Gemalto M2M ELS81 US User Manual

Cinterion® ELS81-US
Hardware Interface Description
Version: 01.004 DocId: els81-us_hid_v01.004
GEMALTO.COM/M2M
Cinterion® ELS81-US Hardware Interface Description
2
Page 2 of 107
Document Name:
Version:
Date:
DocId:
Status
Cinterion
®
ELS81-US Hardware Interface Description
01.004 2017-09-27 els81-us_hid_v01.004 Confidential / Preliminary
GENERAL NOTE
Copyright
Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its con­tents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.
Copyright © 2017, Gemalto M2M GmbH, a Gemalto Company
Trademark Notice
Gemalto, the Gemalto logo, are trademarks and service marks of Gemalto and are registered in certain countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corpora­tion in the United States and/or other countries. All other registered trademarks or trademarks mentioned in this document are property of their respective owners.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description

Contents

107
Page 3 of 107
Contents
1 Introduction.................................................................................................................9
1.1 Key Features at a Glance .................................................................................. 9
1.2 ELS81-US System Overview ........................................................................... 12
1.3 Circuit Concept ................................................................................................ 13
2 Interface Characteristics ..........................................................................................15
2.1 Application Interface ........................................................................................ 15
2.1.1 Pad Assignment.................................................................................. 15
2.1.2 Signal Properties................................................................................. 17
2.1.2.1 Absolute Maximum Ratings ................................................ 23
2.1.3 USB Interface...................................................................................... 24
2.1.3.1 Reducing Power Consumption............................................ 25
2.1.4 Serial Interface ASC0 ......................................................................... 26
2.1.5 Serial Interface ASC1 ......................................................................... 28
2.1.6 UICC/SIM/USIM Interface................................................................... 30
2.1.6.1 Enhanced ESD Protection for SIM Interface....................... 32
2.1.7 RTC Backup....................................................................................... 33
2.1.8 GPIO Interface .................................................................................... 34
2.1.9 I
2.1.10 SPI Interface ....................................................................................... 38
2.1.11 PWM Interfaces .................................................................................. 39
2.1.12 Pulse Counter ..................................................................................... 39
2.1.13 Control Signals.................................................................................... 39
2.2 RF Antenna Interface....................................................................................... 42
2.2.1 Antenna Interface Specifications ........................................................ 42
2.2.2 Antenna Installation ............................................................................ 44
2.2.3 RF Line Routing Design...................................................................... 45
2.3 Sample Application .......................................................................................... 51
2.3.1 Sample Level Conversion Circuit........................................................ 53
2
C Interface ........................................................................................ 36
2.1.13.1 Status LED .......................................................................... 39
2.1.13.2 Power Indication Circuit ...................................................... 40
2.1.13.3 Host Wakeup....................................................................... 40
2.1.13.4 Fast Shutdown .................................................................... 41
2.2.3.1 Line Arrangement Examples ............................................... 45
2.2.3.2 Routing Example................................................................. 50
3 Operating Characteristics........................................................................................54
3.1 Operating Modes ............................................................................................. 54
3.2 Power Up/Power Down Scenarios................................................................... 55
3.2.1 Turn on ELS81-US.............................................................................. 55
3.2.1.1 Connecting ELS81-US BATT+ Lines .................................. 55
3.2.1.2 Switch on ELS81-US Using ON Signal ............................... 57
3.2.1.3 Automatic Power On ........................................................... 58
3.2.2 Restart ELS81-US .............................................................................. 59
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
Contents
107
3.2.2.1 Restart ELS81-US via AT+CFUN Command ...................... 59
3.2.2.2 Restart ELS81-US Using EMERG_RST ............................. 60
3.2.3 Signal States after Startup .................................................................. 61
3.2.4 Turn off ELS81-US.............................................................................. 62
3.2.4.1 Switch off ELS81-US Using AT Command.......................... 62
3.2.5 Automatic Shutdown ........................................................................... 64
3.2.5.1 Thermal Shutdown .............................................................. 64
3.2.5.2 Undervoltage Shutdown...................................................... 65
3.2.5.3 Overvoltage Shutdown........................................................ 65
3.3 Power Saving................................................................................................... 66
3.3.1 Power Saving while Attached to WCDMA Networks .......................... 66
3.3.2 Power Saving while Attached to LTE Networks.................................. 67
3.3.3 Wake-up via RTS0.............................................................................. 68
3.4 Power Supply................................................................................................... 69
3.4.1 Power Supply Ratings......................................................................... 69
3.4.2 Measuring the Supply Voltage (VBATT+)........................................... 72
3.4.3 Monitoring Power Supply by AT Command ........................................ 72
3.5 Operating Temperatures.................................................................................. 73
3.6 Electrostatic Discharge .................................................................................... 74
3.6.1 ESD Protection for Antenna Interfaces ............................................... 74
3.7 Blocking against RF on Interface Lines ........................................................... 75
3.8 Reliability Characteristics................................................................................. 77
Page 4 of 107
4 Mechanical Dimensions, Mounting and Packaging...............................................78
4.1 Mechanical Dimensions of ELS81-US ............................................................. 78
4.2 Mounting ELS81-US onto the Application Platform ......................................... 80
4.2.1 SMT PCB Assembly ........................................................................... 80
4.2.1.1 Land Pattern and Stencil..................................................... 80
4.2.1.2 Board Level Characterization.............................................. 82
4.2.2 Moisture Sensitivity Level ................................................................... 82
4.2.3 Soldering Conditions and Temperature .............................................. 83
4.2.3.1 Reflow Profile ...................................................................... 83
4.2.3.2 Maximum Temperature and Duration.................................. 84
4.2.4 Durability and Mechanical Handling.................................................... 85
4.2.4.1 Storage Conditions.............................................................. 85
4.2.4.2 Processing Life.................................................................... 86
4.2.4.3 Baking ................................................................................. 86
4.2.4.4 Electrostatic Discharge ....................................................... 86
4.3 Packaging ........................................................................................................ 87
4.3.1 Tape and Reel .................................................................................... 87
4.3.1.1 Orientation........................................................................... 87
4.3.1.2 Barcode Label ..................................................................... 88
4.3.2 Shipping Materials .............................................................................. 89
4.3.2.1 Moisture Barrier Bag ........................................................... 89
4.3.2.2 Transportation Box.............................................................. 91
4.3.3 Trays ................................................................................................... 92
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
Contents
107
Page 5 of 107
5 Regulatory and Type Approval Information...........................................................93
5.1 Directives and Standards................................................................................. 93
5.2 SAR requirements specific to portable mobiles ............................................... 96
5.3 Reference Equipment for Type Approval......................................................... 97
5.4 Compliance with FCC and IC Rules and Regulations ..................................... 98
6 Document Information............................................................................................100
6.1 Revision History ............................................................................................. 100
6.2 Related Documents ....................................................................................... 100
6.3 Terms and Abbreviations ............................................................................... 100
6.4 Safety Precaution Notes ................................................................................ 104
7 Appendix..................................................................................................................105
7.1 List of Parts and Accessories......................................................................... 105
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description

