HardFiber, Digital Energy, Multilin, and GE Multilin are trademarks or registered
trademarks of GE Multilin Inc.
The contents of this manual are the property of GE Multilin Inc. This
documentation is furnished on license and may not be reproduced in whole or
in part without the permission of GE Multilin. The content of this manual is for
informational use only and is subject to change without notice.
Part number: 1601-9050-X3 (August 2015)
TABLE OF CONTENTS
1. GETTING STARTED1.1 IMPORTANT PROCEDURES
1.1.1CAUTIONS AND WARNINGS ........................................................................... 1-1
Please read this chapter to help guide you through the initial setup of your new L30 Line Current Differential System.
1.1.1 CAUTIONS AND WARNINGS
Before attempting to install or use the device, review all safety indicators in this document to help prevent injury, equipment
damage, or downtime.
The following safety and equipment symbols are used in this document.
Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
Indicates a hazardous situation which, if not avoided, could result in minor or moderate
injury.
Indicates practices not related to personal injury.
a) GENERAL CAUTIONS AND WARNINGS
The following general safety precautions and warnings apply.
Ensure that all connections to the product are correct so as to avoid accidental risk of shock
and/or fire, for example such as can arise from high voltage connected to low voltage terminals.
Follow the requirements of this manual, including adequate wiring size and type, terminal torque settings, voltage,
current magnitudes applied, and adequate isolation/clearance in external wiring from high to low voltage circuits.
Use the device only for its intended purpose and application.
Ensure that all ground paths are uncompromised for safety purposes during device operation and service.
Ensure that the control power applied to the device, the AC current, and voltage input match the ratings specified
on the relay nameplate. Do not apply current or voltage in excess of the specified limits.
Only qualified personnel are to operate the device. Such personnel must be thoroughly familiar with all safety cautions and warnings in this manual and with applicable country, regional, utility, and plant safety regulations.
Hazardous voltages can exist in the power supply and at the device connection to current transformers, voltage
transformers, control, and test circuit terminals. Make sure all sources of such voltages are isolated prior to
attempting work on the device.
Hazardous voltages can exist when opening the secondary circuits of live current transformers. Make sure that
current transformer secondary circuits are shorted out before making or removing any connection to the current
transformer (CT) input terminals of the device.
For tests with secondary test equipment, ensure that no other sources of voltages or currents are connected to
such equipment and that trip and close commands to the circuit breakers or other switching apparatus are isolated, unless this is required by the test procedure and is specified by appropriate utility/plant procedure.
When the device is used to control primary equipment, such as circuit breakers, isolators, and other switching
apparatus, all control circuits from the device to the primary equipment must be isolated while personnel are
working on or around this primary equipment to prevent any inadvertent command from this device.
Use an external disconnect to isolate the mains voltage supply.
LED transmitters are classified as IEC 60825-1 Accessible Emission Limit (AEL) Class 1M.
Class 1M devices are considered safe to the unaided eye. Do not view directly with optical
instruments.
This product is rated to Class A emissions levels and is to be used in Utility, Substation Industrial
environments. Not to be used near electronic devices rated for Class B levels.
1
GE MultilinL30 Line Current Differential System1-1
1.1 IMPORTANT PROCEDURES1 GETTING STARTED
831814A3.CDR
Model:
Mods:
Wiring Diagram:
Inst. Manual:
Serial Number:
Firmware:
Mfg. Date:
PO Num:
Item Num:
L30D00HCHF8AH6AM6BP8BX7A
000
See manual
1601-9050
MAZB98000029
D
NOV 26, 2012
600001234.56
Control Power:
Contact Inputs:
Contact Outputs:
88-300V DC @ 35W / 77-265V AC @ 35VA
300V DC Max 10mA
Refer to Instruction Manual
RATINGS:
L30
Line Differential Relay
- M A A B 9 7 0 0 0 0 9 9 -
GE Multilin
- M A A B 9 7 0 0 0 0 9 9 -
LISTED
52TL
IND.CONT. EQ.
E83849
NOTE
1.1.2 INSPECTION PROCEDURE
1
1.Open the relay packaging and inspect the unit for physical damage.
2.View the rear nameplate and verify that the correct model has been ordered.
Figure 1–1: REAR NAMEPLATE (EXAMPLE)
3.Ensure that the following items are included:
• Instruction manual (if ordered)
• GE EnerVista CD (includes the EnerVista UR Setup software and manuals in PDF format)
• Mounting screws
For product information, instruction manual updates, and the latest software updates, please visit the GE Digital Energy
website at http://www.gedigitalenergy.com
.
