04.000
2018-09-17
PDS5_HIO_v04.000
Confidential / Released
GENERAL NOTE
THE USE OF THE PRODUCT INCLUDING THE SOFTWARE AND DOCUMENTATION (THE "PRODUCT") IS SUBJECT TO THE RELEASE NOTE PROVIDED TOGETHER WITH PRODUCT. IN ANY
EVENT THE PROVISIONS OF THE RELEASE NOTE SHALL PREVAIL. THIS DOCUMENT CONTAINS
INFORMATION ON GEMALTO M2M PRODUCTS. THE SPECIFICATIONS IN THIS DOCUMENT ARE
SUBJECT TO CHANGE AT GEMALTO M2M'S DISCRETION. GEMALTO M2M GMBH GRANTS A NONEXCLUSIVE RIGHT TO USE THE PRODUCT. THE RECIPIENT SHALL NOT TRANSFER, COPY,
MODIFY, TRANSLATE, REVERSE ENGINEER, CREATE DERIVATIVE WORKS; DISASSEMBLE OR
DECOMPILE THE PRODUCT OR OTHERWISE USE THE PRODUCT EXCEPT AS SPECIFICALLY
AUTHORIZED. THE PRODUCT AND THIS DOCUMENT ARE PROVIDED ON AN "AS IS" BASIS ONLY
AND MAY CONTAIN DEFICIENCIES OR INADEQUACIES. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, GEMALTO M2M GMBH DISCLAIMS ALL WARRANTIES AND LIABILITIES.
THE RECIPIENT UNDERTAKES FOR AN UNLIMITED PERIOD OF TIME TO OBSERVE SECRECY
REGARDING ANY INFORMATION AND DATA PROVIDED TO HIM IN THE CONTEXT OF THE DELIVERY OF THE PRODUCT. THIS GENERAL NOTE SHALL BE GOVERNED AND CONSTRUED
ACCORDING TO GERMAN LAW.
Copyright
Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without ex press autho rization are prohib ited. Offenders will be
held liable for payment of damages. All rights created by patent grant or registration of a utility model or
design patent are reserved.
Gemalto, the Gemalto logo, are trademarks and service marks of Gemalto and are registered in certain
countries. Microsoft and Win dows are e ither regis tered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other register ed trademarks or trademarks mention ed
in this document are property of their respective owners.
This document1 describes the hardware of the Cinterion® PDS5-E/PDS5-US module. It helps
you quickly retrieve interface specifications, electrical and mechanical details and information
on the requirements to be considered for integrating further components.
1.1Key Features at a Glance
FeatureImplementation
General
Frequency bandsPDS5-E:
GSM/GPRS/EDGE: Dual band GSM 900/1800MHz
UMTS/HSPA: Dual band UMTS 900/2100MHz
PDS5-US:
GSM/GPRS/EDGE: Dual band GSM 850/1900MHz
UMTS/HSPA: Dual band UMTS 850/1900MHz
GSM classSmall MS
Output power (according
to Release 99, V5)
Power supply3.3V to 4.5V
Operating temperature
(board temperature)
PDS5-E:
Class 4 (+33dBm ±2dB) for EGSM900
Class 1 (+30dBm ±2dB) for GSM1800
Class E2 (+27dBm ± 3dB) for GSM 900 8-PSK
Class E2 (+26dBm +3 /-4dB) for GSM 1800 8-PSK
Class 3 (+24dBm +1/-3dB) for UMTS 2100, WCDMA FDD BdI
Class 3 (+24dBm +1/-3dB) for UMTS 900, WCDMA FDD BdVIII
PDS5-US:
Class 4 (+33dBm ±2dB) for EGSM850
Class 1 (+30dBm ±2dB) for GSM1900
Class E2 (+27dBm ± 3dB) for GSM 850 8-PSK
Class E2 (+26dBm +3 /-4dB) for GSM 1900 8-PSK
Class 3 (+24dBm +1/-3dB) for UMTS 1900,WCDMA FDD BdII
Class 3 (+24dBm +1/-3dB) for UMTS 850, WCDMA FDD BdV
Normal operation: -30°C to +85°C
Extended operation: -40°C to +90°C
PhysicalDimensions: 33mm x 29mm x 2.3mm
Weight: approx. 5g
RoHSAll hardware components fully compliant with EU RoHS Directive
1. The document is effective only if listed in the appropriate Release Notes as part of the technical documentation delivered with your Gemalto M2M product.
