SiRF starⅢ high performance GPS Chip Set
Very high sensitivity (Tracking Sensitivity: -159 dBm)
Extremely fast TTFF (Time To First Fix) at low signal level
Compact size (36.4mm * 35.4 mm * 8.3mm) suitable for space-sensitive application
Support NMEA 0183 and SiRF binary protocol
Position 10 meters, 2D RMS
5 meters, 2D RMS, WAAS enabled
Velocity 0.1 m/s
Time 1us synchronized to GPS time
Datum
Default WGS-84
Acquisition Time
Reacquisition 0.1 sec., average
Hot start 1 sec., average
Warm start 38 sec., average
Cold start 42 sec., average
Dynamic Conditions
Altitude 18,000 meters (60,000 feet) max
Velocity 515 meters /second (1000 knots) max
Acceleration Less than 4g
Page 3
Jerk 20m/sec **3
Power
Main power input 3.3V DC input
Power consumption 75mA (Continuous mode)
Interface
Dimension 36.4mm * 35.4mm * 8.3mm
Baud rate 4,800 to 57,600 bps adjustable
Electrical level TTL level, Output voltage level: 0V ~ 2.85V
Output message SiRF binary or
NMEA 0183 GGA, GSA, GS V, RMC, VTG, GLL
Environmental
Operating Temp -40℃ to +85℃
Page 4
Dimensions
Page 5
Pin Assignment
Pin description
* VIN (DC power input):
This is the main DC supply for a 3.3V DC input power module board.
* GPS-TX:
This is the main transmits channel for outputting navigation and measurement
data to user’s navigation software or user written software.
Output TTL level, 0V ~ 2.85V
* GPS-RX:
This is the main receive channel for receiving software commands to the engine
board from SiRFdemo software or from user written software.
* GND:
GND provides the ground for the engine board. Connect all grounds.
* Enable/Disable:
On/Off
Page 6
SOFTWARE COMMAND
$
p
r
N
N N
m
t
N
p
d
d
d
d
NMEA Output Command
GGA-Global Positioning System Fixed Data
Table B-2 contains the values for the following example:
rotocol heade
UTC Time 161229.487hhmmss.sss
Latitude 3723.2475ddmm.mmmm
/S Indicator
=north or S=south
Longitude 12158.3416dddmm.mmm
E/W Indicator W E=east or W=wes
Position Fix Indicator 1 See Table B-3
Satellites Used 07 Range 0 to 12
HDOP 1.0 Horizontal Dilution of Precision
MSL Altitude
1
9.0 meters
Units M meters
Geoid Separation
1
meters
Units M meters
Age of Diff. Corr.second
ull fields when DGPS is not used
Diff. Ref. Station ID 0000
Checksum *18
<CR><LF> End of message termination
SiRF Technology Inc. does not support geoid corrections. Values are WGS84 ellipsoid heights.
Table B-3 Position Fix Indicator
Value Descri
0Fix not available or invali
1GPS SPS Mode, fix vali
2Differential GPS, SPS Mode , fix vali
3GPS PPS Mode, fix vali
tion
Page 7
p
$
p
r
N
N
m
t
GLL-Geographic Position-Latitude/Longitude
Table B-4 contains the values for the following example:
$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C
Table B-4 GLL Data Format
Name Exam
Message ID
GPGLL GLL
leUnits Description
rotocol heade
Latitude 3723.2475ddmm.mmmm
/S Indicator n
=north or S=south
Longitude 12158.3416dddmm.mmm
E/W Indicator W E=east or W=wes
UTC Position 161229.487hhmmss.sss
Status A A=data valid or V=data not valid
Checksum *2C
<CR><LF> End of message termination
Table B-5 contains the values for the following example:
Name Example Units Description
Message ID $GPGSAGSA protocol header
Mode1 A See Table B-6
Mode2 3 See Table B-7
Satellite Used
Satellite Used
…..