If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Digital
Energy immediately.
GE DIGITAL ENERGY CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:
GE Digital Energy
650 Markland Street
Markham, Ontario
Canada L6C 0M1
TELEPHONE:Worldwide +1 905 927 7070
Europe/Middle East/Africa +34 94 485 88 54
North America toll-free 1 800 547 8629
1-2L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.2 UR OVERVIEW
1.2UR OVERVIEW1.2.1 INTRODUCTION TO THE UR
Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This
first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the singlefunction approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.
Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and
auxiliary equipment required. However, recent digital relays have become quite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the
term IED (Intelligent Electronic Device).
It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further
reduced, to 20% to 70% of the levels common in 1990, to achieve large cost reductions. This requires placing even more
functions within the IEDs.
Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and
as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to
perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.
High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a
performance target response time for a command signal between two IEDs, from transmission to reception, of less than 3
milliseconds. This has been established by the IEC 61850 standard.
IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available,
enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and
enterprise levels. The GE Multilin Universal Relay (UR) has been developed to meet these goals.
1
GE MultilinL30 Line Current Differential System1-3
1.2 UR OVERVIEW1 GETTING STARTED
827822A3.CDR
Input elements
LAN
Programming
device
Operator
interface
Contact inputsContact outputs
Virtual inputs
Virtual outputs
Analog inputs
Analog outputs
CT inputs
VT inputs
Input
status
table
Output
status
table
Pickup
Dropout
Operate
Protective elements
Logic Gates
Remote outputs
- IEC 61850
CPU module
Output elements
Remote inputs
Direct inputsDirect outputs
1.2.2 HARDWARE ARCHITECTURE
1
a) UR BASIC DESIGN
The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output
signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or
another UR device.
Figure 1–2: UR CONCEPT BLOCK DIAGRAM
The CPU module contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.
Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into
logic signals used by the relay.
Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that can be used
to control field devices.
b) UR SIGNAL TYPES
The contact inputs and outputs are digital signals associated with connections to hard-wired contacts. Both ‘wet’ and ‘dry’
contacts are supported.
The virtual inputs and outputs are digital signals associated with UR-series internal logic signals. Virtual inputs include
signals generated by the local user interface. The virtual outputs are outputs of FlexLogic™ equations used to customize
the device. Virtual outputs can also serve as virtual inputs to FlexLogic™ equations.
The analog inputs and outputs are signals that are associated with transducers, such as Resistance Temperature Detec-
tors (RTDs).
The CT and VT inputs refer to analog current transformer and voltage transformer signals used to monitor AC power lines.
The UR-series relays support 1 A and 5 A CTs.
The remote inputs and outputs provide a means of sharing digital point state information between remote UR-series
devices. The remote outputs interface to the remote inputs of other UR-series devices. Remote outputs are FlexLogic™
operands inserted into IEC 61850 GSSE and GOOSE messages.
The direct inputs and outputs provide a means of sharing digital point states between a number of UR-series IEDs over a
dedicated fiber (single or multimode), RS422, or G.703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilotaided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.
1-4L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.2 UR OVERVIEW
827823A3.CDR
Pickup (PKP)
Dropout (DPO)
Operate (OP)
Protective elements
Protection elements
serviced by sub-scan
Read inputs
Solve logic
Set outputs
c) UR SCAN OPERATION
The UR-series devices operate in a cyclic scan fashion. The device reads the inputs into an input status table, solves the
logic program (FlexLogic™ equation), and then sets each output to the appropriate state in an output status table. Any
resulting task execution is priority interrupt-driven.
Figure 1–3: UR-SERIES SCAN OPERATION
1
1.2.3 SOFTWARE ARCHITECTURE
The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as
required. This is achieved with object-oriented design and programming (OOD/OOP) techniques.
Object-oriented techniques involve the use of objects and classes. An object is defined as “a logical entity that contains
both data and code that manipulates that data”. A class is the generalized form of similar objects. By using this concept,
one can create a protection class with the protection elements as objects of the class, such as time overcurrent, instantaneous overcurrent, current differential, undervoltage, overvoltage, underfrequency, and distance. These objects represent
completely self-contained software modules. The same object-class concept can be used for metering, input/output control,
hmi, communications, or any functional entity in the system.
Employing OOD/OOP in the software architecture of the L30 achieves the same features as the hardware architecture:
modularity, scalability, and flexibility. The application software for any UR-series device (for example, feeder protection,
transformer protection, distance protection) is constructed by combining objects from the various functionality classes. This
results in a common look and feel across the entire family of UR-series platform-based applications.
