiring to be sure all connections are tight. Inspect wire insulation to be certain that it is good.
6. Check the contacts of the compressor contactor. If they are burned or pitted, replace the contactor.
7. Using a halide or electronic leak detector, check all piping and etc. for refrigerant leaks.
8. Check the combustion chamber (Heat Exchanger) for soot, scale, etc. Inspect all burners for lint and proper positioning.
9. Start the system, using the proper instrumentation check gas inlet and manifold pressures, burner flame and microamp signal. Adjust if necessary.
10.Start the system and run a Heating Performance Test. If the results of the test are not satisfactory, see the "Service Problem Analysis" Guide for the possible cause.
TEST EQUIPMENT
Proper test equipment for accurate diagnosis is as essen­tial as regular hand tools.
The following is a must for every service technician and service shop:
1. Thermocouple type temperature meter - measure dry bulb temperature.
2. Sling psychrometer- measure relative humidity and wet bulb temperature.
3. Amprobe - measure current.
4. Volt-Ohm Meter - testing continuity, capacitors, motor windings and voltage.
5. Accurate Leak Detector - testing for refrigerant leaks.
6. High Vacuum Pump - evacuation.
7. Electric Vacuum Gauge, Manifold Gauges and high vacuum hoses - to measure and obtain proper vacuum.
8. Accurate Charging Cylinder or Electronic Scale - mea­sure proper refrigerant charge.
9. Inclined Manometer - measure static pressure and pressure drop across coils.
Other recording type instruments can be essential in solving abnormal problems, however, in many instances they may be rented from local sources.
Proper equipment promotes faster, more efficient service, and accurate repairs with less call backs.
HEATING PERFORMANCE TEST
Before attempting to diagnose an operating fault, run a Heating Performance Test and apply the results to the Service Problem Analysis Guide.
To conduct a heating performance test, the BTU input to the package gas unit must be calculated.
After the heating cycle has been in operation for at least fifteen minutes and with all other gas appliances turned off, the gas meter should be clocked.
To find the BTU input, multiply the number of cubic feet of gas consumed per hour by the heating value of the gas being used. (The calorific value of the gas being used is found by contacting your local utility.)
29
Page 30
SCHEDULED MAINTENANCE
2
3
4
0
1
5
1 Million
Quarter
Foot
9
6
9
8
8
7
7
6
1
2
3
4
5
100 Thou s and
One
Foot
0
1
2
3
4
5
10 Thousand
CUBIC FEET
1
2
3
4
5
8
7
9
8
7
6
1 Thousand
9
6
GAS RATE -- CUBIC F E E T PER HOUR
Size of Test Dial Size of Test Dial
Seconds
for One
Revolution
10 90 180 360 720 1800 36 25 50 100 200 500 11 82 164 327 655 1636 37 -- -- 97 195 486 12 75 150 300 600 1500 38 23 47 95 189 474 13 69 138 277 555 1385 39 -- -- 92 185 462 14 64 129 257 514 1286 40 22 45 90 180 450 15 60 120 240 480 1200 41 -- -- -- 176 439 16 56 113 225 450 1125 42 21 43 86 172 429 17 53 106 212 424 1059 43 -- -- -- 167 419 18 50 100 200 400 1000 44 -- 41 82 164 409 19 47 95 189 379 947 45 20 40 80 160 400 20 45 90 180 360 900 46 -- -- 78 157 391 21 43 86 171 343 857 47 19 38 76 153 383 22 41 82 164 327 818 48 -- -- 75 150 375 23 39 78 157 313 783 49 -- -- -- 147 367 24 37 75 150 300 750 50 18 36 72 144 360 25 36 72 144 288 720 51 -- -- -- 141 355 26 34 69 138 277 692 52 -- -- 69 138 346 27 33 67 133 265 667 53 17 34 -- 136 340 28 32 64 129 257 643 54 -- -- 67 133 333 29 31 62 124 248 621 55 -- -- -- 131 327 30 30 60 120 240 600 56 16 32 64 129 321 31 -- -- 116 232 581 57 -- -- -- 126 316 32 28 56 113 225 563 58 -- 31 62 124 310 33 -- -- 109 218 545 59 -- -- -- 122 305 34 26 53 106 212 529 60 15 30 60 120 300 35 -- -- 103 206 514
1/4
cu/ft
1/2
cu/ft1cu/ft2cu/ft5cu/ft
Seconds
for One
Revolution
1/4
cu/ft
1/2
cu/ft1cu/ft2cu/ft5cu/ft
30
Page 31
SCHEDULED MAINTENANCE
Example:
It takes forty (40) seconds on the gas meter for the hand on the cubic foot dial to make one complete revolution, with all appliances off, except the unit. Using the gas rate chart, observe the forty (40) seconds, locate and read across to the one (1) cubic foot dial column. There you will find the number 90, which shows that ninety (90) cubic feet of gas will be consumed in one (1) hour.
Let's assume the local gas utility has stated that the calorific value of the gas is 1025 BTU per cubic foot.
Multiplying the ninety (90) cubic feet by 1025 BTU/ft3 gives us an input of 92,250 BTU/hr.
Checking the BTU input on the rating plate of the unit being tested.
EXAMPLE: GPG153609041** INPUT: 92,000 BTU/HR OUTPUT CAP: 72,900 BTU/HR
Should the figure you calculated not fall within five (5) percent of the nameplate rating of the unit, adjust the gas valve pressure regulator or resize orifices. In no case should the
input exceed that shown on the rating plate.
To adjust the pressure regulator on the gas valve, turn down (clockwise) to increase pressure and input, and out (counter­clockwise) to decrease pressure and input.
Since propane gas is not normally installed with a gas meter, clocking will be virtually impossible. The gas orifices used with propane are calculated for 2500 BTU gas per cubic foot and with proper inlet pressures and correct piping size, full capacity will be obtained.
With propane gas, no unit gas valve regulator is used; however, the second stage supply line pressure regulator should be adjusted to give 11" water column with all other gas consuming appliances running.
The dissipation of the heat transferred to the heat exchanger is now controlled by the amount of air circulated over its surface.
The flow rate (CFM) of air circulated is governed by the external static pressure in inches of water column of duct work, cooling coil, registers and etc., applied externally to the unit versus the motor speed tap.
A properly operating unit must have the BTU input and flow rate (CFM) of air, within the limits shown to prevent short cycling of the equipment. As the external static pressure goes up, the temperature rise will also increase. Consult the proper tables for temperature rise limitation.
CAUTION
ALWAY S CO NN ECT A M ANOM ETE R TO THE 1/8" PIPE TAP AT THE GAS VALVE BEFORE ADJUSTING THE PRESSU RE RE GULATO R. IN NO CA SE S HOULD TH E FINAL MANIFOLD PRES SURE VAR Y MORE THA N PLUS OR MINUS .3 INC HES W ATER CO LU MN FRO M
3.5 INCHES WAT ER COLU MN FOR NAT UR AL G AS O R 10 INCH ES WATER COLUMN FOR PROPANE GAS.
31
Page 32
SERVICING
COOLING ANALYSIS CHART
Com plaint
POSSIBLE CAUSE
DOTS IN ANALYSIS
GUIDE INDICATE
"POS S I BL E CAUSE"
Pow er Failure Blown Fuse Loose Connection Shorted or Broken Wires Open Overload Faulty Thermostat Faulty Transformer Shorted or Open Capacitor Shorted or Grounded Compressor Compressor Stuc k Faulty Compressor Contactor 2nd Stage Compress or Not Energized Faulty Ignition Control Open Control Circuit Low V oltage Faulty Evap. Fan Motor Shorted or Grounded Fan Motor Improper Cooling Anticipator Shortage of Refrigerant Restricted Liquid Line Dirty Air Filter Dirty Indoor Coil Not enough air across Indoor Coil Too much air across Indoor Coil Overcharge of Refrigerant Dirty Outdoor Coil Noncondensibles Recirculation of Condensing Air Infiltration of Outdoor Air Improperly Located Thermostat Air Flow Unbalanced System Undersized Broken Internal Parts Inefficient Compressor High Pressur e Control Open Unbalanced Power, 3PH Wrong Type Expansion Valve Expansion Device Restricted Expansion Valve Bulb Loose Inoperative Expansion Valve Loose Hold-dow n Bolts
Compressor runs - goes off on overload
Compressor cycles on overload
Unsatisfactory
Cooling
System runs continuously - little cooling
Too cool and then too warm
Not cool enough on warm days
No Coo ling
SYMPTOM
System will not start
Compressor will not start - fan runs
Comp. and Cond. Fan will not start
Evaporator fan will not start
Condenser fan will not start
••
••
••••••
••
••
••
••
••
••
•• ••
••
••
••
••
••
•• ••
•• ••
••••
••••
••••
•• ••
••
••
••
••
••
••
••
••
••
••• ••
••• ••
••
Certain areas too cool, others too warm
Compressor is no isy
System
Operating
Pressures
Low suction pressure
Low head pressure
High suction pressure
Test Method
Remed y
See S er vice Procedure Ref.