Tables

118
Page 6 of 107
Tables
Table 1: Pad assignments............................................................................................ 16
Table 2: Signal properties ............................................................................................ 17
Table 3: Absolute maximum ratings............................................................................. 23
Table 4: Signals of the SIM interface (SMT application interface) ............................... 30
Table 5: GPIO lines and possible alternative assignment............................................ 34
Table 6: Host wakeup lines.......................................................................................... 40
Table 7: Return loss in the active band........................................................................ 42
Table 8: RF Antenna interface UMTS/LTE (at operating temperature range) ............. 42
Table 9: Overview of operating modes ........................................................................ 54
Table 10: Signal states................................................................................................... 61
Table 11: Temperature dependent behavior.................................................................. 64
Table 12: Voltage supply ratings.................................................................................... 69
Table 13: Current consumption ratings (typical ratings to be confirmed)....................... 70
Table 14: Board temperature ......................................................................................... 73
Table 15: Electrostatic values ........................................................................................ 74
Table 16: EMI measures on the application interface.................................................... 76
Table 17: Summary of reliability test conditions............................................................. 77
Table 18: Reflow temperature ratings............................................................................ 84
Table 19: Storage conditions ......................................................................................... 85
Table 20: Directives ....................................................................................................... 93
Table 21: Standards of North American type approval .................................................. 93
Table 22: Standards of European type approval............................................................ 93
Table 23: Requirements of quality ................................................................................. 94
Table 24: Standards of the Ministry of Information Industry of the
People’s Republic of China............................................................................ 94
Table 25: Toxic or hazardous substances or elements with defined
concentration limits ........................................................................................ 95
Table 26: List of parts and accessories........................................................................ 105
Table 27: Molex sales contacts (subject to change) .................................................... 106
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description

Figures

118
Page 7 of 107
Figures
Figure 1: ELS81-US system overview........................................................................... 12
Figure 2: ELS81-US block diagram............................................................................... 13
Figure 3: ELS81-US RF section block diagram............................................................. 14
Figure 4: Numbering plan for connecting pads (bottom view)....................................... 15
Figure 5: USB circuit ..................................................................................................... 24
Figure 6: Serial interface ASC0..................................................................................... 26
Figure 7: ASC0 startup behavior................................................................................... 27
Figure 8: Serial interface ASC1..................................................................................... 28
Figure 9: ASC1 startup behavior................................................................................... 29
Figure 10: External UICC/SIM/USIM card holder circuit ................................................. 31
Figure 11: SIM interface - enhanced ESD protection...................................................... 32
Figure 12: RTC supply variants....................................................................................... 33
Figure 13: GPIO startup behavior ................................................................................... 35
Figure 14: I Figure 15: I
Figure 16: Characteristics of SPI modes......................................................................... 38
Figure 17: Status signaling with LED driver .................................................................... 39
Figure 18: Power indication circuit .................................................................................. 40
Figure 19: Fast shutdown timing ..................................................................................... 41
Figure 20: Antenna pads (bottom view) .......................................................................... 44
Figure 21: Embedded Stripline with 65µm prepreg (1080) and 710µm core .................. 45
Figure 22: Micro-Stripline on 1.0mm standard FR4 2-layer PCB - example 1 ................ 46
Figure 23: Micro-Stripline on 1.0mm Standard FR4 PCB - example 2............................ 47
Figure 24: Micro-Stripline on 1.5mm Standard FR4 PCB - example 1............................ 48
Figure 25: Micro-Stripline on 1.5mm Standard FR4 PCB - example 2............................ 49
Figure 26: Routing to application‘s RF connector - top view........................................... 50
Figure 27: Schematic diagram of ELS81-US sample application.................................... 52
Figure 28: Sample level conversion circuit...................................................................... 53
Figure 29: Sample circuit for applying power using an external µC ................................ 56
Figure 30: ON circuit options........................................................................................... 57
Figure 31: ON timing ....................................................................................................... 58
Figure 32: Automatic ON circuit based on voltage detector - option 1............................ 58
Figure 33: Automatic ON circuit based on voltage detector - option 2............................ 59
Figure 34: Emergency restart timing ............................................................................... 60
Figure 35: Switch off behavior......................................................................................... 63
Figure 36: Power saving and paging in WCDMA networks............................................. 66
Figure 37: Power saving and paging in LTE networks.................................................... 67
Figure 38: Wake-up via RTS0......................................................................................... 68
Figure 39: Position of reference points BATT+ and GND ............................................... 72
Figure 40: ESD protection for RF antenna interface ....................................................... 74
Figure 41: EMI circuits..................................................................................................... 75
Figure 42: ELS81-US– top and bottom view................................................................... 78
Figure 43: Dimensions of ELS81-US (all dimensions in mm) ......................................... 79
Figure 44: Land pattern (top view) .................................................................................. 80
Figure 45: Recommended design for 110µm thick stencil (top view).............................. 81
Figure 46: Recommended design for 150µm thick stencil (top view).............................. 81
Figure 47: Reflow Profile................................................................................................. 83
Figure 48: Carrier tape .................................................................................................... 87
Figure 49: Reel direction ................................................................................................. 87
Figure 50: Barcode label on tape reel ............................................................................. 88
2
C interface connected to V180 .................................................................... 36
2
C startup behavior ....................................................................................... 37
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
Figures
118
Page 8 of 107
Figure 51: Moisture barrier bag (MBB) with imprint......................................................... 89
Figure 52: Moisture Sensitivity Label .............................................................................. 90
Figure 53: Humidity Indicator Card - HIC ........................................................................ 91
Figure 54: Tray dimensions............................................................................................. 92
Figure 55: Reference equipment for Type Approval ....................................................... 97
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description

1 Introduction

14
Page 9 of 107
1 Introduction
This document1 describes the hardware of the Cinterion® ELS81-US module. It helps you quickly retrieve interface specifications, electrical and mechanical details and information on the requirements to be considered for integrating further components.