HSDPA Cat.8 / HSUPA Cat.6 data rates
Compressed mode (CM) supported according to 3GPP TS25.212
UMTS features
3GPP Release 4PS data rate – 384 kbps DL / 384 kbps UL
CS data rate – 64 kbps DL / 64 kbps UL
GSM/GPRS/EGPRS features
Data transferGPRS:
•Multislot Class 12
•Full PBCCH support
•Mobile Station Class B
•Coding Scheme 1 – 4
EGPRS:
•Multislot Class 12
•EDGE E2 power class for 8 PSK
•Downlink coding schemes – CS 1-4, MCS 1-9
•Uplink coding schemes – CS 1-4, MCS 1-9
•SRB loopback and test mode B
•8-bit, 11-bit RACH
•PBCCH support
•1 phase/2 phase access procedures
•Link adaptation and IR
•NACC, extended UL TBF
•Mobile Station Class B
CSD:
•V.110, RLP, non-transparent
•9.6kbps
•USSD
Page 7 of 35
SMSPoint-to-point MT and MO
Cell broadcast
Text and PDU mode
Storage: SIM card plus SMS locations in mobile equipment
Software
AT commandsHayes 3GPP TS 27.007, TS 27.005, Gemalto M2M
AT commands for RIL compatibility
Java™ Open PlatformJava™ Open Platform with
•Java™ profile IMP-NG & CLDC 1.1 HI
•Secure data transmission via HTTPS/SSL
•Multi-threading programming and multi-application execution
Major benefits: seamless integration into Java applications, ease of pro-
gramming, no need for application microcontroller, extrem ely cost-efficient
hardware and software design – ideal platform for industrial GSM applications.
The memory space available for Java programs is around 10MB in the flash
file system and around 10MB RAM. Application code and data share the
space in the flash file system and in RAM.
Microsoft™ compatibility RIL for Pocket PC and Smartphone
SIM Application ToolkitSAT Release 99
Firmware updateGeneric update from host application over ASC0 or USB modem.
Interfaces
Module interfaceSurface mount device with solderable connection pads (SMT application
interface). Land grid array (LGA) technology ensures high solder joint reliability and provides the possibility to use an optional module mounting
socket.
For more information on how to integrate SMT modules see also [3]. This
application note comprises chapters on module mounting and application
layout issues as well as on SMT application developmen t eq uip m en t.
USBUSB 2.0 High Speed (480Mbit/s) device interface, Full Speed (12Mbit/s)
compliant
1 serial interface ASC0:
•8-wire modem interface with status and control lines, unbalanced, asynchronous
•Adjustable baud rates: 1,200bps to 921,600bps
•Autobauding: 1,200bps to 230,400bps
•Supports RTS0/CTS0 hardware flow control.
Audio1 digital interface (PCM)
UICC interfaceSupported SIM/USIM cards: 3V, 1.8V
GPIO interface8 GPIOs shared with fast shutdown or host wakeup, pulse counter, and
PWM functionality
2
I
C interfaceSupports I2C serial interface
SPI interfaceSerial peripheral interface
ADC input Analog-to-digital comverter for general purpose voltage measurements
Antenna interface pads50
Power on/off, Reset
Power on/offSwitch-on by hardware signal IGT
Switch-off by AT command
Switch off by hardware signal GPIO4/FST_SHDN instead of AT command
Automatic switch-off in case of critical temperature and voltage conditions
ResetOrderly shutdown and reset by AT command
Emergency reset by hardware signal EMERG_OFF and IGT
Special features
Real time clockTimer functions via AT commands
PhonebookSIM and phone
TTY/CTM supportIntegrated CTM modem
Evaluation kit
Evaluation modulePDS5-E/PDS5-US module soldered onto a dedicated PCB that can be con-
nected to an adapter in order to be mounted onto the DSB75.
DSB75DSB75 Development Support Board designed to test and type approve
Gemalto M2M modules and provide a sample configuration for application
engineering. A special adapter is required to connect the PDS5-E/PDS5US evaluation module to the DSB75.
All serial (including RS) and pull-up resistors for data lines are implemented.
USB_DN
2)
2)
If the USB interface is operated in High Speed mode (480MHz), it is recommended to take
special care routing the data lines USB_DP and USB_D N . Application layout should in this
case implement a differential impedance of 90Ohm for proper signal integrity.
R
S
R
S
H_WAKEUP
SMT
Page 10 of 35
2 Interface Characteristics
17
2Interface Characteristics
PDS5-E/PDS5-US is equipped with an SMT application interface that connects to the external
application. The SMT application interface incorporates the various application interfaces as
well as the RF antenna interface.
2.1Application Interface
2.1.1USB Interface
PDS5-E/PDS5-US supports a USB 2.0 High Speed (480Mbit/s) device interface that is Full
Speed (12Mbit/s) compliant. The USB interface is primarily intended for use as command and
data interface and for downloading firmware.
The external application is responsible for supplying the VUSB_IN line. This line is used for cable detection only. The USB part (driver and transceiver) is supplied by means of BATT+. This
is because PDS5-E/PDS5-US is designed as a self-powered device compliant with the “Universal Serial Bus Specification Revision 2.0”
1
.
To properly connect the module's USB interface to the external application, a USB 2.0 compatible connector and cable or hardware design is required. Furthermore, the USB modem driver
distributed with PDS5-E/PDS5-US needs to be installed.