High head pressure
Test Voltage S-1 Inspect Fuse Size & Type S-4 Inspect Connection - Tighten S-2 Test Circuits With Ohmmeter S-3 Test Continuity of Ov erload S-17A Test continuity of Thermostat & Wiring S- 3 Check control circuit with voltmeter S-4 Test Capacit or S-15 Test Motor Windings S-17B Use Te s t Cord S-17D Test continuity of Coil & Contacts S-7, S-8 Test Unloader Solenoid (2 stage compressor only) S-17C Test Ignition Cont rol S-313 Test Control Circuit w ith Voltmeter S-4 Test Voltage S-1 Repair or Replace S-16 Test Motor Windings S-16 Check resistance of Anticipator S-3 Test For Leaks, Add Refrigerant S-103 Replace Restricted Part S-112 Inspect Filter-Clean or Replace Inspect Coil - Clean Speed Blow er, Check Duct Static Press S-200 Reduce Blow er Speed S-200 Recover Part of Charge S-113 Inspect Coil - Clean Recover Charge, Evacuate, Recharge S-114 Remove Obstruction to Air Flow Check Windows, Doors, Vent Fans, Etc. Relocate Thermostat Readjust Air Volume Dampers Refigure Cooling Load Replace Compressor Test Compre ssor Efficiency S-104 Reset And Test Cont rol S-12 Test Voltage Replace Valve Remove restriction or replace expansion device Tighten Bulb Bracket Check Valve Operation S-110 Tighten Bolts
32
Page 33
SERVICING
e
Com p laint No He at Uns at isfactory Heat
POSSIBLE CAUSE
GAS HEATING ANALYSIS CHART
DOTS IN ANALYSIS
GUIDE INDICATE
"PO S S IBL E CAUSE"
Pow er Fa ilure Blown Fuse Loose Connection Shorted or Broken Wires No Low Voltage Faulty Thermostat Faulty Transformer Poor or High Resistance Ground Improper Heat Anticipator Setting Improper Thermostat Location Faulty Limit or Roll Out Switch Faulty Flame Sensor Faulty Ignition Control Gas Valve or Gas Supply Shut Off Faulty Induced Draft Blower Dirty Flame Sensor, Low uA Flame Sensor not in Flame, Low uA Faulty Gas Valve No High Stage Heat (2 Stage Only) Open Aux illary Limit Improper Air Flow or Distribution Locking out on Main Limit Delayed Ignition Flashback Orific e Size Gas Pressure Cracked Heat Exchanger Stuck Gas Valve Furnace Undersized Faulty Pressure Switch Blocked or Restricted Flue Open Roll Out Switch Bouncing On Pressure Sw itch
SYMPTOM
System Will No t Start
Burner Won't Ignite
Burner Ignites-Locks Out
Burner Shuts Off prior to T'Stat being Satasfi
Short Cycles
Long Cycles
Soot and /or Fumes
To Much Heat
Not Enough Heat
••
•• ••
•• ••
••
•••
••
••
••
••
••
••
•••
•••
••
•••
••
••
Test Volt age S-1 Test Volt age S-4 Check Wiring S-2 Check Wiring S-3 Check Transformer S-4 Check Thermostat S-3 Check Transformer S-4 Measure Ground Resistance S-313 Adjust Heat Anticipa t or Setting S-3 Relocate Thermostat Test Control S-300,S-301,S-302 Test Flame Sensor S- 314 Test Control S-313 Turn Valves to On Position S-304 Test Blow er S-303 Clean Flame Sensor S-314 Test/Adjust Position of Flame Sensor S-314 Replace Gas V alve S- 304 Check Thermostat, Control, Gas Valve S-3,S-313,S-304 Reset Control S-301 Check Duct Static Check Controls, Gas Press., & Temp. Rise S- 300 Test for Delayed Ignition S-308 Test for Flashback S-309 Check Orifices S-306 Check Gas Pressur e S-307 Check Burner Flames S-302 Replace Gas V alve S- 304 Replace w ith Proper Size Furnace
Test Pressure Switch S-310 Check Flue/Drawdown Pressur e S-310 Test Control S-302 Test Negative Pressure S-310
Test Method
Reme dy
See Service Procedure Reference
33
Page 34
SERVICING
Table of Contents
S-1 Checking Voltage.......................................... 35
S-2 Checking Wiring............................................ 36
S-3 Checking Thermostat, Wiring & Anticipator .. 36
S-3A Thermostat & Wiring .....................................36
S-3B Cooling Anticipator........................................ 36
S-3C Heating Anticipator........................................ 3 6
S-4 Checking Transformer & Control Circuit ....... 3 7
S-7 Checking Contactor and/or Relays................ 37
S-8 Checking Contactor Contacts ....................... 37
S-9 Checking Fan Relay Contact ........................ 38
S-12 Checking High Pressure Control ................... 38
S-13 Checking Low Pressure Control....................38
S-15 Checking Capacitor....................................... 38
S-15A Resistance Check......................................... 39
S-15B Capacitance Check....................................... 3 9
S-16A Checking Fan & Blower Motor
Windings (PSC Motors) ............................... 40
S-16C Checking ECM Motor Windings .................... 40
S-16D Checking GE X13™ Motors .......................... 40
S-17 Checking Compressor Windings................... 4 1
S-17A Resistance Test............................................ 41
S-17B Ground Test .................................................. 42
S-17C Unloader Test................................................ 42
S-17D Operation Test .............................................. 43
S-18 Testing Crankcase Heater (optional item) ..... 43
S-100 Refrigeration Repair Practice.........................43
S-101 Leak Testing ................................................. 44
S-102 Evacuation .................................................... 44
S-103 Charging........................................................ 45
S-104 Checking Compressor Efficiency ..................4 5
S-105B Thermostatic Expansion Valve ...................... 4 5
S-106 Overfeeding ................................................... 47
S-107 Underfeeding................................................. 47
S-108 Superheat ..................................................... 47
S-109 Checking Subcooling ....................................49
S-110 Checking Expansion Valve Operation ...........4 9
S-111 Fixed Orifice Restriction Devices ..................49
S-112 Checking Restricted Liquid Line.................... 50
S-113 Refrigerant Overcharge.................................. 50
S-114 Non-condensables ........................................50
S-115 Compressor Burnout ..................................... 50
S-200 Checking Extedrnal Static Pressure ............. 51
S-201
S-300 Testing Primary Limit.................................... 52
S-301 Testing Auxiliary Limit................................... 52
S-302 Checking Flame Rollout Switch .................... 53
S-303 Testing Inducer Motor.................................... 54
S-304 Testing Gas Valve......................................... 54
S-305 Checking Main Burners................................. 55
S-306 Checking Orifices.......................................... 55
S-307 Checking Gas Pressure................................ 55
S-308 Checking For Delayed Ignition ......................57
S-309 Checking for Flashback.................................57
S-310 Checking Pressure Control ........................... 57
S-311 High Altitude Application............................... 58
S-313 Testing Ignition Control Module..................... 58
S-314 Checking Flame Sensor................................ 61
Checking Temperature Rise .......................... 51
HIGH VOLTAGE! Disconnect ALL power before servicing or installing this unit. Multiple power sources may be present. Failure to do so may cause property damage, person al inj ury or death.
34
Page 35
SERVICING
S-1 CHECKING VOLTAGE
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Remove doors, control panel cover, etc. from unit being tested.
With power ON:
WARNING
Line Voltage now present.
2. Using a voltmeter, measure the voltage across terminals L1 and L2 of the contactor for single phase units, and L3, for 3 phase units.
3. No reading - indicates open wiring, open fuse(s) no power or etc. from unit to fused disconnect service. Repair as needed.
4. With ample voltage at line voltage connectors, energize the unit.
5. Measure the voltage with the unit starting and operating, and determine the unit Locked Rotor Voltage.
Locked Rotor Voltage is the actual voltage available at the compressor during starting, locked rotor, or a stalled condition. Measured voltage should be above minimum listed in chart below.
To measure Locked Rotor Voltage attach a voltmeter to the run "R" and common "C" terminals of the compressor, or to the T1 and T2 terminals of the contactor. Start the unit and allow the compressor to run for several seconds, then shut down the unit. Immediately attempt to restart the unit while measuring the Locked Rotor Voltage.
6. Voltmeter should read within the voltage tabulation as shown. If the voltage falls below the minimum voltage, check the line wire size. Long runs of undersized wire can cause low voltage. If wire size is adequate, notify the local power company in regards to either low or high voltage.
Unit Supply Voltage
Voltage Min. Max.
460 437 506
208/230 198 253
Max. Voltage Deviation % Voltage = Imbalance Average Voltage
To find the percentage of imbalance, measure the incoming power supply.
L1 - L2 = 240V L1 - L3 = 232V Avg. V = L2 - L3 = Total 710V
To find Max. deviation: 240 - 236.7 = +3.3
Max deviation was 4.7V % Voltage Imbalance =
If the percentage of imbalance had exceeded 3%, it must be determined if the imbalance is in the incoming power supply or the equipment. To do this rotate the legs of the incoming power and retest voltage as shown below.
L1
L1
By the voltage readings we see that the imbalance rotated or traveled with the switching of the incoming legs. Therefore the imbalance lies within the incoming power supply.
If the imbalance had not changed then the problem would lie within the equipment. Check for current leakage, shorted motors, etc.
From Average Voltage X 100
710 = 236.7
238V 3
232 - 236.7 = -4.7 238 - 236.7 = +1.3
4.7 = 1.99%
236.7
L1 - L2 = 240V L1 - L3 = 227V L2 - L3 = 238V
L2
L3
L3L2
Rotate all 3 incoming legs as shown.
L1 - L2 = 227V L1 - L3 = 238V L2 - L3 = 240V
Three phase units require a balanced 3 phase power supply to operate. If the percentage of voltage imbalance exceeds 3% the unit must not be operated until the voltage condition is corrected.
35
Page 36
SERVICING
S-2 CHECKING WIRING
HIGH VOL TAGE! Disconnect ALL power before servicing or insta llin g this uni t. M ultip le po wer sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Check wiring visually for signs of overheating, damaged insulation and loose connections.
2. Use an ohmmeter to check continuity of any suspected open wires.
3. If any wires must be replaced, replace with comparable gauge and insulation thickness.
2. With voltmeter, check for 24 volts at wires C and G.
3. No voltage indicates the trouble is in the thermostat or wiring.
4. Check the continuity of the thermostat and wiring. Repair or replace as necessary.
S-3B COOLING ANTICIPATOR
The cooling anticipator is a small heater (resistor) in the thermostat. During the "off" cycle, it heats the bimetal element helping the thermostat call for the next cooling cycle. This prevents the room temperature from rising too high before the system is restarted. A properly sized anticipator should maintain room temperature within 1 1/2 to 2 degree range.
The anticipator is supplied in the thermostat and is not to be replaced. If the anticipator should fail for any reason, the thermostat must be changed.
S-3 CHECKING THERMOSTAT, WIRING, AND
ANTICIPATOR
THERMO ST AT W IRE SIZ I NG CHART
LENGTH OF RUN
25 fe et 18 50 fe et 16
75 fe et 14 100 fe et 14 125 fe et 12 150 fe et 12
M IN. COPPER WI RE
GAUGE (AWG)
S-3A THERMOSTAT AND WIRING
WARNING
Line Voltage now present.
With power ON, thermostat calling for cooling
1. Use a voltmeter to check for 24 volts at thermostat wires C and Y in the condensing unit control panel.
2. No voltage indicates trouble in the thermostat, wiring or external transformer source.
3. Check the continuity of the thermostat and wiring. Repair or replace as necessary.
Indoor Blower Motor
With power ON:
S-3C HEATING ANTICIPATOR
The heating anticipator is a wire-wound adjustable heater, which is energized during the "ON" cycle to help prevent overheating of the conditioned space.
The anticipator is a part of the thermostat and if it should fail for any reason, the thermostat must be replaced. See the following for recommended heater anticipator setting.
To determine the proper setting, use an ammeter to measure the current on the "W" wire going to the thermostat.
Use an amprobe as shown below. Wrap 10 turns of thermo­stat wire around the stationary jaw of the amprobe and divide the reading by 10.
10 TURNS OF THERMOSTAT WIRE (From "W" on thermostat)
STATIONARY JAW OF AMPROBE
READS 4 AMPS CURRENT DRAW WOULD BE .4 AMPS
WARNING
Line Voltage now present.
1. Set fan selector switch at thermostat to "ON" position.
36
Checking Heat Anticipator Amp Draw
Page 37
SERVICING
S-4 CHECKING TRANSFORMER AND CON-
TROL CIRCUIT
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
A step-down transformer (208/240 volt primary to 24 volt sec­ondary) is provided with each indoor unit. This allows ample capacity for use with resistance heaters. The outdoor sec­tions do not contain a transformer.
WARNING
Disconnect ALL power before servicing.
1. Remove control panel cover, or etc., to gain access to transformer.
With power ON:
NOTE: Most single phase contactors break only one side of the line (L1), leaving 115 volts to ground present at most internal components.
1. Remove the leads from the holding coil.
2. Using an ohmmeter, test across the coil terminals. If the coil does not test continuous, replace the relay or
contactor.
S-8 CHECKING CONTACTOR CONTACTS
SINGLE PHASE
HIGH VOL TAGE! Disconn ect ALL po wer be for e ser vic in g or inst all ing th is u nit . M ult ip le po wer sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Disconnect the wire leads from the terminal (T) side of the contactor.
2. With power ON, energize the contactor.
WARNING
Line Voltage now present.
2. Using a voltmeter, check voltage across secondary voltage side of transformer (R to C).
3. No voltage indicates faulty transformer, bad wiring, or bad splices.
4. Check transformer primary voltage at incoming line voltage connections and/or splices.
5 If line voltage available at primary voltage side of trans-
former and wiring and splices good, transformer is inop­erative. Replace.
S-7 CHECKING CONTACTOR AND/OR RELAYS
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
The compressor contactor and other relay holding coils are wired into the low or line voltage circuits. When the control circuit is energized, the coil pulls in the normally open contacts or opens the normally closed contacts. When the coil is de-energized, springs return the contacts to their normal position.
WARNING
LINE VOLTAGE NOW PRESENT.
T2
VOLT/OHM
METER
Ohmmete r fo r te st in g hol di n g coil Voltmeter fo r testing contac ts
TESTING COMPRESSOR CONTACTOR
(Single Phase)
3. Using a voltmeter, test across terminals. A. L1 - L2 - No voltage. Check breaker or fuses on main
power supply.
B. L2 - T1 - No voltage indicates CC1 contacts open.
If a no voltage reading is obtained - replace the contactor.
T1
CC
L1L2
37
Page 38
SERVICING
THREE PHASE
Using a voltmeter, test across terminals.
A. L1-L2, L1-L3, and L2-L3 - If voltage is present,
proceed to B. If voltage is not present, check breaker or fuses on main power supply..