1.2.4 IMPORTANT CONCEPTS
As described above, the architecture of the UR-series relays differ from previous devices. To achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in
“elements”. A description of the UR-series elements can be found in the Introduction to elements section in chapter 5.
Examples of simple elements, and some of the organization of this manual, can be found in the Control elements section of
chapter 5. A description of how digital signals are used and routed within the relay is contained in the Introduction to Flex-
Logic™ section in chapter 5.
GE MultilinL30 Line Current Differential System1-5
1.3 ENERVISTA UR SETUP SOFTWARE1 GETTING STARTED
1.3ENERVISTA UR SETUP SOFTWARE1.3.1 PC REQUIREMENTS
1
The faceplate keypad and display or the EnerVista UR Setup software interface can be used to communicate with the relay.
The EnerVista UR Setup software interface is the preferred method to edit settings and view actual values because the PC
monitor can display more information in a simple comprehensible format.
The following minimum requirements must be met for the EnerVista UR Setup software to properly operate on a PC.
•Pentium class or higher processor (Pentium II 300 MHz or higher recommended)
•Windows 95, 98, 98SE, ME, NT 4.0 (Service Pack 4 or higher), 2000, XP
•Internet Explorer 4.0 or higher
•128 MB of RAM (256 MB recommended)
•200 MB of available space on system drive and 200 MB of available space on installation drive
•Video capable of displaying 800 x 600 or higher in high-color mode (16-bit color)
•RS232 and/or Ethernet port for communications to the relay
The following qualified modems have been tested to be compliant with the L30 and the EnerVista UR Setup software.
•US Robotics external 56K FaxModem 5686
•US Robotics external Sportster 56K X2
•PCTEL 2304WT V.92 MDC internal modem
1.3.2 INSTALLATION
After ensuring the minimum requirements for using EnerVista UR Setup are met (see previous section), use the following
procedure to install the EnerVista UR Setup from the enclosed GE EnerVista CD.
1.Insert the GE EnerVista CD into your CD-ROM drive.
2.Click the Install Now button and follow the installation instructions to install the no-charge EnerVista software.
3.When installation is complete, start the EnerVista Launchpad application.
4.Click the IED Setup section of the Launch Pad window.
5.In the EnerVista Launch Pad window, click the Add Product button and select the “L30 Line Current Differential System” from the Install Software window as shown below. Select the “Web” option to ensure the most recent software
1-6L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.3 ENERVISTA UR SETUP SOFTWARE
release, or select “CD” if you do not have a web connection, then click the Add Now button to list software items for
the L30.
6.EnerVista Launchpad will obtain the software from the Web or CD and automatically start the installation program.
7.Select the complete path, including the new directory name, where the EnerVista UR Setup will be installed.
8.Click on Next to begin the installation. The files will be installed in the directory indicated and the installation program
will automatically create icons and add EnerVista UR Setup to the Windows start menu.
9.Click Finish to end the installation. The UR-series device will be added to the list of installed IEDs in the EnerVista
Launchpad window, as shown below.
1
1.3.3 CONFIGURING THE L30 FOR SOFTWARE ACCESS
a) OVERVIEW
The user can connect remotely to the L30 through the rear RS485 port or the rear Ethernet port with a PC running the
EnerVista UR Setup software. The L30 can also be accessed locally with a computer through the front panel RS232 port or
the rear Ethernet port using the Quick Connect feature.
GE MultilinL30 Line Current Differential System1-7
1.3 ENERVISTA UR SETUP SOFTWARE1 GETTING STARTED
•To configure the L30 for remote access via the rear RS485 port(s), refer to the Configuring Serial Communications
1
section.
•To configure the L30 for remote access via the rear Ethernet port, refer to the Configuring Ethernet Communications
section. An Ethernet module must be specified at the time of ordering.
•To configure the L30 for local access with a computer through either the front RS232 port or rear Ethernet port, refer to
the Using the Quick Connect Feature section. An Ethernet module must be specified at the time of ordering for Ethernet communications.
b) CONFIGURING SERIAL COMMUNICATIONS
Before starting, verify that the serial cable is properly connected to the RS485 terminals on the back of the device. The
faceplate RS232 port is intended for local use and is not described in this section; see the Using the Quick Connect Feature
section for details on configuring the RS232 port.
A computer with an RS232 port and a serial cable is required. To use the RS485 port at the back of the relay, a GE Multilin
F485 converter (or compatible RS232-to-RS485 converter) is required. See the F485 instruction manual for details.
