The G576 PC Card power-interface switch provides an
integrated power-management solution for dual-slot
PC Cards. All of the discrete power MOSFETs, a logic
section, current limiting, and thermal protection for PC
Card control are combined on a single integrated circuit. The circuit allows the distribution of 3.3V, 5V,
and/or 12V card power, and is compatible with many
PCMCIA controllers. The current-limiting feature
eliminates the need for fuses, which reduces component count and improves reliability. Current-limit reporting can help the user isolate a system fault to the
PC Card.
The G576 features a 3.3V low voltage mode that allows for 3.3V switching without the need for 5V. Bias
power can be derived from either the 3.3V or 5V inputs.
This facilitates low-power system designs such as
sleep mode and pager mode where only 3.3V is
available.
Features
Fully Integrated VCC and VPP Switching for
Dual-Slot PC Card
Low r
Switch)
3.3V Low-Voltage Mode
Meets PC Card Standards
12V Supply Can Be Disabled Except During
12V Flash Programming
Short Circuit and Thermal Protection
28 Pin SSOP
Compatible With 3.3V, 5V, and 12V PC Cards
Break-Before-Make Switching
Application
Notebook PC
Electronic Dictionary
Personal Digital Assistance
Digital still Camera
G576
Pin Configuration
AVCC
AVCC
AVPPD1
AVPPD1
AVPPD0
AVPPD0
ASHDN
ASHDN
AVCCD0
AVCCD0
AVCCD1
AVCCD1
VCC3
VCC3
VCC5
VCC5
VCC5
VCC5
GND
GND
BOC
BOC
VCC12
VCC12
BVPP
BVPP
BVCC
BVCC
10
10
11
11
12
12
13
13
14
14
End equipment for the G576 includes notebook computers, desktop computers, personal digital assistants
(PDAs), digital cameras and bar-code scanners.
Ordering Information
PART NUMBER TEMP. RANGE PACKAGE
G576 -40°C to +85°C 28-SSOP
G576
G576
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
28
28
27
27
26
26
25
25
24
24
23
23
22
22
21
21
20
20
19
19
18
18
17
17
16
16
15
15
AVCC
AVCC
AVPP
AVPP
VCC12
VCC12
AOC
AOC
GND
GND
VCC5
VCC5
VCC5
VCC5
VCC3
VCC3
BVCCD1
BVCCD1
BVCCD0
BVCCD0
BSHDN
BSHDN
BVPPD0
BVPPD0
BVPPD1
BVPPD1
BVCC
BVCC
Ver: 1.0
Jan 23, 2003
28Pin SSOP
28Pin SSOP
1
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
Typical PC-card Power-distribution application
AVCC
AVCC
AVCC
AVCC
AVCCD0
12V
12V
5V
5V
3.3V
3.3V
Controller
Controller
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
PCMCIA
PCMCIA
From CPU
From CPU
From CPU
From CPU
1µF
1µF
1µF
1µF
1µF
1µF
AVCCD0
AVCCD1
AVCCD1
AVPPD0
AVPPD0
AVPPD1
AVPPD1
BVCCD0
BVCCD0
BVCCD1
BVCCD1
BVPPD0
BVPPD0
BVPPD1
BVPPD1
ASHDN
ASHDN
BSHDN
BSHDN
VCC12
VCC12
VCC12
VCC12
VCC5
VCC5
VCC5
VCC5
VCC5
VCC5
VCC5
VCC5
VCC3
VCC3
VCC3
VCC3
G576
G576
GND
GND
GND
GND
AVPP
AVPP
BVCC
BVCC
BVCC
BVCC
BVPP
BVPP
AOC
AOC
BOC
BOC
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
0.1µF
To CPU
To CPU
To CPU
To CPU
V
V
CC1
CC1
V
V
CC2
CC2
V
V
PP1
PP1
V
V
PP2
PP2
V
V
CC1
CC1
V
V
CC2
CC2
V
V
PP1
PP1
V
V
PP2
PP2
PC Card
PC Card
Connector
Connector
A
A
PC Card
PC Card
Connector
Connector
B
B
G576
Terminal Functions
TERMINAL
NAME NO.