1.1 Key Features at a Glance

Feature Implementation
General
Frequency bands UMTS/HSPA+: Triple band, 850 (BdV) / AWS (BdIV) / 1900MHz (BdII)
LTE: Quad band, 700 (Bd12) / 850 (Bd5) / AWS (Bd4) / 1900MHz (Bd2)
Output power (according to Release 99)
Output power (according to Release 8)
Power supply 3.0V to 4.5V
Operating temperature (board temperature)
Physical Dimensions: 27.6mm x 25.4mm x 2.2mm
RoHS All hardware components fully compliant with EU RoHS Directive
LTE features
3GPP Release 9 UE CAT 4 supported
HSPA features
Class 3 (+24dBm +1/-3dB) for UMTS 1900,WCDMA FDD BdII Class 3 (+24dBm +1/-3dB) for UMTS AWS, WCDMA FDD BdIV Class 3 (+24dBm +1/-3dB) for UMTS 850, WCDMA FDD BdV
Class 3 (+23dBm ±2dB) for LTE 1900,LTE FDD Bd2 Class 3 (+23dBm ±2dB) for LTE AWS, LTE FDD Bd4 Class 3 (+23dBm ±2dB) for LTE 850, LTE FDD Bd5 Class 3 (+23dBm ±2dB) for LTE 700, LTE FDD Bd12
Normal operation: -30°C to +85°C Extended operation: -40°C to +90°C
Weight: approx. 4g
DL 150Mbps, UL 50Mbps
3GPP Release 8 DL 7.2Mbps, UL 5.7Mbps
HSDPA Cat.8 / HSUPA Cat.6 data rates Compressed mode (CM) supported according to 3GPP TS25.212
UMTS features
3GPP Release 4 PS data rate – 384 kbps DL / 384 kbps UL
CS data rate – 64 kbps DL / 64 kbps UL
1. The document is effective only if listed in the appropriate Release Notes as part of the technical docu­mentation delivered with your Gemalto M2M product.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
1.1 Key Features at a Glance
14
Feature Implementation
SMS Point-to-point MT and MO
Cell broadcast Text and PDU mode Storage: SIM card plus SMS locations in mobile equipment
Software
AT commands Hayes 3GPP TS 27.007, TS 27.005, Gemalto M2M
AT commands for RIL compatibility
Java™ Open Platform Java™ Open Platform with
Java™ profile IMP-NG & CLDC 1.1 HI
Secure data transmission via HTTPS/SSL
Multi-threading programming and multi-application execution
Major benefits: seamless integration into Java applications, ease of pro­gramming, no need for application microcontroller, extremely cost-efficient hardware and software design – ideal platform for industrial applications.
1
Page 10 of 107
The memory space available for Java programs is 30MB in the flash file system and 18MB RAM. Application code and data share the space in the flash file system and in RAM.
Microsoft™ compatibility RIL for Pocket PC and Smartphone
SIM Application Toolkit SAT letter classes b, c, e; with BIP
Firmware update Generic update from host application over ASC0 or USB modem.
Interfaces
Module interface Surface mount device with solderable connection pads (SMT application
interface). Land grid array (LGA) technology ensures high solder joint reli­ability and allows the use of an optional module mounting socket.
For more information on how to integrate SMT modules see also [3]. This application note comprises chapters on module mounting and application layout issues as well as on additional SMT application development equip­ment.
USB USB 2.0 High Speed (480Mbit/s) device interface, Full Speed (12Mbit/s)
compliant
2 serial interfaces ASC0 (shared with GPIO lines):
8-wire modem interface with status and control lines, unbalanced, asyn­chronous
Adjustable baud rates: 1,200bps to 921,600bps
Autobauding: 1,200bps to 230,400bps
Supports RTS0/CTS0 hardware flow control.
ASC1 (shared with GPIO lines):
4-wire, unbalanced asynchronous interface
Adjustable baud rates: 1,200bps to 921,60bps
Autobauding: 1,200bps to 230,400bps
Supports RTS1/CTS1 hardware flow control
UICC interface Supported SIM/USIM cards: 3V, 1.8V
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
Page 11 of 107
1.1 Key Features at a Glance
14
Feature Implementation
GPIO interface 22 GPIO lines comprising:
13 lines shared with ASC0, ASC1 and SPI lines, with network status indica­tion, PWM functionality, fast shutdown and pulse counter 5 GPIO lines not shared
2
I
C interface Supports I2C serial interface
SPI interface Serial peripheral interface, shared with GPIO lines
Antenna interface pads 50. UMTS/LTE main antenna, UMTS/LTE Rx Diversity antenna
Power on/off, Reset
Power on/off Switch-on by hardware signal ON
Switch-off by AT command Switch off by hardware signal FST_SHDN instead of AT command Automatic switch-off in case of critical temperature or voltage conditions
Reset Orderly shutdown and reset by AT command
Emergency reset by hardware signal EMERG_RST
Special features
Real time clock Timer functions via AT commands
Evaluation kit
Evaluation module ELS81-US module soldered onto a dedicated PCB that can be connected
to an adapter in order to be mounted onto the DSB75.
DSB75 DSB75 Development Support Board designed to test and type approve
Gemalto M2M modules and provide a sample configuration for application engineering. A special adapter is required to connect the ELS81-US evalu­ation module to the DSB75.
1. HTTP/SecureConnection over SSL version 3.0 and TLS versions 1.0, 1.1, and 1.2 are supported. For details please refer to Java User’s Guide for Cinterion
®
ELS81-US.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
GPIO
interface
I2C
USB
ASC0 lines
ASC1/SPI
CONTROL
RTC
POWER
Rx diversity
antenna
(UMTS/LTE)
Module
SIM interface
(with SIM det ection)
SIM card
Application
Power supply
Backup supply
Emergency reset
ON
Serial in terface/ SPI interface
Serial modem interface lines
I2C
GPIO
3
4
4
5
2
9
1
1
1
2
USB
Rx diversity
1
Status LED
1
DAC (PWM) PWM
2
Fast
shutdown
Fast shutdown
1
1
COUNTER
Pulse counter
1
ASC0 lines
Serial modem inte rfac e line s/ SPI interface
4
Main ante nn a
(UMTS/LTE)
Main ante nn a
1