1.Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE EnerVista CD or
online from http://www.gedigitalenergy.com/multilin
2.Connect the computer to the F485 and the F485 to the RS485 terminal on the back of the UR device, or connect
directly the computer to the RS232 port on the front of the relay.
3.Select the “UR” device from the EnerVista Launchpad to start EnerVista UR Setup.
4.Click the Device Setup button to open the Device Setup window and click the Add Site button to define a new site.
5.Enter the desired site name in the “Site Name” field. If desired, a short description of site can also be entered along
with the display order of devices defined for the site. In this example, we will use “Location 1” as the site name. Click
the OK button when complete.
6.The new site will appear in the upper-left list in the EnerVista UR Setup window. Click the Device Setup button then
select the new site to re-open the Device Setup window.
7.Click the Add Device button to define the new device.
8.Enter the desired name in the “Device Name” field and a description (optional) of the site.
). See the Software Installation section for installation details.
1-8L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.3 ENERVISTA UR SETUP SOFTWARE
9.Select “Serial” from the Interface drop-down list. This will display a number of interface parameters that must be
entered for proper serial communications.
1
Figure 1–4: CONFIGURING SERIAL COMMUNICATIONS
10. Enter the COM port used by the computer, the baud rate, and parity settings from the front panel
SETUP COMMUNICATIONS SERIAL PORTS menu, and the relay slave address setting from the front panel SETTINGS
PRODUCT SETUP COMMUNICATIONS MODBUS PROTOCOL MODBUS SLAVE ADDRESS menu in their respective
fields.
11. Click the Read Order Code button to connect to the L30 device and upload the order code. If a communications error
occurs, ensure that the EnerVista UR Setup serial communications values entered in the previous step correspond to
the relay setting values.
12. Click “OK” when the relay order code has been received. The new device will be added to the Site List window (or
Online window) located in the top left corner of the main EnerVista UR Setup window.
The Site Device has now been configured for RS232 communications. Proceed to the Connecting to the L30 section to
begin communications.
c) CONFIGURING ETHERNET COMMUNICATIONS
Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To
set up the relay for Ethernet communications, you define a Site, then add the relay as a Device at that site.The computer
and UR device must be on the same subnet.
1.Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE EnerVista CD or
online from http://www.gedigitalenergy.com/multilin
2.Select the “UR” device from the EnerVista Launchpad to start EnerVista UR Setup.
3.Click the Device Setup button to open the Device Setup window, then click the Add Site button to define a new site.
4.Enter the desired site name in the “Site Name” field. If desired, a short description of site can also be entered along
with the display order of devices defined for the site. In this example, we will use “Location 2” as the site name. Click
the OK button when complete.
5.The new site will appear in the upper-left list in the EnerVista UR Setup window. Click the Device Setup button then
select the new site to re-open the Device Setup window.
6.Click the Add Device button to define the new device.
). See the Software Installation section for installation details.
SETTINGS PRODUCT
GE MultilinL30 Line Current Differential System1-9
1.3 ENERVISTA UR SETUP SOFTWARE1 GETTING STARTED
7.Enter the desired name in the “Device Name” field and a description (optional) of the site.
8.Select “Ethernet” from the Interface drop-down list. This will display a number of interface parameters that must be
1
entered for proper Ethernet functionality.
Figure 1–5: CONFIGURING ETHERNET COMMUNICATIONS
9.Enter the relay IP address specified in the front panel
WORK IP ADDRESS in the “IP Address” field.
10. Enter the relay slave address and Modbus port address values from the respective settings in the front panel
11. Click the Read Order Code button to connect to the L30 device and upload the order code. If an communications error
occurs, ensure that the three EnerVista UR Setup values entered in the previous steps correspond to the relay setting
values.
12. Click OK when the relay order code has been received. The new device will be added to the Site List window (or
Online window) located in the top left corner of the main EnerVista UR Setup window.
The Site Device has now been configured for Ethernet communications. Proceed to the Connecting to the L30 section to
begin communications.
a) USING QUICK CONNECT VIA THE FRONT PANEL RS232 PORT
Before starting, verify that the serial cable is properly connected from the laptop computer to the front panel RS232 port
with a straight-through 9-pin to 9-pin RS232 cable.
1.Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE EnerVista CD or
online from http://www.gedigitalenergy.com/multilin
2.Select the “UR” device from the EnerVista Launchpad to start EnerVista UR Setup.
3.Click the Quick Connect button to open the Quick Connect dialog box.