AVCC 1,28 O Switched output that delivers 0V, 3.3V, 5V, or high impedance to card
AVPPD1 2 I Logic input that controls voltage of AVPP (see control-logic table)
AVPPD0 3 I Logic input that controls voltage of AVPP (see control-logic table)
ASHDN
0AVCCD
1AVCCD
VCC3 7,21 I 3.3V VCC input for card power and/or chip power if 5V is not present
VCC5 8,9,22,23 I 5V VCC input for card power and/or chip power
GND 10,24 Ground
BOC
VCC12 12,26 I 12V VPP input card power
BVPP 13 O Switched output that delivers 0V, 3.3V, 5V, 12V or high impedance to card
BVCC 14,15 O Switched output that delivers 0V, 3.3V, 5V, or high impedance to card
BVPPD1 16 I Logic input that controls voltage of BVPP (see control-logic table)
BVPPD0 17 I Logic input that controls voltage of BVPP (see control-logic table)
BSHDN
AOC
0BVCCD
1BVCCD
AVPP 27 O Switched output that delivers 0V, 3.3V, 5V, 12V or high impedance to card
4 I Logic input that shuts down AVPP/AVCC and sets AVPP/AVCC to high-impedance state
5 I Logic input that controls voltage of AVCC (see control-logic table)
6 I
11 O Logic-level overcurrent reporting output that goes low when an overcurrent condition exists
18 I Logic input that shuts down BVPP/BVCC and set BVPP/BVCC to high-impedance state
19
20
25 O Logic-level overcurrent reporting output that goes low when an overcurrent condition exists
I/O DESCRIPTION
Logic input that controls voltage of AVCC (see control-logic table)
I Logic input that controls voltage of BVCC (see control-logic table)
I
Logic input that controls voltage of BVCC (see control-logic table)
Ver: 1.0
Jan 23, 2003
2
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings Over Operating
Free-Air Temperature
Input voltage range for card power:
VCC5.......................................………..…….-0.3V to 7V
VCC3.....…...........................…….……... -0.3V to 7V
VCC12.....................................……..…….-0.3V to 14V
Logic input voltage...................….........…….-0.3V to 7V
Output current (each card):I
I
Operating virtual junction temperature range, T
.........…............……………..…….………-40°C to 150°C
*
Stresses beyond those listed under "absolute maximum ratings”may cause permanent damage to the device. These are stress rating
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions”is not implied. Exposure to absolute–maximum-rated conditions for extended periods may affect device reliability.
Note 1: ESD (electrostatic discharge) sensitive device. Proper ESD precautions are recommended to avoid performance degradation or
less of functionality.
(unless other-wise noted)*
O (AVCC/BVCC)..
O(AVPP/BVPP)..…
internally limited
internally limited
J.
Operating free-air temperature range,.T
……………………………………………………………..……………..
Storage temperature range, T
STG
………………………...........….....……….-55°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for
10 seconds.……..………………………………...….260°C
Thermal resistance
θ
JA
SSOP 28……………………………………….….125°C/W
Power dissipation P
*Pulse-testing techniques maintain junction temperature close to ambient temperatures; thermal effects must be taken into account separately.