B. T1-T2, T1-T3, and T2-T3 - If voltage readings are not
the same as in "A", replace contactor.
4. Start the system and place a piece of cardboard in front of the condenser coil, raising the condensing pressure.
5. Check pressure at which the high pressure control cuts­out.
T3L3T2
CC
T1
VOLT/OHM
METER
L1
L2
Ohmmeter for testing holding coil Voltmeter for testing contacts
TESTING COMPRESSOR CONTACTOR
(ThreePhase)
S-9 CHECKING FAN RELAY CONTACTS
The fan relays are incorporated into the control board. See section S-313 for checking control board.
S-12 CHECKING HIGH PRESSURE CONTROL
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
The high pressure control senses the pressure in the liquid line. If abnormally high condensing pressures develop, the contacts of the control open, breaking the control circuit before the compressor motor overloads. This control is automatically reset.
1. Using an ohmmeter, check across terminals of high pressure control, with wire removed. If not continuous, the contacts are open.
3. Attach a gauge to the dill valve port on the base valve.
With power ON:
If it cuts-out at 610 PSIG ± 10 PSIG, it is operating normally (See causes for high head pressure in Service Problem Analysis Guide). If it cuts out below this pressure range, replace the control. The control should reset at 420 PSIG ± 25 PSIG.
S-13 CHECKING LOW PRESSURE CONTROL
The low pressure control senses the pressure in the suction line and will open its contacts on a drop in pressure. The low pressure control will automatically reset itself with a rise in pressure.
The low pressure control is designed to cut-out (open) at approximately 7 PSIG ± 3 PSIG. It will automatically cut-in (close) at approximately 25 PSIG ± 5 PSIG.
Test for continuity using a VOM and if not as above, replace the control.
S-15 CHECKING CAPACITOR
CAPACITOR, RUN
A run capacitor is wired across the auxiliary and main windings of a single phase permanent split capacitor motor. The capacitors primary function is to reduce the line current while greatly improving the torque characteristics of a motor. This is accomplished by using the 90° phase relationship between the capacitor current and voltage in conjunction with the motor windings so that the motor will give two phase operation when connected to a single phase circuit. The capacitor also reduces the line current to the motor by improving the power factor.
CAPACITOR, START SCROLL COMPRESSOR MODELS
Hard start components are not required on Scroll compres­sor equipped units due to a non-replaceable check valve located in the discharge line of the compressor. However hard start kits are available and may improve low voltage starting characteristics.
This check valve closes off high side pressure to the com­pressor after shut down allowing equalization through the scroll flanks. Equalization requires only about one or two seconds during which time the compressor may turn back­wards.
38
Page 39
SERVICING
Your unit comes with a 180-second anti-short cycle to prevent the compressor from starting and running backwards.
MODELS EQUIPPED WITH A HARD START DEVICE
A start capacitor is wired in parallel with the run capacitor to increase the starting torque. The start capacitor is of the electrolytic type, rather than metallized polypropylene as used in the run capacitor.
A switching device must be wired in series with the capacitor to remove it from the electrical circuit after the compressor starts to run. Not removing the start capacitor will overheat the capacitor and burn out the compressor windings.
These capacitors have a 15,000 ohm, 2 watt resistor wired across its terminals. The object of the resistor is to discharge the capacitor under certain operating conditions, rather than having it discharge across the closing of the contacts within the switching device such as the Start Relay, and to reduce the chance of shock to the servicer. See the Servicing Section for specific information concerning capacitors.
RELAY, START
A potential or voltage type relay is used to take the start capacitor out of the circuit once the motor comes up to speed. This type of relay is position sensitive. The normally closed contacts are wired in series with the start capacitor and the relay holding coil is wired parallel with the start winding. As the motor starts and comes up to speed, the increase in voltage across the start winding will energize the start relay holding coil and open the contacts to the start capacitor.
Two quick ways to test a capacitor are a resistance and a capacitance check.
OHMMETER
CAPACITOR
TESTING CAPACITOR RESISTANCE
2. Set an ohmmeter on its highest ohm scale and connect the leads to the capacitor -
a. Good Condition - indicator swings to zero and
slowly returns to infinity. (Start capacitor with bleed resistor will not return to infinity. It will still read the resistance of the resistor).
b. Shorted - indicator swings to zero and stops there
-replace.
c. Open - no reading - replace. (Start capacitor
would read resistor resistance.)
S-15B CAPACITANCE CHECK
Using a hookup as shown below, take the amperage and voltage readings and use them in the formula:
S-15A RESISTANCE CHECK
HIGH VOL TAGE! Disconnect ALL power before servicing or insta llin g this uni t. Mult ip le po wer sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Discharge capacitor and remove wire leads.
WARNING
Discharge capacitor through a 20 to 30 OHM resistor before handling.
VOLTMETER
15 AMP
FUSE
AMMETER
CAPACIT O R
TESTING CAPACITANCE
39
Page 40
SERVICING
WARNING
Discharge capacitor through a 20 to 30 OHM resistor before handling.
Capacitance (MFD) = 2650 X Amperage
Voltage
S-16A CHECKING FAN AND BLOWER MOTOR
WINDINGS (PSC MOTORS)
The auto reset fan motor overload is designed to protect the motor against high temperature and high amperage condi­tions by breaking the common circuit within the motor, similar to the compressor internal overload. However, heat gener­ated within the motor is faster to dissipate than the compres­sor, allow at least 45 minutes for the overload to reset, then retest.
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
4. Using an ohmmeter, check the motor windings for conti­nuity to ground (pins to motor shell). If the ohmmeter indicates continuity to ground, the motor is defective and must be replaced.
5. Using an ohmmeter, check the windings for continuity (pin to pin). If no continuity is indicated, the thermal limit (over load) device may be open. Allow motor to cool and retest.
Motor Connector (3-pin)
Motor OK when R > 100k ohm (3-pin)
WINDING TEST
S-16D CHECKING GE X13TM MOTORS
Applies to *PG15*****41A*
1. Remove the motor leads from its respective connection points and capacitor (if applicable).
2. Check the continuity between each of the motor leads.
3. Touch one probe of the ohmmeter to the motor frame (ground) and the other probe in turn to each lead.
If the windings do not test continuous or a reading is obtained from lead to ground, replace the motor.
S-16C CHECKING ECM MOTOR WINDINGS
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Disconnect the 5-pin and the 16-pin connectors from the ECM power head.
2. Remove the 2 screws securing the ECM power head and separate it from the motor.
3. Disconnect the 3-pin motor connector from the power head and lay it aside.
The GE X13TM Motor is a one piece, fully encapsulated, 3 phase brushless DC (single phase AC input) motor with ball bearing construction. Unlike the ECM 2.3/2.5 motors, the GE X13TM features an integral control module.
Note: The GE TECMate will not currently operate the GE X13TM motor.
1. Using a voltmeter, check for 230 volts to the motor connections L and N. If 230 volts is present, proceed to step 2. If 230 volts is not present, check the line voltage circuit to the motor.
2. Using a voltmeter, check for 24 volts from terminal C to either terminal 1, 2, 3, 4, or 5, depending on which tap is being used, at the motor. If voltage present, proceed to step 3. If no voltage, check 24 volt circuit to motor.
3. If voltage was present in steps 1 and 2, the motor has failed and will need to be replaced.
Note: When replacing motor, ensure the belly band is between the vents on the motor and the wiring has the proper drip loop to prevent condensate from entering the motor.
40
Page 41
SERVICING
C
123
Low Voltage Connections
GE X13TM MOTOR CONNECTIONS
High Voltage
Connections
3/16"
LGN
4
1/4”
5
Ignition of the discharge can also occur at the venting terminal or inside the compressor, if there is sufficient contaminant air present in the system and an electrical arc occurs as the terminal vents.
Ignition cannot occur at the venting terminal without the presence of contaminant air, and cannot occur externally from the venting terminal without the presence of an external ignition source.
Therefore, proper evacuation of a hermetic system is essen­tial at the time of manufacture and during servicing.
To reduce the possibility of external ignition, all open flame, electrical power, and other heat sources should be extin­guished or turned off prior to servicing a system.
S-17A RESISTANCE TEST
Each compressor is equipped with an internal overload. The line break internal overload senses both motor amperage
and winding temperature. High motor temperature or amper­age heats the disc causing it to open, breaking the common circuit within the compressor on single phase units.
Heat generated within the compressor shell, usually due to recycling of the motor, high amperage or insufficient gas to cool the motor, is slow to dissipate. Allow at least three to four hours for it to cool and reset, then retest.
Fuse, circuit breaker, ground fault protective device, etc. has not tripped -
S-17 CHECKING COMPRESSOR
WARNING
Hermetic compressor electrical terminal venting can be dangerous. When insulating material which supports a hermetic compressor or electrical terminal suddenly disintegrates due to physical abuse or as a result of an electrical short between the terminal and the compressor housing, the terminal may be expelled, venting the vapor and liquid contents of the compressor housing and system.
If the compressor terminal PROTECTIVE COVER and gasket (if required) are not properly in place and secured, there is a remote possibility if a terminal vents, that the vaporous and liquid discharge can be ignited, spouting flames several feet, causing potentially severe or fatal injury to anyone in its path.
This discharge can be ignited external to the compressor if the terminal cover is not properly in place and if the discharge impinges on a sufficient heat source.
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Remove the leads from the compressor terminals.
See warnings S-17 before removing compressor terminal cover .
2. Using an ohmmeter, test continuity between terminals S­R, C-R, and C-S, on single phase units or terminals T1, T2 and T3, on 3 phase units.
C
OHMMETER
S
COMP
R
TESTING COMPRESSOR WINDINGS
41
Page 42
SERVICING
If either winding does not test continuous, replace the compressor.
NOTE: If an open compressor is indicated, allow ample time for the internal overload to reset before replacing compressor.
WARNING
Damage can occur to the glass embedded terminals if the leads are not properly removed. This can result in terminal and hot oil discharging.
S-17B GROUND TEST
If fuse, circuit breaker, ground fault protective device, etc., has tripped, this is a strong indication that an electrical problem exists and must be found and cor­rected. The circuit protective device rating must be checked, and its maximum rating should coincide with that marked on the equipment nameplate.
With the terminal protective cover in place, it is accept­able to replace the fuse or reset the circuit breaker TIME ONLY to see if it was just a nuisance opening. If it opens again,
DO NOT continue to reset.
ONE
WARNING
Disconnect ALL power before servicing.
Disconnect all power to unit, making sure that all
power legs are open.
1. DO NOT remove protective terminal cover. Discon­nect the three leads going to the compressor termi­nals at the nearest point to the compressor.
2. Identify the leads and using a Megger, Hi-Potential Ground Tester, or other suitable instrument which puts out a voltage between 300 and 1500 volts, check for a ground separately between each of the three leads and ground (such as an unpainted tube on the compressor). Do not use a low voltage output instrument such as a volt-ohmmeter.
Carefully retest for ground, directly between compressor terminals and ground.
5. If ground is indicated, replace the compressor.
S-17C UNLOADER TEST PROCEDURE
(2 STAGE COMPRESSORS ONLY)
A nominal 24-volt direct current coil activates the internal unloader solenoid. The input control circuit voltage must be 18 to 28 volt ac. The coil power requirement is 20 VA. The external electrical connection is made with a molded plug assembly. This plug contains a full wave rectifier to supply direct current to the unloader coil.
UNLOADER SO LENOID
(Molded Plug)
HI-POT
COMPRESSOR GROUND TEST
3. If a ground is indicated, then carefully remove the compressor terminal protective cover and inspect for loose leads or insulation breaks in the lead wires.
4. If no visual problems indicated, carefully remove the leads at the compressor terminals.
42
Unloader Test Procedure
If it is suspected that the unloader is not working, the following methods may be used to verify operation.
1. Operate the system and measure compressor current. Cycle the unloader ON and OFF at 10 second intervals. The compressor amperage should go up or down at least 25 percent.