1.2 ELS81-US System Overview

14
1.2 ELS81-US System Overview
Page 12 of 107
Figure 1: ELS81-US system overview
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
SD1 SD2
SD2
LDOs
PMU
LDOs
ON
Reset_BB
SD3
I2CDAT
I2CCLK
USB
GPIO
SIM
CCIN
LPDDR2
SDRAM
FLASH
VDD
VDD
ADQ0 ~ ADQ15
DDR_ CA_0~DDR _CA_9
DDR _DQ_ 0~DDR _DQ_1 5
Con trol
Con trol
CCIN
SIM
GPIO
ASC0
USB
I2C
ON circuit
ON
EMERG _RST
BATT+
BB
RX/TX
RF control
V180
Baseband
controller
and
Power
management
USIF1/
GPIO
FST_SHDWN
ASC1/G PIO/
SPI
USIF3
Page 13 of 107

1.3 Circuit Concept

14
1.3 Circuit Concept
Figure 2 and Figure 3 show block diagrams of the ELS81-US module and illustrate the major
functional components:
Figure 2: ELS81-US block diagram
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
LTE / UMTS RF transceiver
SKY77622
SKY13525
SKY13525
Band2
SAW Filter
Band4
SAW Filter
Band5
SAW Filter
Band12
SAW Filter
Diversity Antenna
Band2
Duplexer
Band4
Duplexer
Band5
Duplexer
Band12
Duplexer
Antenna
Coupler
B2_OUT
B4_OUT
B5_OUT
B12_OUT
4G_HB_IN
2G/3G_HB_IN
4G_LB_IN
2G/3G_LB_IN
TQ_H
TP_H
TQ_L
TP_L
RX_M1
RX_M1X
RX_H4
RX_H4X
RX_L1
RX_L1X
RX_L3
RX_L3X
4G_HB_IN
4G_HB_IN
4G_HB_IN
4G_HB_IN
TRX4
TRX6
TRX5
TRX2
TRX2
TRX1
TRX3
TRX5
PA DCDC
SKY87000
BATT+
RF
FBR_RF2
MAIN_FWD
MIPI
26MHz
RX/TX
BATT+
BB
V180
RF control
1.3 Circuit Concept
14
Page 14 of 107
Figure 3: ELS81-US RF section block diagram
Confidential / Preliminary
els81-us_hid_v01.004 2017-09-27
Cinterion® ELS81-US Hardware Interface Description
Supply pads: BATT+
Control pads
GND pads
ASC0 pads
Combined GPIO/ASC1/SPI pads
SIM pads
I2C pads
Supply pads: Other
Combined GPIO/Control pads (LED, PWM, COUNTER, FST_SHDN)
USB pads
GPIO pads
218217216215214213212211210209208
207
206
205204203202201
33
32
31
30
29
28
27
26
25
24
23
22
21
20
53
54
55
56
57
58
59
60
61
62
63
64
65
66
223224225226227228229230231232233234235236237238239240
67 68 69 70 71 72 73
74 75 76 77 78 79 80
93 94 95 96 97 98 99
100 101 102 103 104 105 106
85 86
89 90
81 82
87 88
91 92
83 84
243
244
241
242
222
221
220
219
252
245
250
251
249
248
247
246
RF antenna pads
Do not use Not connected Reserved
Combined GPIO/ ASC0/SPI pads
ADC pad
Page 15 of 107

2 Interface Characteristics

53
2 Interface Characteristics
ELS81-US is equipped with an SMT application interface that connects to the external applica­tion. The SMT application interface incorporates the various application interfaces as well as the RF antenna interface.

2.1 Application Interface

2.1.1 Pad Assignment

The SMT application interface on the ELS81-US provides connecting pads to integrate the module into external applications. Figure 4 shows the connecting pads’ numbering plan, the following Table 1 lists the pads’ assignments.
els81-us_hid_v01.004 2017-09-27
Figure 4: Numbering plan for connecting pads (bottom view)
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
Page 16 of 107
2.1 Application Interface
53
Table 1: Pad assignments
Pad no. Signal name Pad no. Signal name Pad no. Signal name
201 Not connected 24 GPIO22 235 USB_DN 202 Not connected 25 GPIO21 236 Not connected 203 GND 26 GPIO23 237 Not connected 204 BATT+
BB
27 I2CDAT 238 GND 205 GND 28 I2CCLK 239 GPIO5/LED 206 ADC1 29 GPIO17/TXD1/MISO 240 GPIO6/PWM2 207 ON 30 GPIO16/RXD1/MOSI 241 GPIO7/PWM1 208 GND 31 GPIO18/RTS1 242 GPIO8/COUNTER 209 V180 32 GPIO19/CTS1/SPI_CS 53 BATT+
RF
210 RXD0 33 EMERG_RST 54 GND 211 CTS0 221 GPIO12 55 GND 212 TXD0 222 GPIO11 56 ANT_DRX 213 GPIO24/RING0 223 GND 57 GND 214 RTS0 224 Not connected 58 GND 215 VDDLP 225 GND 59 ANT_MAIN 216 CCRST 226 Not connected 60 GND 217 CCIN 227 GND 61 GND 218 CCIO 228 Not connected 62 GND 219 GPIO14 229 GPIO4/FST_SHDN 63 GND 220 GPIO13 230 GPIO3/DSR0/SPI_CLK 64 Not connected 20 CCVCC 231 GPIO2/DCD0 65 Not connected 21 CCCLK 232 GPIO1/DTR0 66 Not connected 22 VCORE 233 VUSB 243 Not connected 23 GPIO20 234 USB_DP 244 GPIO15 Centrally located pads 67 Not connected 83 GND 99 GND 68 Not connected 84 GND 100 GND 69 Not connected 85 GND 101 GND 70 Not connected 86 GND 102 GND 71 Not connected 87 Not connected 103 GND 72 Not connected 88 GND 104 Not connected 73 Not connected 89 GND 105 Not connected 74 Do not use 90 GND 106 Not connected 75 Do not use 91 Not connected 245 GND 76 Not connected 92 GND 246 Not connected 77 Not connected 93 GND 247 Not connected 78 Not connected 94 GND 248 Not connected 79 Not connected 95 GND 249 Not connected 80 Not connected 96 GND 250 GND 81 GND 97 GND 251 GND 82 GND 98 GND 252 GND
Signal pads that are not used should not be connected to an external application.
Please note that the reference voltages listed in Table 2 are the values measured directly on the ELS81-US module. They do not apply to the accessories connected.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53