1. The specification is ready for download on http://www.usb.org/developers/docs/
PDS5-E/PDS5-US offers an 8-wire unbalanced, asynchronous modem interface ASC0 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with
ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 1.8V (for high data
bit or inactive state).
PDS5-E/PDS5-US is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:
•Port TXD @ application sends data to the module’s TXD0 signal line
•Port RXD @ application receives data from the module’s RXD0 signal line
Figure 3: Serial interface ASC0
Features:
•Includes the data lines TXD0 and RXD0, t he status line s RTS0 and CTS0 and, in addition,
the modem control lines DTR0, DSR0, DCD0 and RING0.
•The RING0 signal serves to indicate incoming calls and other types of URCs (Unsolicited
Result Code). It can also be used to send pulses to the host application, for example to
wake up the application from power saving state.
•By default configured to the setting 8 data bits, no parity and 1 stop bit.
•ASC0 can be operated at fixed bit rates from 1200bps up to 921600bps.
•Autobauding supports bit rates from 1200bps up to 230400bps.
•Supports RTS0/CTS0 hardware flow control. The hardware hand shake line RTS0 has an
internal pull down resistor causing a low level signal, if the line is not used and open.
Although hardware flow control is recommended, this allows communication by using only
RXD and TXD lines.
•Wake up from SLEEP mode by RTS0 activation (high to low transition).
PDS5-E/PDS5-US has an integrated UICC/SIM/USIM interface compatible with the 3GPP
31.102 and ETSI 102 221. This is wired to the host interface in order to be connected to an
external SIM card holder. Five pads on the SMT application interface are reserved for the SIM
interface.
The UICC/SIM/USIM interface supports 3V and 1.8V SIM cards.
The CCIN signal serves to detect whether a tray (with SIM card) is present in the card holder.
Using the CCIN signal is mandatory for compliance with the GSM 11.11 recommendation if the
mechanical design of the host application allows the user to remove the SIM card during operation. To take advantage of this feature, an appropriate SIM card detect switch is required on
the card holder. For example, this is true for the model supplied by Molex, which has been tested to operate with PDS5-E/PDS5-US and is part of the Gemalto M2M reference equipment
submitted for type approval. See Section 7.1 for Molex ordering numbers.
Table 1: Signals of the SIM interface (SMT application interface)
SignalDescription
GNDSeparate ground connection for SIM card to improve EMC.
CCCLKChipcard clock
CCVCCSIM supply voltage.
CCIOSerial data line, input and output.
CCRSTChipcard reset
CCINInput on the baseband processor for detecting a SIM card tray in the holder. If the SIM is
removed during operation the SIM interface is shut down immediately to prevent destruction of the SIM. The CCIN signal is by default low and will change to high level if a SIM card
is inserted.
The CCIN signal is mandatory for applications that allow the user to remove the SIM card
during operation.
The CCIN signal is solely intended for use with a SIM card. It must not be used for any other
purposes. Failure to comply with this requirement may invalidate the type approval of
PDS5-E/PDS5-US.
Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after
removing the SIM card during operation. Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed the SIM card during operation. In
this case, the application must restart PDS5-E/PDS5-US.
The total cable length between the SMT application interface pads on PDS5-E/PDS5-US and
the pads of the external SIM card holder must not exceed 100mm in order to meet the specifications of 3GPP TS 51.010-1 and to satisfy the requirements of EMC compliance.
To avoid possible cross-talk from the CCCLK signal to the CCIO signal be careful that both
lines are not placed closely next to each other. A useful approach is using a GND line to shield
the CCIO line from the CCCLK line.
PDS5-E/PDS5-US‘s digital audio interface (DAI) can be used to connect audio devices capable
of pulse code modulation (PCM).
2.1.5GPIO Interface
PDS5-E/PDS5-US offers a GPIO interface with 8 GPIO lines. The GPIO lines are shared with
other interfaces or functions: Fast shutdown (see Section 2.1.11.4), the PWM functionality (see
Section 2.1.9), an pulse counter (see Section 2.1.10).
The following table shows the configuration variants for the GPIO pads. All variants are mutually exclusive, i.e. a pad configured for instance as fast shutdown line is locked for alternative
usage as GPIO.
Table 2: GPIO lines and possible alternative assignment
After startup, the above mentioned alternative GPIO line assignments can be configured u sing
AT commands (see [1]). The configuration is non-volatile and available after module restart.
I2C is a serial, 8-bit oriented data transfer bus for bit rates up to 400kbps in Fast mode. It consists of two lines, the serial data line I2CDAT and the serial clock line I2CCLK. The module acts
as a single master device, e.g. the clock I2CCLK is driven by the module. I2CDAT is a bi-directional line. Each device connected to the bus is software addressable by a unique 7-bit address, and simple master/slave relationships exist at all times. The module operates a s mastertransmitter or as master-receiver. The customer application transmits or receives data only on
request of the module.