Clamp low voltage IPP at 10mA 0.18 0.8 V
Clamp low voltage ICC at 10mA 0.13 0.8 V
Leakage current
Input current
Short-circuit Output-
3.3V to AVCC/BVCC VCC5 = 0V, VCC3 =3.3V 130 180
5V to AVPP/BVPP TJ = 25°C 3.6 6
3.3V to AVPP/BVPP TJ = 25°C 3.4 6
12V to AVPP/BVPP T
IPP high-impedance State TA = 25°C 1 10
I
high-impedance State TA = 25°C 1 10
CC
VCC5 = 5V V
VCC5= 0V, VCC3 = 3.3V V
Shutdown mode V
I
O(AVCC/BVCC)
I
O(AVPP/BVPP)
0.8 2.2 A I
= 25°C 1.2 6
J
O (AVCC/BVCC)
O (AVCC/BVCC)
O (AVCC/BVCC)=VO (AVPP/BVPP)
Output powered into a short to GND
=5V, V
=3.3V, V
O (AVPP/BVPP)
O (AVPP/BVPP)
=12V 75 150
=12V 75 150
= Hi-Z 1 3
120 400 mA
mΩ
Ω
µA
µA
Ver: 1.0
Jan 23, 2003
3
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G576
Logic Section
PARAMETER TEST CONDITION* MIN MAX UNIT
Logic input current 1 µA
Logic input high level 2 V
Logic input low level 0.8 V
Logic output high level
VCC5=5V, IO=1mA VCC5 -0.4
VCC5=0V, I
=1mA, VCC3=3.3V VCC3 -0.4
O
V
Logic output low level IO=1mA 0.4 V
*Pulse-testing techniques maintain junction temperature close to ambient temperatures; thermal effects must be taken into account sepa-
rately.
Switching Characteristics **
PARAMETER TEST CONDITION MIN TYP MAX UNIT
t
Rise times, output
r
t
Fall times, output
f
V
V
V
V
VI (
t
Propagation delay
pd
(see Figure 1)
VI (
V
**Switching Characteristics are with CL = 147µF.
§ Refer to Parameter Measurement Information
O (AVCC/BVCC)
O (AVPP/BVPP)
O (AVCC/BVCC)
O (AVPP/BVPP)
AVPPD0/BVPPD0
(
I
2.6
10
7.5
ms
38
) to V
O (AVPP/BVPP)
/
) to V
1AVCCD
1BVCCD
O (AVCC/BVCC)
/
0AVCCD
) to V
0BVCCD
O (AVCC/BVCC)
(3.3V)
(5V)
ton 14
44
t
off
ton 3.2
17
t
off
ton 4.4
20
t
off
ms
Parameter Measurement Information
AVCC
LOAD CIRCUIT
50%
)
t
on
VOLTAGE WAVEFORMS
90%
C
50%
L
V
DD
t
off
10%
GND
V
GND
I(3.3V)
FIGURE
(V
V
I(VPPD1)
V
I(VPPD0)
O(AVPP)
=0V)
AVPP
50%
t
on
VOLTAGE WAVEFORMS
C
LOAD CIRCUIT
50%
90%
L
V
DD
t
off
10%
GND
V
GND
I(12V)
V
I(VCCD1)
(V
I(VCCD0)=VDD
V
O(AVCC)
Figure 1. Test Circuits and Voltage Waveforms
Table of Timing Diagrams
AVCC/BVCC Propagation Delay and Rise Time W ith 1µF Load, 3.3V Switch 2
AVCC/BVCC Propagation Delay and Fall Time W ith 1µF Load, 3.3V Switch 3
AVCC/BVCC Propagation Delay and Rise Time W ith 147µF Load, 3.3V Switch 4
AVCC/BVCC Propagation Delay and Fall Time W ith 147µF Load, 3.3V Switch 5
AVCC/BVCC Propagation Delay and Rise Time W ith 1µF Load, 5V Switch 6
AVCC/BVCC Propagation Delay and Fall Time W ith 1µF Load, 5V Switch 7
AVCC/BVCC Propagation Delay and Rise Time W ith 147µF Load, 5V Switch 8
AVCC/BVCC Propagation Delay and Fall Time W ith 147µF Load, 5V Switch 9
AVPP/BVPP Propagation Delay and Rise Time W ith 1µF Load, 12V Switch 10
AVPP/BVPP Propagation Delay and Fall Time W ith 1µF Load, 12V Switch 11
AVPP/BVPP Propagation Delay and Rise Time With 147µF Load, 12V Switch 12
AVPP/BVPP Propagation Delay and Fall Time W ith 147µF Load, 12V Switch 13
Ver: 1.0
Jan 23, 2003
4
TEL: 886-3-5788833
http://www.gmt.com.tw
Loading...
+ 8 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.