2.1.2 Signal Properties

Table 2: Signal properties
Function Signal name IO Signal form and level Comment
Page 17 of 107
Power supply
Power supply
BATT+ BATT+
BB
RF
I WCDMA activated:
VImax = 4.5V V
norm = 3.8V
I
V
min = 3.0V during Transmit active.
I
Imax = 900mA during Tx
LTE activated: VImax = 4.5V V
norm = 3.8V
I
V
min = 3.0V during Transmit active.
I
Lines of BATT+ and GND must be connected in parallel for supply pur­poses because higher peak currents may occur.
Minimum voltage must not fall below 3.0V includ­ing drop, ripple, spikes and not rise above 4.5V.
BATT+
and BATT+RF
BB
require an ultra low ESR capacitor: BATT+ BATT+
--> 150µF
BB
--> 150µF
RF
If using Multilayer Ceramic Chip Capacitors (MLCC) please take DC­bias into account.
Note that minimum ESR value is advised at <70m.
GND Ground Application Ground
External
V180 O Normal operation: supply voltage
VCORE O V
Ignition ON
V180 should be used to
V
norm = 1.80V ±3%
O
max = -10mA
I
O
supply level shifters at the interfaces or to supply
external application cir­SLEEP mode Operation: V
Sleep = 1.80V ±5%
O
I
max = -10mA
O
cuits.
VCORE and V180 may
be used for the power CLmax = 100µF
norm = 1.2V ±2.5%
O
I
max = -10mA
O
CLmax = 100nF
SLEEP mode Operation: V
Sleep = 0.90V...1.2V ±4%
O
I
max = -10mA
O
indication circuit.
Vcore and V180 are
sensitive against back-
powering by other sig-
nals. While switched off
these voltage domains
must have <0.2V.
If unused keep lines
open.
1
IVIHmax = 5V tolerant
V
min = 1.3V
IH
max = 0.5V
V
IL
Slew rate <
1ms
This signal switches the
module on, and is rising
edge sensitive triggered.
Internal pull down value ON ___|~~~~
for this signal is 100k.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Table 2: Signal properties
Function Signal name IO Signal form and level Comment
Page 18 of 107
Emer-
EMERG_RST I R gency restart
RTC
VDDLP I/O V backup
USB VUSB_IN I V
USB_DN I/O Full and high speed signal characteris-
USB_DP
Serial Interface ASC0
RXD0 O V
CTS0 O
DSR0 O
DCD0 O
RING0 O
TXD0 I V
RTS0 I Pull down resistor active
DTR0 I Pull up resistor active
1k, CI 1nF
I
V
max = VDDLP max
OH
V
min = 1.35V
IH
V
max = 0.3V at ~200µA
IL
~~|___|~~ low impulse width > 10ms
norm = 1.8V ±5%
O
I
max = -25mA
O
V
max = 1.9V
I
V
min = 1.0V
I
I
typ < 1µA
I
min = 3V
I
V
max = 5.25V
I
Active and suspend current: I
< 100µA
max
tics according USB 2.0 Specification.
max = 0.25V at I = 1mA
OL
V
min = 1.55V at I = -1mA
OH
V
max = 1.85V
OH
max = 0.35V
IL
V
min = 1.30V
IH
V
max = 1.85V
IH
V
max = 0.35V at > 50µA
IL
V
min = 1.30V at < 240µA
IH
V
max = 1.85V at < 240µA
IH
V
max = 0.35V at < -200µA
IL
V
min = 1.30V at > -50µA
IH
V
max = 1.85V
IH
This line must be driven low by an open drain or open collector driver con­nected to GND.
If unused keep line open.
It is recommended to use a serial resistor between VDDLP and a possible capacitor (bigger than 1µF).
If unused keep line open.
All electrical characteris­tics according to USB Implementers' Forum, USB 2.0 Specification.
If unused keep lines open.
If unused keep lines open.
Note that some ASC0 lines are originally avail­able as GPIO lines. If configured as ASC0 lines, the GPIO lines are assigned as follows: GPIO1 --> DTR0 GPIO2 --> DCD0 GPIO3 --> DSR0 GPIO24 --> RING0
The DSR0 line is also shared with the SPI inter­face‘s SPI_CLK signal.
Note that DCD0/GPIO2 must not be driven low during startup
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Table 2: Signal properties
Function Signal name IO Signal form and level Comment
Page 19 of 107
Serial Interface ASC1
SIM card detection
3V SIM Card Inter­face
RXD1 O V
TXD1 I
RTS1 I
CTS1 O
CCIN I R
CCRST O V
CCIO I/O V
max = 0.25V at I = 1mA
OL
V
min = 1.55V at I = -1mA
OH
V
max = 1.85V
OH
V
max = 0.35V
IL
V
min = 1.30V
IH
V
max = 1.85V
IH
110k
I
V
min = 1.45V at I = 15µA,
IH
V
max= 1.9V
IH
V
max = 0.3V
IL
max = 0.30V at I = 1mA
OL
V
min = 2.45V at I = -1mA
OH
V
max = 2.90V
OH
max = 0.50V
IL
V
min = 2.05V
IH
V
max = 2.90V
IH
If unused keep line open.
Note that the ASC1 inter­face lines are originally available as GPIO lines. If configured as ASC1 lines, the GPIO lines are assigned as follows: GPIO16 --> RXD1 GPIO17 --> TXD1 GPIO18 --> RTS1 GPIO19 --> CTS1
CCIN = High, SIM card inserted.
For details please refer to
Section 2.1.6.
If unused keep line open.
Maximum cable length or copper track to SIM card holder should not exceed 100mm.
CCCLK O V
CCVCC O V
V
max = 0.25V at I = 1mA
OL
V
min = 2.50V at I = -1mA
OH
V
max = 2.90V
OH
max = 0.25V at I = 1mA
OL
V
min = 2.40V at I = -1mA
OH
V
max = 2.90V
OH
min= 2.70V
O
V
typ = 2.90V
O
V
max = 3.30V
O
I
max = -30mA
O
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Table 2: Signal properties
Function Signal name IO Signal form and level Comment
Page 20 of 107
1.8V SIM Card Inter­face
2
C I2CCLK IO Open drain IO
I
CCRST O V
CCIO I/O V
CCCLK O V
CCVCC O V
I2CDAT IO
max = 0.25V at I = 1mA
OL
V
min = 1.45V at I = -1mA
OH
V
max = 1.90V
OH
max = 0.35V
IL
V
min = 1.25V
IH
V
max = 1.85V
IH
V
max = 0.25V at I = 1mA
OL
V
min = 1.50V at I = -1mA
OH
V
max = 1.85V
OH
max = 0.25V at I = 1mA
OL
V
min = 1.50V at I = -1mA
OH
V
max = 1.85V
OH
min = 1.75V
O
V
typ = 1.80V
O
V
max = 1.85V
O
I
max = -30mA
O
V
min = 0.35V at Imax = 4mA (Imax