2
The I
C interface can be powered via the V180 line of PDS5-E/PDS5-US. If connected to the
V180 line, the I
mode.
Note: Good care should be taken when creating the PCB layout of the host application: The
traces of I2CCLK and I2CDAT should be equal in length and as short as possible.
2
C interface will properly shut down when the module enters the Power Down
2.1.7SPI Interface
The Serial Peripheral Interface (SPI) is a synchronous serial interface for control and data
transfer between PDS5-E/PDS5-US and the external application. Only one application can be
connected to the SPI and the interface supports only master mode. The transmission rates are
up to 6.5Mbit/s. The SPI interface comprises the two data lines MOSI and MISO, the clock line
SPI_CLK a well as the chip select line SPI_CS.
ADC1_IN is used for general purpose voltage measurements. ADC1_IN can be configured and
read by AT command - see [1].
2.1.9PWM Interfaces
The GPIO6 and GPIO7 interface lines can be configured as Pulse Width Modulation (PWM)
interface lines PWM1 and PWM2. The PWM interface lines can be used, for example, to connect buzzers. The PWM1 line is shared with GPIO7 and the PWM2 line is shared with GPIO6
(for GPIOs see Section 2.1.5). GPIO and PWM functionality are mutually exclusive.
2.1.10Pulse Counter
The GPIO8 line can be configured as pulse counter line COUNTER. The pulse counter interface can be used, for example, as a clock (for GPIOs see Section 2.1.5).
2.1.11Control Signals
2.1.11.1Network Connectivity
The STATUS line serves to indicate the module’s network connectivity state and can be used
to control an externally connected LED.
2.1.11.2Power Indication Signal
The power indication signal PWR_IND notifies the on/off state of the module. High state of
PWR_IND indicates that the module is switched off.
2.1.11.3Host Wakeup
If no call, data or message transfer is in progress, the host may shut down its own USB interface to save power. If a call or other request (URC’s, messages) arrives, the host can be notified of these events and be woken up again by a state transition of either the RING0 or the
GPIO4 line configured as H_WAKEUP line.
2.1.11.4Fast Shutdown
The GPIO4 interface line can be configured as fast shutdown signal line FST_SHDN. The configured FST_SHDN line is an active low control signal and must be applied for at least 45 milliseconds. If unused this line can be left open because of a configured internal p ull-up resistor.
The RF interface has an impedance of 50. PDS5-E/PDS5-US is capable of sustaining a total
mismatch at the antenna line without any damage, even when transmitting at maximum RF
power.
The external antenna must be matched properly to achieve best performance regarding radiated power, modulation accuracy and harmonic suppression. Antenna matching networks are
not included on the PDS5-E/PDS5-US module and should be placed in the host application if
the antenna does not have an impedance of 50
Regarding the return loss PDS5-E/PDS5-US provides the following values in the active band:
Table 3: Return loss in the active band
State of moduleReturn loss of moduleRecommended return loss of application
.
Receive>
Transmit not applicable >
8dB> 12dB
12dB
2.2.1Antenna Installation
The antenna is connected by soldering the antenna pad (ANT_GSM) and their neighboring
ground pads directly to the application’s PCB.
The distance between the antenna pads and their neighboring GND pads has been optimized
for best possible impedance. To prevent mismatch, special attention should be paid to these
pads on the application’ PCB.
The wiring of the antenna connection, starting from the antenna p ad to the application’s ante nna should result in a 50
be optimized with regard to the PCB’s layer stack.
To prevent receiver desensitization due to interferences generated by fast transients like high
speed clocks on the external application PCB, it is recommended to realize the antenna connection line using embedded Stripline rather than Micro-Stripline technology.
line impedance. Line width and distance to the GND plane need to
For type approval purposes, the use of a 50
coaxial antenna connector (U.FL-R-SMT) might
be necessary. In this case the U.FL-R-SMT connector should be placed as close as possible
to PDS5-E/PDS5-US‘s antenna pad.
The table below briefly summarizes the various operating modes referred to throughout the
document.
Table 4: Overview of operating modes
ModeFunction
Normal
operation
Power
Down
GSM /
GPRS / UMTS /
HSPA SLEEP
GSM /
GPRS / UMTS /
HSPA IDLE
GSM TALK/
GSM DATA
GPRS DATAGPRS data transfer in progress. Power consumption depends on net-
EGPRS DATAEGPRS data transfer in progress. Power consum ption depends on net-
UMTS TALK/
UMTS DATA
HSPA DATAHSPA data transfer in progress. Power consumption depends on net-
Normal shutdown after sending the power down command. Only a voltage regulator is
active for powering the RTC. Software is not active. Interfaces are not accessible. Operating voltage (connected to BATT+) remains applied.
No call is in progress and the USB connection is suspended by host (or
is not present) and no active communication via ASC0.