2. If step one does not give the expected results, shut unit off. Apply 18 to 28 volt ac to the unloader molded plug leads and listen for a click as the solenoid pulls in. Remove power and listen for another click as the unloader returns to its original position.
3. If clicks can’t be heard, shut off power and remove the control circuit molded plug from the compressor and measure the unloader coil resistance. The resistance should be 32 to 60 ohms, depending on compressor temperature.
Page 43
SERVICING
4. Next check the molded plug. A. Voltage check: Apply control voltage to the plug
wires (18 to 28 volt ac). The measured dc voltage at the female connectors in the plug should be around 15 to 27 vdc.
B. Resistance check: Measure the resistance from
the end of one molded plug lead to either of the two female connectors in the plug. One of the connec­tors should read close to zero ohms while the other should read infinity. Repeat with other wire. The same female connector as before should read zero while the other connector again reads infinity. Reverse polarity on the ohmmeter leads and re­peat. The female connector that read infinity previ­ously should now read close to zero ohms.
C. Replace plug if either of these test methods doesn’t
show the desired results.
S-17D OPERATION TEST
If the voltage, capacitor, overload and motor winding test fail to show the cause for failure:
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Remove unit wiring from disconnect switch and wire a test
cord to the disconnect switch.
NOTE: The wire size of the test cord must equal the line wire size and the fuse must be of the proper size and type.
2. With the protective terminal cover in place, use the three
leads to the compressor terminals that were discon­nected at the nearest point to the compressor and connect the common, start and run clips to the respective leads.
3. Connect good capacitors of the right MFD and voltage
rating into the circuit as shown.
4. With power ON, close the switch.
WARNING
Line Voltage now present.
A.If the compressor starts and continues to run, the cause
for failure is somewhere else in the system.
B.If the compressor fails to start - replace.
S-18 TESTING CRANKCASE HEATER
(OPTIONAL ITEM)
The crankcase heater must be energized a minimum of four (4) hours before the condensing unit is operated.
Crankcase heaters are used to prevent migration or accumu­lation of refrigerant in the compressor crankcase during the off cycles and prevents liquid slugging or oil pumping on start up.
A crankcase heater will not prevent compressor damage due to a floodback or over charge condition.
WARNING
Disconnect ALL power before servicing.
1. Disconnect the heater lead in wires.
2. Using an ohmmeter, check heater continuity - should test continuous. If not, replace.
S-100 REFRIGERATION REPAIR PRACTICE
DANGER
Always remove the refrigerant charge in a proper manner before applying heat to the system.
When repairing the refrigeration system:
WARNING
Disconnect ALL power before servicing.
1. Never open a system that is under vacuum. Air and moisture will be drawn in.
2. Plug or cap all openings.
3. Remove all burrs and clean the brazing surfaces of the tubing with sand cloth or paper. Brazing materials do not flow well on oxidized or oily surfaces.
4. Clean the inside of all new tubing to remove oils and pipe chips.
5. When brazing, sweep the tubing with dry nitrogen to prevent the formation of oxides on the inside surfaces.
6. Complete any repair by replacing the liquid line drier in the system, evacuate and charge.
BRAZING MATERIALS
Copper to Copper Joints - Sil-Fos used without flux (alloy of 15% silver, 80% copper, and 5% phosphorous). Recom­mended heat 1400°F.
Copper to Steel Joints - Silver Solder used without a flux (alloy of 30% silver, 38% copper, 32% zinc). Recommended heat - 1200°F.
43
Page 44
SERVICING
S-101 LEAK TESTING
(NITROGEN OR NITROGEN-TRACED)
WARNING
To avoid the risk of fire or explosion, never use oxygen, high pressure air or flammable gases for leak testing of a refrigeration system.
WARNING
To avoid possible explosion, the line from the nitrogen cylinder must include a pressure regulator and a pressure relief valve. The pressure relief valve must be set to open at no more than 150 psig.
Pressure test the system using dry nitrogen and soapy water to locate leaks. If you wish to use a leak detector, charge the system to 10 psi using the appropriate refrigerant then use nitrogen to finish charging the system to working pressure, then apply the detector to suspect areas. If leaks are found, repair them. After repair, repeat the pressure test. If no leaks exist, proceed to system evacuation.
1. Connect the vacuum pump, vacuum tight manifold set with high vacuum hoses, thermocouple vacuum gauge and charging cylinder as shown.
2. Start the vacuum pump and open the shut off valve to the high vacuum gauge manifold only. After the compound gauge (low side) has dropped to approximately 29 inches of vacuum, open the valve to the vacuum thermocouple gauge. See that the vacuum pump will blank-off to a maximum of 25 microns. A high vacuum pump can only produce a good vacuum if its oil is non-contaminated.
LOW SIDE
GAUGE
AND V ALVE
HIGH SIDE
GAUGE
AND V ALVE
S-102 EVACUATION
WARNING
REFRIGERA NT U NDER PR ESSUR E! Failure to follow proper procedures may cause property damage, personal injury or death.
This is the most important part of the entire service procedure. The life and efficiency of the equipment is dependent upon the thoroughness exercised by the serviceman when evacuating air (non-condensables) and moisture from the system.
Air in a system causes high condensing temperature and pressure, resulting in increased power input and reduced performance.
Moisture chemically reacts with the refrigerant oil to form corrosive acids. These acids attack motor windings and parts, causing breakdown.
The equipment required to thoroughly evacuate the system is a high vacuum pump, capable of producing a vacuum equiva­lent to 25 microns absolute and a thermocouple vacuum gauge to give a true reading of the vacuum in the system
NOTE: Never use the system compressor as a vacuum pump or run when under a high vacuum. Motor damage could occur.
WARNING
Do not fron t se at th e s er vic e va lve (s) wi th the compressor open, with the suction line of the comprssor closed or severely restricted.
EVACUATION
3. If the vacuum pump is working properly, close the valve to the vacuum thermocouple gauge and open the high and low side valves to the high vacuum manifold set. With the valve on the charging cylinder closed, open the manifold valve to the cylinder.
4. Evacuate the system to at least 29 inches gauge before opening valve to thermocouple vacuum gauge.
5. Continue to evacuate to a maximum of 250 microns. Close valve to vacuum pump and watch rate of rise. If vacuum does not rise above 1500 microns in three to five minutes, system can be considered properly evacuated.
6. If thermocouple vacuum gauge continues to rise and levels off at about 5000 microns, moisture and non­condensables are still present. If gauge continues to rise a leak is present. Repair and re-evacuate.
7. Close valve to thermocouple vacuum gauge and vacuum pump. Shut off pump and prepare to charge.
44
Page 45
SERVICING
S-103 CHARGING
WARNING
REFRIGERANT UNDER PRESSURE! * Do not overcharge sy stem w ith refrigerant. * Do not operate unit in a vacuum or at negative pressure. Failure to follow proper procedures may cause property damage, personal injury or death.
CAUTIO N
Use refrigerant certified to ARI standards. Used refrigeran t may cause compressor damage and wi ll void the warranty. Most portable mac hines cannot clean used refrigerant to me et ARI standards.
CAUTION
Operating the compressor with the suction valve closed will void the warranty and cause serious compressor damage.
NOTE: Even though the compressor section of a Scroll
compressor is more tolerant of liquid refrigerant, continued floodback or flooded start conditions may wash oil from the bearing surfaces causing premature bearing failure.
S-104 CHECKING COMPRESSOR EFFICIENCY
The reason for compressor inefficiency is broken or damaged scroll flanks on Scroll compressors, reducing the ability of the compressor to pump refrigerant vapor.
The condition of the scroll flanks is checked in the following manner.
1. Attach gauges to the high and low side of the system.
2. Start the system and run a “Cooling Performance Test.
If the test shows:
a. Below normal high side pressure. b. Above normal low side pressure. c. Low temperature difference across coil. d. Low amp draw at compressor.
And the charge is correct. The compressor is faulty - replace the compressor.
Charge the system with the exact amount of refrigerant. Refer to the specification section or check the unit name-
plates for the correct refrigerant charge.
An inaccurately charged system will cause future prob­lems.
1. Using a quality set of charging scales, weigh the proper amount of refrigerant for the system. Allow liquid refriger­ant only to enter the high side.
2. After the system will take all it will take, close the valve on the high side of the charging manifold.
3. Start the system and charge the balance of the refrigerant through the low side.
NOTE: R410A should be drawn out of the storage container or drum in liquid form due to its fractionation properties, but should be "Flashed" to its gas state before entering the system. There are commercially available restriction devices that fit into the system charging hose set to accomplish this. DO NOT charge liquid R410A into the compressor.
4. With the system still running, close the valve on the charging cylinder. At this time, you may still have some liquid refrigerant in the charging cylinder hose and will definitely have liquid in the liquid hose. Reseat the liquid line core. Slowly open the high side manifold valve and transfer the liquid refrigerant from the liquid line hose and charging cylinder hose into the suction service valve port. CAREFUL: Watch so that liquid refrigerant does not enter the compressor.
Due to their design, Scroll compressors are inherently more tolerant of liquid refrigerant.
S-105B THERMOSTATIC EXPANSION VALVE
The expansion valve is designed to control the rate of liquid refrigerant flow into an evaporator coil in exact proportion to the rate of evaporation of the refrigerant in the coil. The amount of refrigerant entering the coil is regulated since the valve responds to temperature of the refrigerant gas leaving the coil (feeler bulb contact) and the pressure of the refriger­ant in the coil.
This regulation of the flow prevents the return of liquid refrigerant to the compressor.
The three forces which govern the operation of the valve are: (1) the pressure created in the power assembly by the feeler bulb, (2) evaporator pressure, and (3) the equivalent pressure of the superheat spring in the valve.
0% bleed type expansion valves are used on the indoor coils. The 0% valve will not allow the system pressures (High and Low side) to equalize during the shut down period. The valve will shut off completely at approximately 100 PSIG Pressure.
Good thermal contact between the feeler bulb and the suction line is essential to satisfactory valve control and performance.
The bulb must be securely fastened to a clean straight section of the suction line. Application of the bulb to a horizontal run of line is preferred. If a vertical installation cannot be avoided the bulb should be mounted so that the capillary tubing comes out at the top.
THE VALVES PROVIDED ARE DESIGNED TO MEET THE SPECIFICATION REQUIREMENTS FOR OPTIMUM PROD­UCT OPERATION. DO NOT USE SUBSTITUTES.