Satellite Used
1
1
1
07 Sv on Channel 1
02 Sv on Channel 2
Sv on Channel 12
PDOP 1.8 Position dilution of Precision
HDOP 1.0 Horizontal dilution of Precision
VDOP 1.5 Vertical dilution of Precision
Checksum *33
<CR><LF> End of message termination
1. Satellite used in solution.
Table B-6 Mode1
Value Description
M Manual-forced to operate in 2D or 3D mode
A 2Dautomatic-allowed to automatically switch 2D/3D
Table B-7 Mode 2
Value Description
1 Fix Not Available
2 2D
3 3D
Page 8
GSV-GNSS Satellites in View
$
r
N
r
)
)
)
)
$
N
N N
m
t
yy
t
Table B-8 contains the values for the following example:
$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71
$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41
Table B-8 GSV Data Format
Message ID
GPGSVGSV protocol heade
umber of Messages12 Range 1 to 3
Message Numbe
1
1 Range 1 to 3
Satellites in View07
Satellite ID 07 Channel 1(Range 1 to 32
Elevation 79 degreesChannel 1(Maximum90
Azimuth 048 degreesChannel 1(True, Range 0 to 359)
SNR(C/No) 42 dBHzRange 0 to 99,null when not tracking
……. …….
Satellite ID 27 Channel 4 (Range 1 to 32
Elevation 27 DegreesChannel 4(Maximum90
Azimuth 138 DegreesChannel 4(True, Range 0 to 359)
SNR(C/No) 42 dBHzRange 0 to 99,null when not tracking
Checksum *71
<CR><LF> End of message termination
Depending on the number of satellites tracked multiple messages of GSV data may be required.
RMC-Recommended Minimum Specific GNSS Data
Table B-10 contains the values for the following example:
$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598,,*10
Table B-10 RMC Data Format
Message ID
GPRMCRMC protocol header
UTC Time 161229.487hhmmss.sss
Status A A=data valid or V=data not valid
Latitude 3723.2475ddmm.mmmm
/S Indicator
=north or S=south
Longitude 12158.3416dddmm.mmm
E/W Indicator W E=east or W=wes
Speed Over Ground 0.13 knots
Course Over Ground 309.62 degreesTrue
Date 120598 ddmm
Magnetic Variation
2
degreesE=east or W=wes
Checksum *10
<CR><LF> End of message termination
SiRF Technology Inc. does not support magnetic declination. All “course over ground” data are
geodetic WGS48 directions.
Page 9
$
g
g
N
r
p
VTG-Course Over Ground and Ground Speed
$GPVTG,309.62,T,,M,0.13,N,0.2,K*6E
Message ID
Course 309.62 degreesMeasured headin
Reference T True
Course degreesMeasured headin
Reference M Magnetic
Speed 0.13 knotsMeasured horizontal speed
Units
Speed 0.2 Km/h
Units K Kilometers
Checksum *6E
<CR><LF> End of message termination
GPVTGVTG protocol header
Knots
Measured horizontal speed
er hour
Page 10
2.2 NMEA Input Command
A)
. Set Serial Port ID:100 Set PORTA parameters and protocol
This command message is used to set the protocol(SiRF Binary, NMEA, or
USER1) and/or the communication parameters(baud, data bits, stop bits, parity).
Generally,this command would be used to switch the module back to SiRF Binary
protocol mode where a more extensive command message set is available. For
example,to change navigation parameters. When a valid message is received,the
parameters will be stored in battery backed SRAM and then the receiver will restart
using the saved parameters.
<protocol> 0=SiRF Binary, 1=NMEA, 4=USER1
<baud> 1200, 2400, 4800, 9600, 19200, 38400
<DataBits> 8,7. Note that SiRF protocol is only valid f8
Data bits
<StopBits> 0,1
<Parity> 0=None, 1=Odd, 2=Even
Example 1: Switch to SiRF Binary protocol at 9600,8,N,1
$PSRF100,0,9600,8,1,0*0C<CR><LF>
Example 2: Switch to User1 protocol at 38400,8,N,1
$PSRF100,4,38400,8,1,0*38<CR><LF>
**Checksum Field: The absolute value calculated by exclusive-OR the
8 data bits of each character in the Sentence,between, but
excluding “$” and “*”. The hexadecimal value of the most
significant and least significant 4 bits of the result are convertted
to two ASCII characters (0-9,A-F) for transmission. The most
significant character is transmitted first.