No call is in progress and the USB connection is not suspended by host
(or is not present) and no active communication via ASC0.
Connection between two subscribers is in progress. Power consumption depends on the GSM network coverage and several connectio n
settings (e.g. DTX off/on, FR/EFR/HR, hopping sequences and
antenna connection). The following applies when power is to be measured in TALK_GSM mode: DTX off, FR and no frequency hopping.
work settings (e.g. power control level), uplink / downlink data rates and
GPRS configuration (e.g. used multislot settings).
work settings (e.g. power control level), uplink / downlink data rates and
EGPRS configuration (e.g. used multislot settings).
UMTS data transfer in progress. Power consumption depends on network settings (e.g. TPC Pattern) and data transfer rate.
work settings (e.g. TPC Pattern) and data transfer rate.
Airplane
mode
PDS5_HIO_v04.0002018-09-17
Airplane mode shuts down the radio part of the module , causes th e module to log off from
the GSM/GPRS network and disables all AT commands whose execution r equires a rad io
connection.
Airplane mode can be controlled by AT command (see [1]).
PDS5-E/PDS5-US needs to be connected to a power supply at the SMT application interface
- 6 lines BATT+, and GND. There are two separate voltage domains for BATT+:
•BATT+
•BATT+
Please note that throughout the document BATT+ refers to both voltage domains and power
supply lines - BATT+
The power supply of PDS5-E/PDS5-US has to be a single voltage source at BATT+. It must be
able to provide the peak current during the uplink transmission.
All the key functions for supplying power to the device are handled by t he power management
section of the analog controller. This IC provides the following features:
•Stabilizes the supply voltages for the baseba nd using low drop linear voltage regulators and
a DC-DC step down switching regulator.
•Switches the module's power voltages for the power-up and -down procedures.
•SIM switch to provide SIM power supply.
with two lines for the general power management.
BB
with four lines for the GSM power amplifier supply.
PDS5-E/PDS5-US is designed to comply with the directives and standards listed below.
It is the responsibility of the application manufacturer to ensure compliance of the final product
with all provisions of the applicable directives and standards as well as with the technical specifications provided in the "PDS5-E/PDS5-US Hardware Interface Description".
Table 5: Directives
2014/53/EUDirective of the European Parliament and of the Council of 16 April 2014
on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive
1999/5/EC.
The product is labeled with the CE conformity mark
1
2002/95/EC (RoHS 1)
2011/65/EC (RoHS 2)
Directive of the European Parliament and of the Council
of 27 January 2003 (and revised on 8 June 2011) on the
restriction of the use of certain hazardous substances in
electrical and electronic equipment (RoHS)
Table 6: Standards of North American type approval
1
CFR Title 47Code of Federal Regulations, Part 22 and Part 24 (Telecommunications,
PCS); US Equipment Authorization FCC
OET Bulletin 65
(Edition 97-01)
Evaluating Compliance with FCC Guidelines for Human Exposure to
Radiofrequency Electromagnetic Fields
UL 60 950-1Product Safety Certification (Safety requirements)
NAPRD.03 V5.35Overview of PCS Type certification review board Mobile Equipment Type
Certification and IMEI control
PCS Type Certification Review board (PTCRB)
RSS132 (Issue2)
Canadian Standard
RSS133 (Issue5)
1. Applies to the module variant PDS5-US only.
Table 7: Standards of European type approval
1
3GPP TS 51.010-1Digital cellula r telecommunications system (Release 7); Mobile Station
(MS) conformance specification;
GCF-CC V3.71 Global Certification Forum - Certification Criteria
ETSI EN 301 511
V12.5.1
Global System for Mobile communications (GSM); Mobile Stations (MS)
equipment; Harmonized Standard covering the essential requirements of
article 3.2 of Directive 2014/53/EU
1. Manufacturers of applications which can be used in the US shall ensure that their applications have a
PTCRB approval. For this purpose they can refer to the PTCRB approval of the respective module.
IMT cellular networks; Harmonised Standard covering the essential re quirements of article 3.2 of the Directive 2014/53/EU; Part 1: Introduction and
common requirements
ETSI EN 301 908-2
V11.1.2
IMT cellular networks; Harmonised Standard covering the essential re quirements of article 3.2 of the Directive 2014/53/EU; Part 2: CDMA Direct
Spread (UTRA FDD) User Equipment (UE)
Draft ETSI
EN 301 489-52 V1.1.0
Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 52: Specific conditions for Cellular Communication Mobile and
portable (UE) radio and ancillary equipment; Harmonized Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU
Draft ETSI
EN 301 489-01 V2.2.0
ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonized Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU
and the essential requirements of article 6 of Directive 2014/30/EU
EN 60950-1: 2006
Safety of information technology equipment
+A11:2009+A1:2010+A
12:2011+A2:2013
1. Applies to the module variant PDS5-E only.
1
Table 8: Requirements of quality
IEC 60068Environmental testing
DIN EN 60529IP codes
EN 62311:2008Assessment of electronic and electrical equipmen t related to human expo-
sure restrictions for electromagnetic fields (0 Hz - 300 GHz)
Table 9: Standards of the Ministry of Information Industry of the People’s Republic of China
SJ/T 11363-2006 “Requirements for Concentration Limits for Certain Hazardous Sub-
stances in Electronic Information Products” (2006-06).