45
Page 46
SERVICING
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
°F
-37.7
-34.7
-32.0
-29.4
-36.9
-24.5
-22.2
-20.0
-17.9
-15.8
-13.8
-11.9
-10.1
-8.3
-6.5
-4.5
-3.2
-1.6
0.0
1.5
3.0
4.5
5.9
7.3
8.6
10.0
11.3
12.6
13.8
15.1
16.3
17.5
18.7
19.8
21.0
22.1
23.2
24.3
25.4
26.4
27.4
28.5
29.5
30.5
31.2
32.2
33.2
34.1
35.1
35.5
36.9
PSIG
100 102 104 106 108 110 112
PSIG
114.0
116.0
118.0
120.0
122.0
124.0
126.0
128.0
130.0
132.0
134.0
136.0
138.0
140.0
142.0
144.0
146.0
148.0
150.0
152.0
154.0
156.0
158.0
160.0
162.0
164.0
166.0
168.0
170.0
172.0
174.0
176.0
178.0
180.0
182.0
184.0
186.0
188.0
190.0
192.0
194.0
196.0
198.0
200.0
202.0
204.0
206.0
208.0
210.0
212.0
214.0
Pressure vs. Temperature Chart
R-410A
°F
37.8
38.7
39.5
40.5
41.3
42.2
43.0
43.8
44.7
45.5
46.3
47.1
47.9
48.7
49.5
50.3
51.1
51.8
52.5
53.3
54.0
54.8
55.5
56.2
57.0
57.7
58.4
59.0
59.8
60.5
61.1
61.8
62.5
63.1
63.8
64.5
65.1
65.8
66.4
67.0
67.7
68.3
68.9
69.5
70.1
70.7
71.4
72.0
72.6
73.2
73.8
PSIG
216.0
218.0
220.0
222.0
224.0
226.0
228.0
230.0
232.0
234.0
236.0
238.0
240.0
242.0
244.0
246.0
248.0
250.0
252.0
254.0
256.0
258.0
260.0
262.0
264.0
266.0
268.0
270.0
272.0
274.0
276.0
278.0
280.0
282.0
284.0
286.0
288.0
290.0
292.0
294.0
296.0
298.0
300.0
302.0
304.0
306.0
308.0
310.0
312.0
314.0
316.0
°F
74.3
74.9
75.5
76.1
76.7
77.2
77.8
78.4
78.9
79.5
80.0
80.6
81.1
81.6
82.2
82.7
83.3
83.8
84.3
84.8
85.4
85.9
86.4
86.9
87.4
87.9
88.4
88.9
89.4
89.9
90.4
90.9
91.4
91.9
92.4
92.8
93.3
93.8
94.3
94.8
95.2
95.7
96.2
96.6
97.1
97.5
98.0
98.4
98.9
99.3
99.7
PSIG
318.0
320.0
322.0
324.0
326.0
328.0
330.0
332.0
334.0
336.0
338.0
340.0
342.0
344.0
346.0
348.0
350.0
352.0
354.0
356.0
358.0
360.0
362.0
364.0
366.0
368.0
370.0
372.0
374.0
376.0
378.0
380.0
382.0
384.0
386.0
388.0
390.0
392.0
394.0
396.0
398.0
400.0
402.0
404.0
406.0
408.0
410.0
412.0
414.0
416.0
418.0
°F
100.2
100.7
101.1
101.6
102.0
102.4
102.9
103.3
103.7
104.2
104.6
105.1
105.4
105.8
106.3
106.6
107.1
107.5
107.9
108.3
108.8
109.2
109.6
110.0
110.4
110.8
111.2
111.6
112.0
112.4
112.6
113.1
113.5
113.9
114.3
114.7
115.0
115.5
115.8
116.2
116.6
117.0
117.3
117.7
118.1
118.5
118.8
119.2
119.6
119.9
120.3
PSIG
420.0
422.0
424.0
426.0
428.0
430.0
432.0
434.0
436.0
438.0
440.0
442.0
444.0
446.0
448.0
450.0
452.0
454.0
456.0
458.0
460.0
462.0
464.0
466.0
468.0
470.0
472.0
474.0
476.0
478.0
480.0
482.0
484.0
486.0
488.0
490.0
492.0
494.0
496.0
498.0
500.0
502.0
504.0
506.0
508.0
510.0
512.0
514.0
516.0
518.0
520.0
°F
120.7
121.0
121.4
121.7
122.1
122.5
122.8
123.2
123.5
123.9
124.2
124.6
124.9
125.3
125.6
126.0
126.3
126.6
127.0
127.3
127.7
128.0
128.3
128.7
129.0
129.3
129.7
130.0
130.3
130.7
131.0
131.3
131.6
132.0
132.3
132.6
132.9
133.3
133.6
133.9
134.0
134.5
134.8
135.2
135.5
135.8
136.1
136.4
136.7
137.0
137.3
PSIG
522.0
524.0
526.0
528.0
530.0
532.0
534.0
536.0
538.0
540.0
544.0
548.0
552.0
556.0
560.0
564.0
568.0
572.0
576.0
580.0
584.0
588.0
592.0
596.0
600.0
604.0
608.0
612.0
616.0
620.0
624.0
628.0
632.0
636.0
640.0
644.0
648.0
652.0
656.0
660.0
664.0
668.0
672.0
676.0
680.0
684.0
688.0
692.0
696.0
°F
137.6
137.9
138.3
138.6
138.9
139.2
139.5
139.8
140.1
140.4
141.0
141.6
142.1
142.7
143.3
143.9
144.5
145.0
145.6
146.2
146.7
147.3
147.9
148.4
149.0
149.5
150.1
150.6
151.2
151.7
152.3
152.8
153.4
153.9
154.5
155.0
155.5
156.1
156.6
157.1
157.7
158.2
158.7
159.2
159.8
160.3
160.8
161.3
161.8
*Based on ALLIED SIGNAL Data
46
Page 47
SERVICING
S-106 OVERFEEDING
Overfeeding by the expansion valve results in high suction pressure, cold suction line, and possible liquid slugging of the compressor.
If these symptoms are observed:
1. Check for an overcharged unit by referring to the cooling performance charts in the servicing section.
2. Check the operation of the power element in the valve as explained in S-110 Checking Expansion Valve Opera­tion.
3. Check for restricted or plugged equalizer tube.
S-107 UNDERFEEDING
Underfeeding by the expansion valve results in low system capacity and low suction pressures.
If these symptoms are observed:
1. Check for a restricted liquid line or drier. A restriction will be indicated by a temperature drop across the drier.
2. Check the operation of the power element of the valve as described in S-110 Checking Expansion Valve Opera­tion.
S-108 SUPERHEAT
The expansion valves are factory adjusted to maintain 12 to 15 degrees superheat of the suction gas. Before checking the superheat or replacing the valve, perform all the proce­dures outlined under Air Flow, Refrigerant Charge, Expan­sion Valve - Overfeeding, Underfeeding. These are the most common causes for evaporator malfunction.
CHECKING SUPERHEAT
Refrigerant gas is considered superheated when its tempera­ture is higher than the saturation temperature corresponding to its pressure. The degree of superheat equals the degrees of temperature increase above the saturation temperature at existing pressure. See Temperature - Pressure Chart on following page.
CAUTION
To prevent personal injury, carefully connect and disconnect manifold gauge hoses. Escaping liquid refrigerant can cause burns. Do not vent refrigerant to atmosphere. Recover during system repair or final unit disposal.
3. Refer to the superheat table provided for proper system superheat. Add charge to lower superheat or recover charge to raise superheat.
Superheat Formula = Suct. Line Temp. - Sat. Suct. Temp.
EXAMPLE:
a. Suction Pressure = 143 b. Corresponding Temp. °F. = 50 c. Thermometer on Suction Line = 61°F.
To obtain the degrees temperature of superheat, subtract
50.0 from 61.0°F. The difference is 11° Superheat. The 11° Superheat would
fall in the ± range of allowable superheat.
SUPERHEAT AND SUBCOOLING ADJUSTMENT ON TXV APPLICATIONS
1. Run system at least 10 minutes to allow pressure to stabilize.
2. Temporarily install thermometer on liquid (small) line near pressure switches with adequate contact and insulate for best possible reading.
3. Check subcooling and superheat. Systems with TXV application should have a subcooling and superheat of 12 - 15 ºF.
a. If subcooling and superheat are low, adjust TXV
to 9 ± 3ºF then check subcooling.
b. If subcooling is low and superheat is high, add
charge to raise subcooling to 10ºF then check superheat.
c. If subcooling and superheat are high, adjust TXV
valve to 12 - 15 ºF then check subcooling.
d. If subcooling is high and superheat is low, adjust
TXV valve to 12 - 15 ºF superheat and remove charge to lower the subcooling to 2 - 15 ºF.
The TXV should NOT be adjusted at light load conditions 55º to 60ºF, under such conditions only the subcooling can be evaluated. This is because suction pressure is dependent on the indoor coil match, indoor airflow, and wet bulb temperature. NOTE: Do NOT adjust charge based on suction pressure unless there is a gross undercharge.
4. Disconnect manifold set. Installation is complete.
1. Run system at least 10 minutes to allow pressure to stabilize.
2. Temporarily install thermometer on suction (large) line near compressor with adequate contact and insulate for best possible reading.
47
Page 48
SERVICING
REQUIRED LIQUID LINE TEMPERATURE
LIQUID PRESSURE
AT SERVICE VALVE (PSIG) 8 10 12 14 16 18
189 585654525048 195 605856545250 202 626058565452 208 646260585654 215 666462605856 222 686664626058 229 706866646260 236 727068666462 243 747270686664 251 767472706866 259 787674727068 266 807876747270 274 828078767472 283 848280787674 291 868482807876 299 888684828078 308 908886848280 317 929088868482 326 949290888684 335 969492908886 345 989694929088 354 100 98 96 94 92 90 364 102 100 98 96 94 92 374 104 102 100 98 96 94 384 106 104 102 100 98 96 395 108 106 104 102 100 98 406 110 108 106 104 102 100 416 112 110 108 106 104 102 427 114 112 110 108 106 104 439 116 114 112 110 108 106 450 118 116 114 112 110 108 462 120 118 116 114 112 110 474 122 120 118 116 114 112 486 124 122 120 118 116 114 499 126 124 122 120 118 116 511 128 126 124 122 120 118
REQUIRED SUBCOOLING TEMPERATURE (°F)
48
Page 49
SERVICING
S-109 CHECKING SUBCOOLING
Refrigerant liquid is considered subcooled when its tempera­ture is lower than the saturation temperature corresponding to its pressure. The degree of subcooling equals the degrees of temperature decrease below the saturation temperature at the existing pressure.
1. Attach an accurate thermometer or preferably a thermo­couple type temperature tester to the liquid line close to the pressure switch.
2. Install a high side pressure gauge on the high side (liquid) service valve at the front of the unit.
3. Record the gauge pressure and the temperature of the line.
4. Compare the hi-pressure reading to the "Required Liquid Line Temperature" chart on the following page. Find the hi-pressure value on the left column. Follow that line right to the column under the design subcooling value. Where the two intersect is the required liquid line temperature.
Alternately you can convert the liquid line pressure gauge reading to temperature by finding the gauge reading in Temperature - Pressure Chart and reading to the left, find the temperature in the °F. Column.
5. The difference between the thermometer reading and pressure to temperature conversion is the amount of subcooling.
Add charge to raise subcooling. Recover charge to lower subcooling.
Subcooling Formula = Sat. Liquid Temp. - Liquid Line Temp. EXAMPLE:
a. Liquid Line Pressure = 417 b. Corresponding Temp. °F. = 120° c. Thermometer on Liquid line = 109°F.
To obtain the amount of subcooling subtract 109°F from 120°F.
The difference is 11° subcooling. See the specification sheet or technical information manual for the design subcooling range for your unit.
S-110 CHECKING EXPANSION VALVE OPERA-
TION
1. Remove the remote bulb of the expansion valve from the suction line.
2. Start the system and cool the bulb in a container of ice water, closing the valve. As you cool the bulb, the suction pressure should fall and the suction temperature will rise.
3. Next warm the bulb in your hand. As you warm the bulb, the suction pressure should rise and the suction tem­perature will fall.
4. If a temperature or pressure change is noticed, the expansion valve is operating. If no change is noticed, the valve is restricted, the power element is faulty, or the equalizer tube is plugged.
5. Capture the charge, replace the valve and drier and evacuate.
S-111 FIXED ORIFICE RESTRICTOR DEVICES
The fixed orifice restrictor device (flowrator) used in conjunc­tion with the indoor coil is a predetermined bore (I.D.).
It is designed to control the rate of liquid refrigerant flow into an evaporator coil.
The amount of refrigerant that flows through the fixed orifice restrictor device is regulated by the pressure difference between the high and low sides of the system.
In the cooling cycle when the outdoor air temperature rises, the high side condensing pressure rises. At the same time, the cooling load on the indoor coil increases, causing the low side pressure to rise, but at a slower rate.
Since the high side pressure rises faster when the tempera­ture increases, more refrigerant flows to the evaporator, increasing the cooling capacity of the system.
When the outdoor temperature falls, the reverse takes place. The condensing pressure falls, and the cooling loads on the indoor coil decreases, causing less refrigerant flow.
A strainer is placed on the entering side of the tube to prevent any foreign material from becoming lodged inside the fixed orifice restriction device.