OL
= Imax external + I pull-up) V
max = 1.85V
OH
R external pull up min = 560
V
max = 0.35V
IL
V
min = 1.3V
IH
V
max = 1.85V
IH
Maximum cable length or copper track to SIM card holder should not exceed 100mm.
2
According to the I
C Bus Specification Version 2.1 for the fast mode a rise time of max. 300ns is per­mitted. There is also a maximum V
=0.4V at
OL
3mA specified.
The value of the pull-up depends on the capaci­tive load of the whole sys-
2
tem (I
C Slave + lines). The maximum sink cur­rent of I2CDAT and I2CCLK is 4mA.
2
I
C interface of the mod­ule already has internal 1KOhm pull up resistor to V180 inside the module. Please take this into con­sideration during applica­tion design.
If lines are unused keep lines open.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Table 2: Signal properties
Function Signal name IO Signal form and level Comment
Page 21 of 107
SPI SPI_CLK O
MOSI O
MISO I
SPI_CS O
GPIO interface
GPIO1-GPIO3 IO
GPIO4 IO
GPIO5 IO
GPIO6 IO
GPIO7 IO
GPIO8 IO
GPIO11­GPIO15
GPIO16­GPIO19
GPIO20­GPIO23
VOLmax = 0.25V at I = 1mA VOHmin = 1.55V at I = -1mA VOHmax = 1.85V
VILmax = 0.35V V
min = 1.30V
IH
V
max = 1.85V
IH
VOLmax = 0.25V at I = 1mA VOHmin = 1.55V at I = -1mA
max = 1.85V
V
OH
VILmax = 0.35V V
min = 1.30V
IH
V
max = 1.85V
IH
Imax = ±5mA
IO
IO
IO
If lines are unused keep lines open.
Note that the SPI inter­face lines are originally available as GPIO lines. If configured as SPI lines, the GPIO lines are assigned as follows: GPIO3 --> SPI_CLK GPIO16 --> MOSI GPIO17 --> MISO GPIO19 --> SPI_CS
If unused keep line open.
Please note that most GPIO lines can be config­ured by AT command for alternative functions: GPIO1-GPIO3: ASC0 control lines DTR0, DCD0 and DSR0 GPIO4: Fast shutdown GPIO5: Status LED line GPIO6/GPIO7: PWM GPIO8: Pulse Counter GPIO16-GPIO19: ASC1 or SPI GPIO24: ASC0 control line RING0
GPIO24 IO
Fast
FST_SHDN I V
shutdown
Status LED LED O
max = 0.35V
IL
V
min = 1.30V
IH
V
max = 1.85V
IH
~~|___|~~ low impulse width > 1ms
VOLmax = 0.25V at I = 1mA VOHmin = 1.55V at I = -1mA VOHmax = 1.85V
This line must be driven low. If unused keep line open.
Note that the fast shut­down line is originally available as GPIO line. If configured as fast shut­down, the GPIO line is assigned as follows: GPIO4 --> FST_SHDN
If unused keep line open.
Note that the LED line is originally available as GPIO line. If configured as LED line, the GPIO line is assigned as fol­lows: GPIO5 --> LED
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Table 2: Signal properties
Function Signal name IO Signal form and level Comment
Page 22 of 107
PWM PWM1 O
PWM2 O
Pulse
COUNTER I Internal up resistor active
counter
ADC
ADC1 I R (Analog-to­Digital Con­verter)
VOLmax = 0.25V at I = 1mA VOHmin = 1.55V at I = -1mA VOHmax = 1.85V
V
max = 0.35V at < -200µA
IL
V
min = 1.30V at > -50µA
IH
V
max = 1.85V
IH
= 1M
I
V
= 0V ... 1.2V (valid range)
I
V
max = 1.2V
IH
Resolution 1024 steps Tolerance 0.3%
If unused keep lines open.
Note that the PWM lines are originally available as GPIO lines. If configured as PWM lines, the GPIO lines are assigned as fol­lows: GPIO7 --> PWM1 GPIO6 --> PWM2
If unused keep line open.
Note that the COUNTER line is originally available as GPIO line. If config­ured as COUNTER line, the GPIO line is assigned as follows: GPIO8 --> COUNTER
ADC can be used as input for external mea­surements.
If unused keep line open.
1. After the operating voltage is applied, it is required to wait at least 1 second to trigger the ON signal.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
Page 23 of 107
2.1 Application Interface
53
2.1.2.1 Absolute Maximum Ratings
The absolute maximum ratings stated in Table 3 are stress ratings under any conditions. Stresses beyond any of these limits will cause permanent damage to ELS81-US.
Table 3: Absolute maximum ratings
1
Parameter Min Max Unit
Supply voltage
BATT+
, BATT+
BB
RF
-0.5 +5.5 V
Voltage at all signal lines in Power Down mode -0.3 +0.3 V
Voltage at digital lines in normal operation -0.2 V180 + 0.2 V
Voltage at SIM/USIM interface, CCVCC in normal operation -0.5 +3.3 V
VDDLP input voltage -0.15 2.0 V
Voltage at ADC line in normal operation 0 1.2 V
V180 in normal operation +1.7 +1.9 V
Current at V180 in normal operation -0 +50 mA
VCORE in normal operation +0.85 +1.25 V
Current at VCORE in normal operation -0 +50 mA
Voltage at ON signal -0.5 +6.5 V
Current at single GPIO -5 +5 mA
Current at all GPIO -50 +50 mA
Voltage at VCORE, V180 in power down mode -0.2 +0.2 V
1. Positive noted current means current sourcing from ELS81-US. Negative noted current means current sourcing towards ELS81-US.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
VBUS
DP DN
VREG (3V075)
BATT+
USB_DP
2)
lin. reg.
GND
Module
Detection only
VUSB_IN
USB part
1)
RING0
Host wakeup
1)
All serial (including RS) and pull-up resistors for data lines are implemented.
USB_DN
2)
2)
If the USB interface is operated in High Speed mode (480MHz), it is recommended to take special care routing the data lines USB_DP and USB_DN. Application layout should in this case implement a differential impedance of 90 ohms for proper signal integrity.
R
S
R
S
SMT
Page 24 of 107
2.1 Application Interface
53