SJ/T 11364-2006“Marking for Control of Pollution Caused by Electronic
Information Products” (2006-06).
According to the “Chinese Administration on the Control
of Pollution caused by Electronic Information Products”
(ACPEIP) the EPUP, i.e., Environmental Protection Use
Period, of this product is 20 years as per the symbol
shown here, unless otherwise marked. The EPUP is valid only as long as
the product is operated within the operating limits described in the
Gemalto M2M Hardware Interface Description.
Please see Table 10 for an overview of toxic or hazardous substances or
elements that might be contained in product parts in concentrations
above the limits defined by SJ/T 11363-2006.
Table 10: Toxic or hazardous substances or elements with defined concentration limits
5.2 SAR requirements specific to portable mobile s
27
Page 25 of 35
5.2SAR requirements specific to portable mobiles
Mobile phones, PDAs or other portable transmitters and receivers incorporating a GSM module
must be in accordance with the guidelines for human exposure to radio frequency energy. This
requires the Specific Absorption Rate (SAR) of portable PDS5-E/PDS5-US based applications
to be evaluated and approved for compliance with national and/or international regulations.
Since the SAR value varies significantly with the individual product design manufacturers are
advised to submit their product for approval if designed for portable use. For Europe an and US
markets the relevant directives are mentioned below. It is the responsibility of the manufacturer
of the final product to verify whether or not further standards, recommendations or directives
are in force outside these areas.
Products intended for sale on US markets
1
ES 59005/ANSI C95.1 Considerations for evaluation of human exposure to Electromagnetic
Fields (EMFs) from Mobile Telecommunication Equipment (MTE) in the
frequency range 30MHz - 6GHz
Products intended for sale on European markets
EN 50360Product standard to demonstrate the compliance of mobile phones with
the basic restrictions related to human exposure to electromagnetic
fields (300MHz - 3GHz)
EN 62311:2008Assessment of electronic and electrical equipment related to human
expo-sure restrictions for electromagnetic fields (0 Hz - 300 GHz)
Please note that SAR requirements are specific only for portable devices and not for mobile
devices as defined below:
•Portable device:
A portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user.
•Mobile device:
A mobile device is defined as a transmitting device designed to be used in other than fixe d
locations and to generally be used in such a way that a separation distance of at least 20
centimeters is normally maintained between the transmitter's radiating structure(s) and the
body of the user or nearby persons. In this context, the term ''fixed location'' means that the
device is physically secured at one location and is not able to be easily moved to another
location.
1. Applies for the quad band module variant PDS5-US only.
The Gemalto M2M reference setup submitted to type approve PDS5-E/PDS5-US (including a
special approval adapter for the DSB75) is shown in the following figure
1
:
Figure 7: Reference equipment for Type Approval
1. For RF performance tests a mini-SMT/U.FL to SMA adapter with attached 6dB coaxial attenuator is chosen to connect the evaluation module directly to the GSM/UMTS test equipment instead of employing
the SMA antenna connectors on the PDS5-E/PDS5-US-DSB75 adapter as shown in Figure 7. The follo-
wing products are recommended:
Hirose SMA-Jack/U.FL-Plug conversion adapter HRMJ-U.FLP(40)
(for details see see http://www.hirose-connectors.com/ or http://www.farnell.com/
Aeroflex Weinschel Fixed Coaxial Attenuator Model 3T/4T
(for details see http://www.aeroflex.com/ams/weinschel/pdfiles/wmod3&4T.pdf)
5.4 Compliance with FCC and IC Rules and Regulations
27
5.4Compliance with FCC and IC Rules and Regulations
Page 27 of 35
The Equipment Authorization Certification for the Gemalto M2M reference application described in Section 5.3 will be registered under the following identifiers
1
:
FCC Identifier: QIPPDS5-US
Industry Canada Certification Number: 7830A-PDS5US
Granted to Gemalto M2M GmbH
Manufacturers of mobile or fixed devices incorporating PDS5-US modules are authorized to
use the FCC Grants and Industry Canada Certificates of the PDS5-US modules for their own
final products according to the conditions referenced in these documents. In this case, an FCC/
IC label of the module shall be visible from the outside, or the host device shall bear a second
label stating "Contains FCC ID: QIPPDS5-US", and accordingly “Contains IC: 7830A-PDS5US“.