If a restriction should become evident, proceed as follows:
1. Recover refrigerant charge.
2. Remove the orifice or tube strainer assembly and re­place.
3. Replace liquid line drier, evacuate and recharge.
CHECKING EQUALIZATION TIME
During the "OFF" cycle, the high side pressure bleeds to the low side through the fixed orifice restriction device. Check equalization time as follows:
1. Attach a gauge manifold to the suction and liquid line dill valves.
2. Start the system and allow the pressures to stabilize.
3. Stop the system and check the time it takes for the high and low pressure gauge readings to equalize.
If it takes more than seven (7) minutes to equalize, the restrictor device is inoperative. Replace, install a liquid line drier, evacuate and recharge.
49
Page 50
SERVICING
S-112 CHECKING RESTRICTED LIQUID LINE
When the system is operating, the liquid line is warm to the touch. If the liquid line is restricted, a definite temperature drop will be noticed at the point of restriction. In severe cases, frost will form at the restriction and extend down the line in the direction of the flow.
Discharge and suction pressures will be low, giving the appearance of an undercharged unit. However, the unit will have normal to high subcooling.
Locate the restriction, replace the restricted part, replace drier, evacuate and recharge.
S-115 COMPRESSOR BURNOUT
When a compressor burns out, high temperature develops causing the refrigerant, oil and motor insulation to decom­pose forming acids and sludge.
If a compressor is suspected of being burned-out, attach a refrigerant hose to the liquid line dill valve and properly remove and dispose of the refrigerant.
NOTICE
Violation of EPA regulations may result in fines or other penalties.
S-113 OVERCHARGE OF REFRIGERANT
An overcharge of refrigerant is normally indicated by an excessively high head pressure.
An evaporator coil, using an expansion valve metering device, will basically modulate and control a flooded evaporator and prevent liquid return to the compressor.
An evaporator coil, using a fixed orifice restrictor device (flowrator) metering device, could allow refrigerant to return to the compressor under extreme overcharge conditions.
Also with a fixed orifice restrictor device (flowrator) metering device, extreme cases of insufficient indoor air can cause icing of the indoor coil and liquid return to the compressor, but the head pressure would be lower.
There are other causes for high head pressure which may be found in the "Service Problem Analysis Guide."
If other causes check out normal, an overcharge or a system containing non-condensables would be indicated.
If this system is observed:
1. Start the system.
2. Remove and capture small quantities of refrigerant as from the suction line access fitting until the head pressure is reduced to normal.
3. Observe the system while running a cooling performance test. If a shortage of refrigerant is indicated, then the system contains non-condensables.
S-114 NON-CONDENSABLES
If non-condensables are suspected, shut down the system and allow the pressures to equalize. Wait at least 15 minutes. Compare the pressure to the temperature of the coldest coil since this is where most of the refrigerant will be. If the pressure indicates a higher temperature than that of the coil temperature, non-condensables are present.
Non-condensables are removed from the system by first removing the refrigerant charge, replacing and/or installing liquid line drier, evacuating and recharging.
Now determine if a burn out has actually occurred. Confirm by analyzing an oil sample using a Sporlan Acid Test Kit, AK­3 or its equivalent.
Remove the compressor and obtain an oil sample from the suction stub. If the oil is not acidic, either a burnout has not occurred or the burnout is so mild that a complete clean-up is not necessary.
If acid level is unacceptable, the system must be cleaned by using the clean-up drier method.
CAUTIO N
Do no t allow the slud ge or oil to con tact the skin . Severe burns may result.
NOTE: The Flushing Method using R-11 refrigerant is no
longer approved by Amana® Brand Heating-Cooling.
Suction Line Drier Clean-Up Method
The POE oils used with R410A refrigerant is an excellent solvent. In the case of a burnout, the POE oils will remove any burnout residue left in the system. If not captured by the refrigerant filter, they will collect in the compressor or other system components, causing a failure of the replacement compressor and/or spread contaminants throughout the system, damaging additional components.
Use part number RF000127 suction line filter drier kit. This drier should be installed as close to the compressor suction fitting as possible. The filter must be accessible and be rechecked for a pressure drop after the system has operated for a time. It may be necessary to use new tubing and form as required.
NOTE: At least twelve (12) inches of the suction line immediately out of the compressor stub must be discarded due to burned residue and contaminates.
1. Remove compressor discharge line strainer.
2. Remove the liquid line drier and expansion valve. 3 Purge all remaining components with dry nitrogen or
carbon dioxide until clean.
4. Install new components including liquid line drier.
5. Braze all joints, leak test, evacuate, and recharge sys­tem.
50
Page 51
SERVICING
6. Start up the unit and record the pressure drop across the drier.
7. Continue to run the system for a minimum of twelve (12) hours and recheck the pressure drop across the drier. Pressure drop should not exceed 6 PSIG.
8. Continue to run the system for several days, repeatedly checking pressure drop across the suction line drier. If the pressure drop never exceeds the 6 PSIG, the drier has trapped the contaminants. Remove the suction line drier from the system.
9. If the pressure drop becomes greater, then it must be replaced and steps 5 through 9 repeated until it does not exceed 6 PSIG.
NOTICE: Regardless, the cause for burnout must be deter­mined and corrected before the new compressor is started.
S-200 CHECKING EXTERNAL STATIC PRESSURE
The minimum and maximum allowable duct static pressure is found in the Technical Information Manual.
Too great of an external static pressure will result in insuffi­cient air that can cause icing of the coil, whereas too much air can cause poor humidity control, and condensate to be pulled off the evaporator coil causing condensate leakage. Too much air can cause motor overloading and in many cases this constitutes a poorly designed system. To determine proper air movement, proceed as follows:
1. Using a draft gauge (inclined manometer) measure the static pressure of the return duct at the inlet of the unit, (Negative Pressure).
NOTE: Both readings may be taken simultaneously and read directly on the manometer if so desired.
4. Consult proper table for quantity of air. If the external static pressure exceeds the minimum or
maximum allowable statics, check for closed dampers, dirty filters, undersized or poorly laid out ductwork.
S-201 CHECKING TEMPERATURE RISE
Temperature rise is related to the BTUH output of the unit and the amount of air (CFM) circulated over the heat exchanger.
All units are designed for a given range of temperature increase. This is the temperature of the air leaving the unit minus the temperature of the air entering the unit.
The more air (CFM) being delivered through a given unit the less the rise will be; so the less air (CFM) being delivered, the greater the rise. The temperature rise should be adjusted in accordance to a given unit specifications and its external static pressure.
1. Check BTUH input to unit do not exceed input rating stamped on rating plate.
2. Take entering and leaving air temperatures.
3. Select the proper speed tap or dip switch setting for direct drive units.
4. Take motor amperage draw to determine that the motor is not overloaded during adjustments.
INCLINED
MANOMETER
SUPPLY
RETURN
Total External Static
2. Measure the static pressure of the supply duct, (Positive Pressure).
3. Add the two readings together.
T
SUPPLY
SUPPLY
RETURN
T
RETURN
RISE = SUPPLY -TRETURN
Checking Temperature Rise
T
51
Page 52
SERVICING
S-300 TESTING PRIMARY LIMIT CONTROL
APG/GPG units use a snap-disk type primary limit device. Sometimes referred to as "stat on a stick". The limit setting is fixed and must not be readjusted in the field.
COLOR
Volt / Ohm Meter
TESTING PRIMARY LIMIT CONTROL
Refer to the specification section to determine the proper limit cutout temperature for the model being serviced.
In all instances the limit control is wired in series with the ignition control.
If the temperature within the furnace should exceed this setting, the control will open, de-energizing the ignition control which in turn will open the electrical circuit to the gas valve.
The control will automatically reset when the temperature within the combustion chamber is sufficiently lowered.
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Remove electrical power to unit. Some units may have more than one source of power.
2. Remove the wires from the limit control terminals.
3. Using an ohmmeter, test for continuity across the two terminals.
4. If limit test open allow unit to cool and retest.
5. If still open, replace the control.
IDENTIFYING SLEEVES
S-301 TESTING AUXILIARY LIMIT
The auxiliary limit control is a preset nonadjustable control mounted in the blower compartment area.
It is connected in series with the rollout switch wiring to the gas valve. If its temperature should be exceeded, it will open, interrupting the voltage to the gas valve causing it to open.
An additional limit (primary limit) control is required for safety control of high temperature within the furnace or ductwork.
AUX. LIM I T
HIGH VOL TAGE! Disconnect ALL power before servicing or inst all ing th is u ni t. M ult ip le po wer sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Remove the wires from the auxiliary limit control termi­nals.
2. Using an ohmmeter, test for continuity across the two terminals. No reading indicates the control is open. Push the red reset button, test again - if still open, replace the control.
52
Page 53
SERVICING
VOLT / OHM MET ER
R E D RESET BUTTON
C OLO R ID ENTIFYING T AB
TESTING AUXILIARY LIMIT CONTROL
S-302 CHECKING FLAME ROLLOUT SWITCH
APG/GPG units are equipped with a temperature-activated manual reset control. This control is mounted to the manifold assembly and is wired in series with the auxiliary limit and gas valve. The control is designed to open should a flame roll out occur. An over firing condition or flame impingement on the heat shield can also cause the control to open.
If the rollout control has opened, the circuit between the ignition control and gas valve will be interrupted and the ignition control module will go into lockout. The servicer should reset the ignition control by opening and closing the thermostat circuit. The servicer should look for the ignitor glowing which indicates there is power to the ignition control. The servicer should measure the voltage between each side of the rollout control and ground while the ignition control is try to power the gas valve.
If a limit switch opens, the indoor blower is energized on heat speed and the induced draft blower is energized. The LED on the control flashes "4" to indicate an open limit switch. The blower and inducer remain on while the limit switch is open. The gas valve is de-energized. Power to the thermo­stat "R" is removed while the limit switch is open.
When the limit switch re-closes, the induced draft motor runs through its post purge and the indoor blower goes through the heat off delay.
If a call for heat exists when the limit switch re-closes, the control goes through a pre-purge period and then makes an ignition attempt. The indoor blower remains on (for the delay off time) during the re-ignition attempt.
1. If no voltage is measured on either side of control it indicates ignition control or wiring to control problem.
2. If voltage is measured on one side of the control and not the other, it indicates the control is open.
3. If voltage is measured on both sides of the control the wiring to gas valve or valve is at fault.
Servicing procedure with furnace not firing.
1. Confirm that the outer door was in place and all screws tightened. (No leaks under the door.)
2. Check to see if any damage was done to the furnace especially the wiring.
3. Confirm that heat exchanger is not obstructed by feeling for discharge air from the flue hood when the combustion blower is running but the unit is not firing.
If the above steps do not suggest the reason the control has tripped the furnace should be fired.
1. Remove the heating compartment door.
2. Turn of the power or open the thermostat circuit.
3. Reset the rollout control.
4. Turn power on and put the unit into a call for heating.
VOLT / OHM M E TER
RED RESET BUTTON
CHECKING FLAME ROLLOUT SWITCH
Limit Switch Operation (Applies to Primary, Auxiliary,
and Roll Out Limits) DSI systems.
CO LO R IDENTIFYING TAB
CAUTION
Flame rollout could occur. Keep face and hands a safe distan ce from burn er area.
5. Look under the heat shield as the unit is running.
Flames should be drawn into firing tubes.
a. If only one burners flame is not drawn into the tube,
that tube is restricted.
b. If, without the air circulation blower running, all
flames are not drawn into the tubes either the collector box, combustion blower, or flue outlet is obstructed. If the combustion blower or flue outlet is obstructed, the pressure switch should have opened preventing the unit from firing, also inspect the unit pressure switch and wiring.
c. If the burner flame is not drawn into the tube only
when the air circulation blower is running, then a cracked heat exchanger tube is present.
53
Page 54
SERVICING
S-303 TESTING INDUCER MOTOR
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Disconnect the motor wire leads from its connection point at integrated ignition control module.
2. Using and ohmmeter, test for continuity between each of the motor leads.
3. Touch one probe of the ohmmeter to the motor frame (ground) and the other probe in turn to each lead.
If the windings do not test continuous or a reading is obtained to ground, replace the motor.