2.1.3 USB Interface

ELS81-US supports a USB 2.0 High Speed (480Mbit/s) device interface that is Full Speed (12Mbit/s) compliant. The USB interface is primarily intended for use as command and data in­terface and for downloading firmware.
The external application is responsible for supplying the VUSB_IN line. This line is used for ca­ble detection only. The USB part (driver and transceiver) is supplied by means of BATT+. This is because ELS81-US is designed as a self-powered device compliant with the “Universal Se­rial Bus Specification Revision 2.0”
1
.
Figure 5: USB circuit
To properly connect the module's USB interface to the external application, a USB 2.0 compat­ible connector and cable or hardware design is required. For more information on the USB re­lated signals see Table 2. Furthermore, the USB modem driver distributed with ELS81-US needs to be installed.
1. The specification is ready for download on http://www.usb.org/developers/docs/
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Page 25 of 107
2.1.3.1 Reducing Power Consumption
While a USB connection is active, the module will never switch into SLEEP mode. Only if the USB interface is in Suspended state or Detached (i.e., VUSB_IN = 0) is the module able to switch into SLEEP mode thereby saving power. There are two possibilities to enable power re­duction mechanisms:
Recommended implementation of USB Suspend/Resume/Remote Wakeup:
The USB host should be able to bring its USB interface into the Suspended state as described in the “Universal Serial Bus Specification Revision 2.0“ work, the VUSB_IN line should always be kept enabled. On incoming calls and other events ELS81-US will then generate a Remote Wakeup request to resume the USB host controller.
See also [5] (USB Specification Revision 2.0, Section 10.2.7, p.282): "If USB System wishes to place the bus in the Suspended state, it commands the Host Con­troller to stop all bus traffic, including SOFs. This causes all USB devices to enter the Sus­pended state. In this state, the USB System may enable the Host Controller to respond to bus wakeup events. This allows the Host Controller to respond to bus wakeup signaling to restart the host system."
1
. For this functionality to
Implementation for legacy USB applications not supporting USB Suspend/Resume:
As an alternative to the regular USB suspend and resume mechanism it is possible to employ the RING0 line to wake up the host application in case of incoming calls or events signalized by URCs while the USB interface is in Detached state (i.e., VUSB_IN = 0). Every wakeup event will force a new USB enumeration. Therefore, the external application has to carefully consider the enumeration timings to avoid loosing any signalled events. For details on this host wakeup functionality see Section 2.1.13.3. To prevent existing data call con­nections from being disconnected while the USB interface is in detached state (i.e., VUS­B_IN=0) it is possible to call AT&D0, thus ignoring the status of the DTR line (see also [1]).
1. The specification is ready for download on http://www.usb.org/developers/docs/
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Page 26 of 107