**<CR><LF> : Hex 0D 0A
Page 11
B). Navigation lnitialization ID:101 Parameters required for
start
This command is used to initialize the module for a warm start, by providing current
position (in X, Y, Z coordinates),clock offset, and time. This enables the receiver
to search for the correct satellite signals at the correct signal parameters. Correct
initialization parameters will enable the receiver to acquire signals more quickly, and
thus, produce a faster navigational solution.
When a valid Navigation Initialization command is received, the receiver will restart
using the input parameters as a basis for satellite selection and acquisition.
Example: Start using known position and time.
$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*7F
C). Set DGPS Port ID:102 Set PORT B parameters for DGPS input
This command is used to control Serial Port B that is an input only serial port
used to receive
RTCM differential corrections.
Differential receivers may output corrections using different
communication parameters.
The default communication parameters for PORT B are 9600
Baud, 8data bits, 0 stop bits, and no parity.
If a DGPS receiver is used which has different communication parameters, use
this command to allow the receiver to correctly decode the data. When a valid
message is received, the parameters will be stored in battery backed SRAM and
then the receiver will restart using the saved parameters.
Format:
$PSRF102,<Baud>,<DataBits>,<StopBits>,<Parity>*CKSUM<CR><LF>
D). Query/Rate Control ID:103 Query standard NMEA message and/or set
output rate
This command is used to control the output of standard NMEA message GGA,
GLL, GSA, GSV
RMC, VTG. Using this command message, standard NMEA message may be
polled once, or setup for periodic output. Checksums may also be enabled
or disabled depending on the needs of the receiving program. NMEA
message settings are saved in battery backed memory for each entry when the
message is accepted.
Example 1: Query the GGA message with checksum enabled
$PSRF103,00,01,00,01*25
Example 2: Enable VTG message for a 1Hz constant output with checksum
enabled
$PSRF103,05,00,01,01*20
Example 3: Disable VTG message
$PSRF103,05,00,00,01*21
Page 14
E). LLA Navigation lnitialization ID:104 Parameters required to start
using Lat/Lon/Alt
This command is used to initialize the module for a warm start, by providing
current position (in Latitude, Longitude, Altitude coordinates), clock offset, and
time. This enables the receiver to search for the correct satellite signals at
the correct signal parameters. Correct initialization parameters will enable
the receiver to acquire signals more quickly, and thus, will produce a faster
navigational soution.
When a valid LLANavigationInitialization command is received,the receiver will
restart using the input parameters as a basis for satellite selection and acquisition.
<Lat> Latitude position, assumed positive north of equator and
negative south of equator float, possibly signed
<Lon> Longitude position, it is assumed positive east of Greenwich
and negative west of Greenwich
Float, possibly signed
<Alt> Altitude position
float, possibly signed
<ClkOffset> Clock Offset of the receiver in Hz, use 0 for last saved value if
available. If this is unavailable, a default value of 75000 for
GSP1, 95000 for GSP1/LX will be used.
INT32
<TimeOfWeek> GPS Time Of Week
UINT32
<WeekNo> GPS Week Number
UINT16
<ChannelCount> Number of channels to use. 1-12
UBYTE
Example: Start using known position and time.
$PSRF104,37.3875111,-121.97232,0,96000,237759,922,12,3*37
F). Development Data On/Off ID:105 Switch Development Data Messages
On/Off
Use this command to enable development debug information if you are having
trouble getting commands accepted. Invalid commands will generate debug
information that should enable the user to determine the source of the
command rejection. Common reasons for input command rejection are invalid
checksum or parameter out of specified range. This setting is not preserved
across a module reset.
Format: $PSRF105,<debug>*CKSUM<CR><LF>
<debug> 0=Off,1=On
Example: Debug On $PSRF105,1*3E
Example: Debug Off $PSRF105,0*3F
G). Select Datum ID:106 Selection of datum to be used for coordinate
Transformations
GPS receivers perform initial position and velocity calculations using an earth-centered
earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid)
defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984)
which provides a worldwide common grid system that may be translated into local coordinate
systems or map datums. (Local map datums are a best fit to the local shape of the earth and not
valid worldwide.)
Examples:
Datum select TOKYO_MEAN
$PSRF106,178*32
Page 16
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.