4. After completing check and/or replacement of induced draft blower motor.
5. Turn on electrical power and verify proper unit operation.
Gas Valve
On/Off Switch
Outlet
Outlet Pressure
Tap
Inlet Pressure
Tap
Inlet
W/R 36G54-238
WHITE ROGERS MODEL 36G 2-STAGE GAS VALVE
S-304 TESTING GAS VALVE
Direct Spark Ignition (DSI) Systems
A combination redundant operator type gas valve which provides all manual and automatic control functions required for gas fired heating equipment is used on 13 SEER models.
A two-stage combination redundant operator type gas valve which provides all manual and automatic control functions required for gas fired heating equipment is used on 15 SEER models.
The valve provides control of main burner gas flow, pressure regulation, and 100 percent safety shut-off.
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Ensure gas valve and main gas supply are on.
2. Using a voltmeter, check from the purple and blue wires on 1 stage gas valves and from C and M on 2 stage gas valves for 24 volts to gas valve.
3. If 24 volts are present and no gas flows through the valve, replace valve.
W/R 36G22-202
WHITE ROGERS MODEL 36G 1-STAGE GAS VALVE
Pressu re Regulator
Inlet Pressure Tap
Gas Valve On/Off Selector Switch
(under cap screw)
Outlet Pressure Tap
HONEYWELL MODEL VR8215 1-STAGE GAS VALVE
54
Page 55
SERVICING
S-305 CHECKING MAIN BURNERS
The main burners are used to provide complete combustion of various fuels in a limited space, and transfer this heat of the burning process to the heat exchanger.
Proper ignition, combustion, and extinction are primarily due to burner design, orifice sizing, gas pressure, primary and secondary air, vent and proper seating of burners.
BECKETT BURNER
WARNING
Disconnect gas and el ectr ical po wer sup ply.
In checking main burners, look for signs of rust, oversized and undersized carry-over ports restricted with foreign material, etc.
S-306 CHECKING ORIFICES
A predetermined fixed gas orifice is used in all of these furnaces. That is an orifice which has a fixed bore and position.
A
GAS STREAM
B
DENT OR BURR
GAS
STREAM
The length of Dimension "A" determines the angle of Gas Stream Defraction, "B".
A dent or burr will cause severe deflection of gas stream. No resizing should be attempted until all factors are taken into
consideration such as inlet manifold gas pressure, align­ment, and positioning, specific gravity and BTU content of the gas being consumed.
The only time resizing is required is when a reduction in firing rate is required for an increase in altitude.
Orifices should be treated with care in order to prevent damage. They should be removed and installed with a box­end wrench in order to prevent distortion. In no instance should an orifice be peened over and redrilled. This will change the angle or deflection of the vacuum effect or entraining of primary air, which will make it difficult to adjust the flame properly. This same problem can occur if an orifice spud of a different length is substituted.
B
WARNING
Discon nec t gas an d ele ctric al po we r su pply.
1. Check orifice visually for distortion and/or burrs.
2. Check orifice size with orifice sizing drills.
3. If resizing is required, a new orifice of the same physical size and angle with proper drill size opening should be installed.
S-307 CHECKING GAS PRESSURE
Gas inlet and manifold pressures should be checked and adjusted in accordance to the type of fuel being consumed.
55
Page 56
SERVICING
A
WARNING
Disconnect gas an d electrical powe r supply.
1. Connect a water manometer or adequate gauge to the inlet pressure fitting of the gas valve.
2. Remove the pressure tap fitting at the manifold if provided or check at the gas valve outlet fitting and connect another manometer or gauge.
Open to Atmosphere
Inlet Pressure Tap
Gas Valve On/Off Selector Switch
Pressu re Regulator (under cap screw)
Outlet Pressure Tap
Open to
tmosphere
Low Pressure
Adjust
High Pressure
Adjust
Open to Atmosphere
Outlet
Gas Valve
On/Off Switch
Manometer
Inle t Pressure
Hose
Tap
Outlet Pressur e
Tap
Manometer
Hose
Inlet
Open to Atmosphere
Manometer
WHITE ROGERS MODEL 36G 2-STAGE GAS VALVE
Open to Atmosphere
Open to Atmosphere
Inlet Pressure
Manifold Pressure
HONEYWELL MODEL VR8215 1-STAGE GAS VALVE
MEASURING INLET AND MANIFOLD GAS PRESSURE
With Power ON:
WARNING
Line Voltage now present.
3. Put furnace into heating cycle and turn on all other gas consuming appliances.
For NATURAL GAS:
a. Inlet pressure should be a nominal 7" w.c. b. (2 stage heat models only) Manifold pressure on
low stage should be 2.0” w.c. ± .3"w.c.
c. Manifold pressure for 1 stage heat models and high
stage for 2 stage heat models should be 3.5” ± .3"w.c.
For PROPANE GAS:
a. Inlet pressure should be a nominal 11" w.c. b. (2 stage heat models only) Manifold pressure on
low stage should be 6" w.c.
c. Manifold pressure for 1 stage heat models and high
stage for 2 stage heat models should be 10” w.c.
Inlet Pressure
WHITE ROGERS MODEL 36G 1-STAGE GAS VALVE
56
Manifold Pressure
Manifold Gas Pressure
Natural Gas 3.5" w.c.
Propane Gas 10.0" w.c.
Single Stage
Manifold Gas Pressure
Gas
Natural Low Stage 1.6 - 2.2" w.c. 2.0" w.c.
Propane Low Stage 5.7 - 6.3" w.c. 6.0" w.c.
High Stage 3.2 - 3.8" w.c. 3.5" w.c.
High Stage 9.7 - 10.3" w.c. 10.0" w.c.
Range
Nominal
Two Stage
Page 57
SERVICING
If operating pressures differ from above, make necessary pressure regulator adjustments, check piping size, etc., and/ or consult with local utility.
S-308 CHECKING FOR DELAYED IGNITION
Delayed ignition is a delay in lighting a combustible mixture of gas and air which has accumulated in the combustion chamber.
When the mixture does ignite, it may explode and/or rollout causing burning in the burner venturi.
If delayed ignition should occur, the following should be checked:
1. Improper gas pressure - adjust to proper pressure. (See S-307)
2. Improper burner positioning - burners should be in locat­ing slots, level front to rear and left to right.
3. Carry over (lighter tube or cross lighter) obstructed ­clean.
4. Main burner orifice(s) deformed, or out of alignment to burner - replace.
S-309 CHECKING FOR FLASHBACK
Flashback will also cause burning in the burner venturi, but is caused by the burning speed being greater than the gas-air flow velocity coming from a burner port.
Flashback may occur at the moment of ignition, after a burner heats up or when the burner turns off. The latter is known as extinction pop.
Since the end results of flashback and delayed ignition can be the same (burning in the burner venturi) a definite attempt should be made to determine which has occurred.
If flashback should occur, check for the following:
1. Improper gas pressure - adjust to proper pressure. See S-307.
2. Check burner for proper alignment and/or replace burner.
33.Improper orifice size - check orifice for obstruction.
If the pressure switch opens before the ignition period, the induced draft blower will remain on and the control will stay in pre-purge until the pressure switch is closed for an entire 15 second pre-purge period. The LED will flash a code of "3" to indicate open pressure switch.
If the pressure switch opens after the gas valve has been energized, the control will de-energize the gas valve and run the indoor blower through the heat off delay. The inducer stays on until the pressure switch re-closes. Then the control makes another ignition attempt.
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Remove wires from the electrical terminals.
2. Using a VOM check from Common to NO (Normally Open) - should read open.
If switch reads as noted proceed to Step 3, otherwise replace control.
3. Remove the pressure control hose from the control and interconnect with an inclined manometer as shown:
HOSE TO J-TUBE
1/4" CO PPER TEE
PRESSURE SWITCH
INCLINED
MANOMETER
Reconnect wires to the Common and NO terminals.
With Power ON:
S-310 CHECKING PRESSURE CONTROL
A pressure control device is used to measure negative pressure at the induced draft blower motor inlet to detect a partial or blocked flue.
Pressure Switch Operation (DSI Direct Spark System)
The pressure switch is ignored unless there is a call for heat. When the control receives a call for heat, the control checks to see that the pressure switch is open. If the control sees that the pressure switch is closed before the induced draft blower is energized, the LED will flash a code of "2" (to indicate the pressure switch is stuck closed) and the inducer will remain off until the pressure switch opens.
WARNING
Line Voltage now present.
4. Energize furnace for heating cycle. The induced draft blower motor will begin to run. The inclined manometer should read approximately -1.2" ± 0.3" W.C with no combustion.
5. Remove and check the two electrical wires and using the VOM check from Common to NO (Normally Open), it should read closed (with I.D. motor running). If not as above, replace pressure control.
6. Reconnect all wires to the control and place in heating cycle.
7. As the unit fires on high stage, the inclined manometer negative pressure will drop to -1.0" ± 0.3" W.C.
57
Page 58
SERVICING
8. If not as listed, replace control. Note: the pressure switch must be mounted with the dia-
phragm in a vertical position.
S-311 HIGH ALTITUDE APPLICATION
High Altitude Derate - U.S. Installations Only
IMPORTANT NOTE: The gas/electric units naturally derate
with altitude. Do not attempt to increase the firing rate by changing orifices or increasing the manifold pressure. This can cause poor combustion and equipment failure. At all altitudes, the manifold pressure must be within 0.3 inches W.C. of that listed on the nameplate for the fuel used. At all altitudes and with either fuel, the air temperature rise must be within the range listed on the unit nameplate. Refer to the Installation Manual provided with the LP kit for conversion from natural gas to propane gas and for altitude adjustments.
When this package unit is installed at high altitude, the appropriate High Altitude orifice kit must be installed. As altitude increases, there is a natural reduction in the density of both the gas fuel and combustion air. This kit will provide the proper design certified input rate within the specified altitude range. High altitude kits are not approved for use in Canada. For installations above 2,000 feet, use kit HA-02. The HA-02 kit is used for both Natural and LP gas at high altitudes.
Use LPM-05 (2 stage heat models) or LPT-03 (1 stage heat models) propane conversion kit for propane conversions at altitudes below 2000 feet. Natural gas installations below 2000 feet do not require a kit.
(LPT-00A may be used on models with AA revisions. LPT­03 is compatible with both the White Rodgers and the Honeywell gas valves.)
S-313 TESTING IGNITION CONTROL MODULE
NOTE: Failure to earth ground the unit, or a high resistance
connection in the ground may cause the control to lockout due to failure to flame sense.
L2
FS
C9
U6
5
4
U7
3
U4
2
1
U5
INDUCER
LOW
T1
K4
Q3
T2
U3
HIGH
U1
K3 K5
L1
U2
LOW
ODF
K7
HIGH
PARK
K6
P2
K2
K1
For propane conversions above 2000 feet, high altitude kit HA-02 is required in addtion to the propane conversion kit.
Natural gas and LP gas installations at altitudes > 2000 ft
INPUT/BURNER
U.S. BURNER ORIFICE 45/55 47/55 47/56 - 47/56 48/57 48/58 49/58
CANADA BURNER ORIFICE 45/55 - - 48/57 - - - -
INPUT/BURNER
U.S. BURNER ORIFICE 44/55 44/55 45/56 - 45/56 46/57 47/58 47/58
CANADA BURNER ORIFICE 44/55 - - 47/57 - - - -
INPUT/BURNER
U.S. BURNER ORIFICE 43/55 53/55 44/56 - 44/56 44/56 45/57 45/57
CANADA BURNER ORIFICE 43/55 - - 46/57 - - - -
HIGH ALTITUDE
KIT
HA02
HIGH ALTITUDE
KIT
HA02
HIGH ALTITUDE
KIT
HA02
20,000 BTUH NAT/20,OOO BTUH/L.P.