2.1.4 Serial Interface ASC0

ELS81-US offers an 8-wire unbalanced, asynchronous modem interface ASC0 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 1.8V (for high data bit or inactive state). For electrical characteristics please refer to Table 2. For an illustration of the interface line’s startup behavior see Figure 7.
ELS81-US is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:
Port TXD @ application sends data to the module’s TXD0 signal line
Port RXD @ application receives data from the module’s RXD0 signal line
Figure 6: Serial interface ASC0
Features:
Includes the data lines TXD0 and RXD0, the status lines RTS0 and CTS0 and, in addition, the modem control lines DTR0, DSR0, DCD0 and RING0.
The RING0 signal serves to indicate incoming calls and other types of URCs (Unsolicited Result Code). It can also be used to send pulses to the host application, for example to wake up the application from power saving state.
Configured for 8 data bits, no parity and 1 stop bit.
ASC0 can be operated at fixed bit rates from 1,200bps up to 921,600bps.
Autobauding supports bit rates from 1,200bps up to 230,400bps.
Supports RTS0/CTS0 hardware flow control. The hardware hand shake line RTS0 has an internal pull down resistor causing a low level signal, if the line is not used and open. Although hardware flow control is recommended, this allows communication by using only RXD and TXD lines.
Wake up from SLEEP mode by RTS0 activation (high to low transition; see Section 3.3.2).
Note: The ASC0 modem control lines DTR0, DCD0, DSR0 and RING0 are originally available as GPIO lines. If configured as ASC0 lines, these GPIO lines are assigned as follows: GPIO1 --> DTR0, GPIO2 --> DCD0, GPIO3 --> DSR0 and GPIO24 --> RING0. Also, DSR0 is shared with the SPI_CLK line of the SPI interface and may be configured as such. Configura­tion is done by AT command (see [1]). The configuration is non-volatile and becomes active after a module restart.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
TXD0
RXD0
RTS0
CTS0
DTR0/GPIO1
DSR0/GPIO3
DCD0/GPIO2
RING0/GPIO24
ON
EMERG_RST
PU
PD
PD
PD
PD
PU
PD
PU
Power supply active
Start up
Firmware
initialization
Command interface
initialization
Interface
active
Reset
state
V180
VCORE
PD
PU
PU
PU
PD
PD
PD
Page 27 of 107
2.1 Application Interface
53
The following figure shows the startup behavior of the asynchronous serial interface ASC0.
For pull-up and pull-down values see Table 10.
Figure 7: ASC0 startup behavior
Notes: During startup the DTR0 signal is driven active low for 500µs. It is recommended to provide a 470
serial resistor for the DTR0 line to prevent shorts (high current flow).
No data must be sent over the ASC0 interface before the interface is active and ready to re­ceive data (see Section 3.2.1).
An external pull down to ground on the DCD0 line during the startup phase activates a special mode for ELS81-US. In this special mode the AT command interface is not available and the module may therefore no longer behave as expected.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Page 28 of 107

2.1.5 Serial Interface ASC1

Four ELS81-US GPIO lines can be configured as ASC1 interface signals to provide a 4-wire unbalanced, asynchronous modem interface ASC1 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 1.8V (for high data bit or inactive state). For electrical characteristics please refer to Table 2. For an illustration of the interface line’s startup behavior see Figure 9.
The ASC1 interface lines are originally available as GPIO lines. If configured as ASC1 lines, the GPIO lines are assigned as follows: GPIO16 --> RXD1, GPIO17 --> TXD1, GPIO18 --> RTS1 and GPIO19 --> CTS1. Configuration is done by AT command (see [1]: AT^SCFG). The configuration is non-volatile and becomes active after a module restart.
ELS81-US is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:
Port TXD @ application sends data to module’s TXD1 signal line
Port RXD @ application receives data from the module’s RXD1 signal line
Figure 8: Serial interface ASC1
Features
Includes only the data lines TXD1 and RXD1 plus RTS1 and CTS1 for hardware hand­shake.
On ASC1 no RING line is available.
Configured for 8 data bits, no parity and 1 or 2 stop bits.
ASC1 can be operated at fixed bit rates from 1,200 bps to 921,600 bps.
Autobauding supports bit rates from 1,200bps up to 230,400bps.
Supports RTS1/CTS1 hardware flow. The hardware hand shake line RTS0 has an internal pull down resistor causing a low level signal, if the line is not used and open. Although hard­ware flow control is recommended, this allows communication by using only RXD and TXD lines.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
TXD1/GPIO17
RXD1/GPIO16
RTS1/GPIO18
CTS1/GPIO19
ON
EMERG_RST
PD
PD
PD
PD
Power supply active
Start up
Firmware
initialization
Command interface
initialization
Interface
active
Reset
state
V180
VCORE
PD
2.1 Application Interface
53
Page 29 of 107
The following figure shows the startup behavior of the asynchronous serial interface ASC1.
*) For pull-down values see Table 10.
Figure 9: ASC1 startup behavior
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Cinterion® ELS81-US Hardware Interface Description
2.1 Application Interface
53
Page 30 of 107

2.1.6 UICC/SIM/USIM Interface

ELS81-US has an integrated UICC/SIM/USIM interface compatible with the 3GPP 31.102 and ETSI 102 221. This is wired to the host interface in order to be connected to an external SIM card holder. Five pads on the SMT application interface are reserved for the SIM interface.
The UICC/SIM/USIM interface supports 3V and 1.8V SIM cards. Please refer to Table 2 for electrical specifications of the UICC/SIM/USIM interface lines depending on whether a 3V or
1.8V SIM card is used.
The CCIN signal serves to detect whether a tray (with SIM card) is present in the card holder. To take advantage of this feature, an appropriate SIM card detect switch is required on the card holder. For example, this is true for the model supplied by Molex, which has been tested to op­erate with ELS81-US and is part of the Gemalto M2M reference equipment submitted for type approval. See Section 7.1 for Molex ordering numbers.
Table 4: Signals of the SIM interface (SMT application interface)
Signal Description
GND Separate ground connection for SIM card to improve EMC.
CCCLK Chipcard clock
CCVCC SIM supply voltage.
CCIO Serial data line, input and output.
CCRST Chipcard reset
CCIN Input on the baseband processor for detecting a SIM card tray in the holder. If the SIM is
removed during operation the SIM interface is shut down immediately to prevent destruc­tion of the SIM. The CCIN signal is by default low and will change to high level if a SIM card is inserted. The CCIN signal is mandatory for applications that allow the user to remove the SIM card during operation. The CCIN signal is solely intended for use with a SIM card. It must not be used for any other purposes. Failure to comply with this requirement may invalidate the type approval of ELS81-US.
Note [1]: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing
the SIM card during operation. Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed the SIM card during operation. In this case, the application must restart ELS81-US.
Note [2]: On the evaluation board, the CCIN signal is inverted, thus the CCIN signal is by default high and
will change to a low level if a SIM card is inserted.
els81-us_hid_v01.004 2017-09-27
Confidential / Preliminary
Loading...
+ 77 hidden pages