The integration is limited to fixed or mobile categorised host devices, where a separation distance between the antenna and any person of min. 20cm can be assured during normal operating conditions. For mobile and fixed operation configurations the antenna gain, including
cable loss, must not exceed the limits TBD. dBi (850 MHz) and TBD. dBi (1900 MHz).
IMPORTANT:
Manufacturers of portable applications incorporating PDS5-US modules are required to have
their final product certified and apply for their own FCC Grant and Industry Canada Certificate
related to the specific portable mobile. This is mandatory to meet the SAR requirements for portable mobiles (see Section 5.2 for detail).
Changes or modifications not expressly approved by the party responsible for compliance
could void the user's authority to operate the equipment.
Note: This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules and with Industry Canada licence-exempt RSS
standard(s). These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference
will not occur in a particular installation. If this equipment does cause harmful interference to
radio or television reception, which can be determined by turning the equipment off and on, the
user is encouraged to try to correct the interference by one or more of t he following measures:
•Reorient or relocate the receiving antenna.
•Increase the separation between the equipment and receiver.
•Connect the equipment into an outlet on a circuit different from that to which the receiver is
connected.
•Consult the dealer or an experienced radio/TV technician for help.
This Class B digital apparatus complies with Canadian ICES-003.
If Canadian approval is requested for devices incorporating PDS5-US modules the above note
will have to be provided in the English and French language in the final user documentation.
Manufacturers/OEM Integrators must ensure that the final user documentation does not contain any information on how to install or remove the module from the final product.
1. Applies only for the quad band module variant PDS5-US.
New document:"Cinterion® PDS5-E/PDS5-US Hardware Interface Overview" Version 04.000
ChapterWhat is new
--Initial document setup.
6.2Related Documents
[1]PDS5-E/PDS5-US AT Command Set
[2]PDS5-E/PDS5-US Release Note
[3]Application Note 48: SMT Module Integration
[4]Universal Serial Bus Specification Revision 2.0, April 27, 2000
6.3Terms and Abbreviations
AbbreviationDescription
ADCAnalog-to-digital converter
AGCAutomatic Gain Control
ANSIAmerican National Standards Institute
ARFCNAbsolute Radio Frequency Channel Number
ARPAntenna Reference Point
ASC0Asynchronous Controller. Abbreviations used for the serial interface of PDS5-E/
PDS5-US
BThermistor Constant
BERBit Error Rate
BTSBase Transceiver Station
CB or CBMCell Broadcast Message
CEConformité Européene (European Conformity)
CHAPChallenge Handshake Authentication Protocol
CPUCentral Processing Unit
CSCoding Scheme
CSDCircuit Switched Data
CTSClear to Send
DACDigital-to-Analog Converter
DAIDigital Audio Interface
dBm0Digital level, 3.14dBm0 corresponds to full scale, see ITU G.711, A-law
DCEData Communication Equipment (typically modems, e.g. Gemalto M2M module)
DCS 1800Digital Cellular System, also referred to as PCN
DRXDiscontinuous Reception
DSBDevelopment Support Box
DSPDigital Signal Processor
DSRData Set Ready
DTEData Terminal Equipment (typically computer, terminal, printer or, for example, GSM
EIRPEquivalent Isotropic Radiated Power
EMCElectromagnetic Compatibility
ERPEffective Radiated Power
ESDElectrostatic Discharge
ETSEuropean Telecommunication Standard
FCCFederal Communications Commission (U.S.)
FDMAFrequency Division Multiple Access
FRFull Rate
GMSKGaussian Minimum Shift Keying
GPIOGeneral Purpose Input/Output
GPRSGeneral Packet Radio Service
GSMGlobal Standard for Mobile Communications
HiZHigh Impedance
HRHalf Rate
I/OInput/Output
ICIntegrated Circuit
IMEIInternational Mobile Equipment Identity
ISOInternational Standards Organization
ITUInternational Telecommunications Union
kbpskbits per second
LEDLight Emitting Diode
Li-Ion/Li+Lithium-Ion
Li batteryRechargeable Lithium Ion or Lithium Polymer battery
MbpsMbits per second
MMIMan Machine Interface
MOMobile Originated
MSMobile Station (GSM module), also referred to as TE
MSISDNMobile Station International ISDN number
MTMobile Terminated
NTCNegative Temperature Coeff i cie nt
OEMOriginal Equipment Manufacturer
PAPower Amplifier
PAPPassword Authentication Protocol
PBCCHPacket Switched Broadcast Control Channel
PCBPrinted Circuit Board
PCLPower Control Level
PCMPulse Code Modulation
PCNPersonal Communications Network, also referred to as DCS 1800
Page 30 of 35
PCSPersonal Communication System, also referred to as GSM 1900
PDUProtocol Data Unit
PLLPhase Locked Loop
PPPPoint-to-point protocol
PSKPhase Shift Keying
PSUPower Supply Unit
PWMPulse Width Modulation
R&TTERadio and Telecommunication Terminal Equipment
RAMRandom Access Memory
RFRadio Frequency
RLSRadio Link Stability
RMSRoot Mean Square (value)
RoHSRestriction of the use of certain hazardous substances in electrical and electronic
equipment.