ELEVATION ABOVE SEA-LEVEL (FEET)
2000 3000 4000 4500 5000 6000 7000 8000
22,500 BTUH NAT/20,OOO BTUH/L.P.
ELEVATION ABOVE SEA-LEVEL (FEET)
2000 3000 4000 4500 5000 6000 7000 8000
25,000 BTUH NAT/20,OOO BTUH/L.P.
ELEVATION ABOVE SEA-LEVEL (FEET)
2000 3000 4000 4500 5000 6000 7000 8000
58
180
SPEEDUP
SW1
FAULT
RECALL
150 120
90
BLOWER
OFF
DELAY
NONE 5 MIN 10MIN
STAGE DELAY
F1
ECON
RCW1W2G Y2
Y1
PCBAG100 DSI Control Board
Testing Direct Spark Ignition (DSI) Systems PCBAG100 Board
Heating Mode
Indoor thermostat calling for heat (15 second prepurge time and 7 second trial for ignition).
1. Check for 230 volts from L1 terminal of control module to L2. No voltage - check wire connections, continuity, etc.
Page 59
SERVICING
2. Check for 24 volts at "R" to "C" thermostat terminals. a. No voltage - check 3 amp automotive type fuse on
control board. A blown fuse could indicate a short in the 24 volt circuit (thermostat or limit circuit).
b. Voltage Present - check limit and rollout (S-301
and S-302). If limit and rollout are closed, then check for 24 VAC at the gas valve terminals.
c. No 24 VAC at gas valve - check 9 pin connector
and wires from ignition control to gas valve. If wires and connections at 9 pin connector check good, replace ignition control.
d. Voltage present at gas valve - replace gas valve.
Testing High Stage Heat Operation with Low Stage Heat Operating:
1. Board set for 2 stage thermostat: a. Check for 24 Volts at thermostat terminals W2
and C on the control board.
b. No voltage - check thermostat and thermostat
wiring.
c. Voltage present - check for 24 volts at gas valve
terminals C and HI.
d. No voltage present at valve - check 9 pin connector
and wires from ignition control to gas valve. If wires and connections at 9 pin connector check good, replace ignition control.
e. Voltage present at gas valve - replace gas valve.
2. Board set for 1 stage thermostat: a. Wait the selected delay time (either 5 or 10
minutes, depending on jumper setting). b. Check for 24 volts at gas valve terminals C and HI. c. No voltage present - check 9 pin connector and
wires from ignition control to gas valve. If wires and
connections at 9 pin connector check good,
replace ignition control. d. Voltage present at gas valve terminals C and HI -
replace valve.
b. Voltage present - check pressure switch circuit. If
pressure switch circuit checks closed, proceed to step 4.
4. Check for 24 volts at contactor coil. a. No voltage - check 6 pin connector and wires from
contactor coil to 6 pin connector on control board. If wires and connector check good, replace con­trol.
b. Voltage present - replace contactor.
Testing High Stage Cooling Operation with Low Stage Cooling Operating:
1. Board set for 2 stage thermostat: a. Check for 24 volts at thermostat terminals C and
Y2 on control board.
b No voltage - check thermostat and thermostat
wiring.
c. Voltage present - check pressure switch circuit. If
pressure switch circuit checks closed, proceed to next step.
d. Check for 24 volts to compressor unloader sole-
noid. If no voltage present, check 6 pin connector and wires from compressor unloader solenoid to 6 pin connector on board. If connector and wires check good, replace control.
2. Board set for 1 stage thermostat: a. Wait the selected delay time (either 5 or 10
minutes, depending on jumper setting)
b. Check for 24 volts at compressor unloader sole-
noid.
c. No voltage - check 6 pin connector and wires from
compressor unloader solenoid to 6 pin connector on board. If connector and wires check good, replace control.
Cooling Mode
Indoor thermostat calling for cool.
1. Check for 230 volts from L1 terminal of control module to L2. No voltage - check wire connections, continuity, etc.
2. Check for 24 volts at R and C thermostat terminals on ignition control.
a. No voltage - check 3 amp automotive type fuse on
control board. A blown fuse could indicate a short in the 24 volt circuit.
b. Voltage present - proceed to step 3.
3. Check for 24 volts at thermostat terminals C and Y1.
a. No voltage - check thermostat wiring and thermo-
stat.
59
Page 60
SERVICING
LED
Flashes/Status
Internal Control Fault, M ic ro Controller
Off
Detected Hardware Failure, or Gas V alve Detec te d E nergize d When it S hou ld be De-energized
1 Lock out Due t o E x ce s s ive Retries 2 Pressure Switch Stuck Closed 3 Pressure Switch Stuck Open 4 Open High Temp erature Lim it
5
Flam e P res ent O uts id e the F lam e Detect Mode
6 Com press or Short Cy c le Delay A c t ive 7
8
9
Limit Opened Five Times within the Sam e Call for Heat Indoor Thermos t at/ O utd oor Thermos t at is Op en Pres s ure S witc h/ Los s of Charge Swit c h is Op en
St eady O N Normal
Red LED Fault Codes
LED
Flashes/Status
2
Flame Present Outside the Flame Detect Mode
1 Low Flame Signal Current
Steady ON Normal Flame
OFF No Flame Present
Amber LED Flame Status Codes
NOTE: The flash rate is 0.25 seconds on, 0.25 seconds
off, with a 2-second pause between codes.
NORMAL SEQUENCE OF OPERATION (DSI Direct Spark Ignition System) PCBAG123 Board
1. Thermostat calls for heat by energizing "W". The control checks the pressure switch for open condition. If the pressure switch is closed the control will flash code "3" and wait for the pressure switch to open.
2. The induced draft motor is energized and the control flashes code "2" and waits for the pressure switch to close. Once the pressure switch is closed, the LED stops flashing and the control begins timing the 15 second pre­purge.
System Condition
Flame Condition
Blower Off Delay Setti ngs
L2 L2 L2
Diagnostic LED
COOL HEAT
UNUSED
L2
L1 D1
L1
FS
2
3
54
6
987
121110
1
speed up
Transformer
DSI Control Board
3. The control energizes the spark igniter and gas valve for 7 seconds. If flame is established, the control goes into a 30 second heat on delay.
4. The indoor blower is energized at the heat speed after a 30 second on delay.
5. The control monitors the safety circuit inputs, flame, and thermostat during operation.
6. When the thermostat is satisfied, the gas valve is de­energized and the induced draft blower remains on for a 29 second post purge. The indoor blower remains on for the selected heat blower off delay (90, 120, or 150 seconds). Indoor blower off timing begins when thermo­stat call for heat ends.
Testing Direct Spark Ignition (DSI) systems
Thermostat calling for heat (15 second prepurge time and 7 second trial for ignition).
1. Check for 230 VAC from L1 terminal of control module to L2. No voltage - check wire connections, continuity, etc.
2. Check for 24 VAC at "R" to "C" thermostat terminals.
a. No voltage - check 3 amp automotive type fuse on
control board. A blown fuse would indicate a short in the 24 VAC circuit (thermostat or limit circuit).
b. Voltage Present - check limit, auxiliary limit and
rollout (S-300, S-301 and S-302). If limit, auxiliary limit and rollout are closed, then check for 24 VAC at the gas valve terminals.
No 24 VAC at gas valve - replace Control board.
60
Page 61
SERVICING
B1809918 Ignition Board Fault Codes
Status Light
On Normal Operation
Off
1 Blink
2 Blinks Pressure Switch Open Check Pressure Switch
3 Blinks
4 Blinks 5 Blinks False Flame Sensed Sticking Gas Valve 6 Blinks
Equipment Status
No Power or
Internal Control Fault
Ignition Failure,
Open Rollout Switch,
or Open Aux. Limit
Switch
Pressure Switch
Closed
Open Main Limit
Switch
Compressor Output
Delay
Check
Check Input Power,
Check Fuse on Control,
Replace Control
Check Gas Flow,
Check Gas Pressure,
Check Gas Valv e, Check Flame Sensor, Check Flame Rollout,
Check Aux. Limit.
Check Pressure Switch
Main Limit Switch Open
3 Minute Compressor
Anti-Cycle Timer
NOTE: The flash rate is 0.25 seconds on, 0.25 seconds off, with a 2-second pause between codes.
S-314 CHECKING FLAME SENSOR
A flame sensing device is used in conjunction with the ignition control module to prove combustion. If a microamp signal is not present the control will de-energize the gas valve and "retry" for ignition or lockout.
DSI Direct Spark Ignition Systems
HIGH VOLTAGE! Disconnect ALL power before servicing or insta llin g th is un it. M ult iple powe r sources may be present. Failure to do so may cause property damage, personal injury or death.
1. Disconnect the flame sensor wire from terminal FS of the ignition control module.
Flame Sensor
Flame Sensor
2. Connect a microamp meter in series with this wire and terminal FS.
3. Be sure the negative side of the meter is to the wire and the positive of the meter is to terminal FS.
4. Turn on Power.
WARNING
Line Voltage now present.
5. With Power ON, Place the unit into a heating cycle.
6. As soon as flame is established a microamp reading should be evident once proof of flame (microamp reading) is established, the hot surface ignitor will be de-ener­gized.
7. The nominal microamp reading is 4 microamps.
8. If the microamp current is less than 0.5 microamp the control will lockout and flash a code of 1 flash after attempting to reestablish flame sense.
9. If the microamp reading is less than the minimum speci­fied, check for high resistance wiring connections, the distance (3/16") between the sensor and burner, flame sensor connections, dirty flame sensor or poor ground­ing.
10.If no reading, check for continuity on all components and if good - replace ignition control module.
NOTE: Contaminated fuel or combustion air can create a nearly invisible coating on the flame sensor. This coating works as an insulator causing a loss in the flame sense signal. If this situation occurs the flame sensor must be cleaned with steel wool. Do not use sand paper, the silicone in sand paper will further contaminate the sensor.
61
Page 62
ACCESSORIES WIRING DIAGRAMS
HIGH VOLTAGE! DISCONNECT ALL POWER BEFORE SERVICING OR INSTALLING THIS UNIT. MULTIPLE POWER SOURCES MAY BE PRESENT . FAILURE TO DO SO MAY CAUSE PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.
6 4
1K RELAY
CONTACTS
WB
T
1
T
R
ECONOMIZER
TR
TR1
P
JUMPER
1
P
BLUE
INSTALL AS SHOWN
POTENTIOMETER OPTIONAL
MINIMUM DAMPER POSITION
BARBER COLEMAN AD-931-105
1K
COIL
RELAY
1K RELAY
A B
WIRING DIAGRAM
GOODMAN MANUFACTURING CO.
50F
LOCKOUT
THERMOSTAT
COMPRESSOR
PINK
1K RELAY
2
1 3
ORANGE
WHITE
3
1
ENTHALPY
2
CONTROL
ORANGE
MODEL PGED(H)101/102 ECONOMIZER
GREEN
BLUE
C
G
YELLOW
Y
Wiring is subject to change. Always refer to the wiring diagram on the unit for the most up-to-date wiring.
62
PINK
MULTI-STAGE T'STAT
GMC# CHT90-120
Y2
(OR EQUIVALENT)
Y1
GMC( CHT90-120 OR EQUIVALENT)
NOTE: RECOMMEND MULTI-STAGE T'S TAT
Page 63
ACCESSORIES WIRING DIAGRAMS
HIGH VOLTAGE! DISCONNECT ALL POWER BEFORE SERVICING OR INSTALLING THIS UNIT. MULTIPLE POWER SOURCES MAY BE PRESENT . FAILURE TO DO SO MAY CAUSE PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.
ECONOMIZER
GPC13MED102 & 103 FOR *PG13 & 15**M4*
(WIRING DIAGRAM FOR USE WITH ECONOMIZERS BUILT SINCE MARCH 2008)
Wiring is subject to change. Always refer to the wiring diagram on the unit for the most up-to-date wiring.
(WIRING DIAGRAM FOR USE WITH ECONOMIZERS BUILT SINCE MARCH 2008)
63
Loading...