ROMRead-only Memory
RTCReal Time Clock
RTSRequest to Send
RxReceive Direction
SARSpecific Absorption Rate
SAWSurface Accoustic Wave
SELVSafety Extra Low Voltage
SIMSubscriber Identification Module
SMDSurface Mount Device
SMSShort Message Service
SMTSurface Mount Technology
SRAMStatic Random Access Memory
TATerminal adapter (e.g. GSM module)
TDMATime Division Multiple Access
TETerminal Equipment, also referred to as DTE
TLSTransport Layer Security
TxTransmit Direction
UARTUnivers al asynchronous receiver-transmitter
URCUnsolicited Result Code
USSDUnstructured Supplementary Service Data
VSWRVoltage Standing Wave Ratio
The following safety precautions must be observed during all phases of the operation, usage,
service or repair of any cellular terminal or mobile incorporating PDS5-E/PDS5-US. Manufacturers of the cellular terminal are advised to convey the following safety information to users
and operating personnel and to incorporate these g uidelines into all manuals supplied with the
product. Failure to comply with these precautions violates safety standards of design, manufacture and intended use of the product. Gemalto M2M assumes no liability for customer’s failure to comply with these precautions.
When in a hospital or other health care facility, observe the restrictions on the use of
mobiles. Switch the cellular terminal or mobile off, if instructed to do so by the guidelines posted in sensitive areas. Medical equipment may be sensitive to RF energy.
The operation of cardiac pacemakers, other implanted medical equipment and hearing aids can be affected by interference from cellular terminals or mobiles placed close
to the device. If in doubt about potential danger, contact the physician or the manufa cturer of the device to verify that the equipment is properly shielded. Pacemaker
patients are advised to keep their hand-held mob ile a way from the pace maker , while
it is on.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it cannot be switched on inadvertently. The operation of wireless appliances in an aircraft is
forbidden to prevent interference with communications systems. Failure to observe
these instructions may lead to the suspension or denial of cellular services to the
offender, legal action, or both.
Do not operate the cellular terminal or mobile in the presence of flammable gases or
fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots,
chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.
Your cellular terminal or mobile receives and transmits radio frequency energy while
switched on. Remember that interference can occur if it is used close to TV sets,
radios, computers or inadequately shielded equipment. Follow any special regulations
and always switch off the cellular terminal or mobile wherever forbidd en, or when you
suspect that it may cause interference or danger.
Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for speakerphone operation.
Before making a call with a hand-held terminal or mobile, park the vehicle.
Speakerphones must be installed by qualified personnel. Faulty installation or operation can constitute a safety hazard.
IMPORTANT!
Cellular terminals or mobiles operate using radio signals and cellular networks.
Because of this, connection cannot be guaranteed at all times under all conditions.
Therefore, you should never rely solely upon any wireless device for essential communications, for example emergency calls.
Remember, in order to make or receive calls, the cellular terminal or mobile must be
switched on and in a service area with adequate cellular signal strength.
Some networks do not allow for emergency calls if certain network services or phone
features are in use (e.g. lock functions, fixed dialing etc.). You may need to deactivate
those features before you can make an emergency call.
Some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.
Table 12: Molex sales contacts (subject to change)
Page 34 of 35
Molex
For further information please click:
http://www.molex.com
Molex China Distributors
Beijing,
Room 1311, Tower B, COFCO Plaza
No. 8, Jian Guo Men Nei Street, 100005
Beijing
P.R. China
Phone: +86-10-6526-9628
Fax: +86-10-6526-9730
American Headquarters
Lisle, Illinois 60532
U.S.A.
Phone: +1-800-78MOLEX
Fax: +1-630-969-1352
Molex Japan Co. Ltd.
1-5-4 Fukami-Higashi,
Yamato-City,
Kanagawa, 242-8585
Japan
Phone: +81-46-265-2325
Fax: +81-46-265-2365
PDS5_HIO_v04.0002018-09-17
Confidential / Preliminary
35
About Gemalto
Since 1996, Gemalto has been pioneering groundbreaking M2M and IoT products that keep our
customers on the leading edge of innovation.
®
We work closely with global mobile network operators to ensure that Cinterion
in sync with wireless networks, providing a seamless migration path to protect your IoT technology
investment.
Cinterion products integrate seamlessly with Gemalto identity modules, security solutions and licensing
and monetization solutions, to streamline development timelines and provide cost efficiencies that
improve the bottom line.
As an experienced software provider, we help customers manage connectivity, security and
quality of service for the long lifecycle of IoT solutions.
modules evolve
For more information please visit
www.gemalto.com/m2m, www.facebook.com/gemalto, or Follow@gemaltoIoT on Twitter.