4.Select the Serial interface and the correct COM Port, then click Connect.
5.The EnerVista UR Setup software will create a site named “Quick Connect” with a corresponding device also named
“Quick Connect” and display them on the upper-left corner of the screen. Expand the sections to view data directly
from the L30 device.
Each time the EnerVista UR Setup software is initialized, click the Quick Connect button to establish direct communications to the L30. This ensures that configuration of the EnerVista UR Setup software matches the L30 model number.
b) USING QUICK CONNECT VIA THE REAR ETHERNET PORTS
To use the Quick Connect feature to access the L30 from a computer through Ethernet, first assign an IP address to the
relay from the front panel keyboard.
1.Press the MENU key until the SETTINGS menu is displayed.
3.Enter an IP address of “1.1.1.1” and select the ENTER key to save the value.
4.In the same menu, select the
SUBNET IP MASK setting.
5.Enter a subnet IP address of “255.0.0.0” and press the ENTER key to save the value.
Next, use an Ethernet cross-over cable to connect the computer to the rear Ethernet port. The pinout for an Ethernet cross-
over cable is shown below.
1
Figure 1–6: ETHERNET CROSS-OVER CABLE PIN LAYOUT
Now, assign the computer an IP address compatible with the relay’s IP address.
GE MultilinL30 Line Current Differential System1-11
1.3 ENERVISTA UR SETUP SOFTWARE1 GETTING STARTED
1.From the Windows desktop, right-click the My Network Places icon and select Properties to open the network connections window.
1
2.Right-click the Local Area Connection icon and select Properties.
3.Select the Internet Protocol (TCP/IP) item from the list provided and click the Properties button.
4.Click on the “Use the following IP address” box.
1-12L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.3 ENERVISTA UR SETUP SOFTWARE
5.Enter an IP address with the first three numbers the same as the IP address of the L30 relay and the last number dif-
ferent (in this example, 1.1.1.2).
6.Enter a subnet mask equal to the one set in the L30 (in this example, 255.0.0.0).
7.Click OK to save the values.
Before continuing, it will be necessary to test the Ethernet connection.
1.Open a Windows console window by selecting Start > Run from the Windows Start menu and typing “cmd”.
2.Type the following command:
C:\WINNT>ping 1.1.1.1
3.If the connection is successful, the system will return four replies as follows:
Pinging 1.1.1.1 with 32 bytes of data:
Reply from 1.1.1.1: bytes=32 time<10ms TTL=255
Reply from 1.1.1.1: bytes=32 time<10ms TTL=255
Reply from 1.1.1.1: bytes=32 time<10ms TTL=255
Reply from 1.1.1.1: bytes=32 time<10ms TTL=255
Ping statistics for 1.1.1.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip time in milliseconds:
Minimum = 0ms, Maximum = 0ms, Average = 0 ms
4.Note that the values for time and TTL will vary depending on local network configuration.
If the following sequence of messages appears when entering the C:\WINNT>ping 1.1.1.1 command:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Approximate round trip time in milliseconds:
Minimum = 0ms, Maximum = 0ms, Average = 0 ms
Pinging 1.1.1.1 with 32 bytes of data:
Verify the physical connection between the L30 and the laptop computer, and double-check the programmed IP address in
the PRODUCT SETUP COMMUNICATIONS NETWORK IP ADDRESS setting, then repeat step 2 in the above procedure.
If the following sequence of messages appears when entering the C:\WINNT>ping 1.1.1.1 command:
It may be necessary to restart the laptop for the change in IP address to take effect (Windows 98 or NT).
Before using the Quick Connect feature through the Ethernet port, it is necessary to disable any configured proxy settings
in Internet Explorer.
1.Start the Internet Explorer software.
2.Select the Tools > Internet Options menu item and click on Connections tab.
3.Click on the LAN Settings button to open the following window.
4.Ensure that the “Use a proxy server for your LAN” box is not checked.
If this computer is used to connect to the Internet, re-enable any proxy server settings after the laptop has been disconnected from the L30 relay.
1.Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE enerVista CD or
online from http://www.gedigitalenergy.com/multilin). See the Software Installation section for installation details.
2.Start the Internet Explorer software.
1-14L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.3 ENERVISTA UR SETUP SOFTWARE
3.Select the “UR” device from the EnerVista Launchpad to start EnerVista UR Setup.
4.Click the Quick Connect button to open the Quick Connect dialog box.
5.Select the Ethernet interface and enter the IP address assigned to the L30, then click Connect.
6.The EnerVista UR Setup software will create a site named “Quick Connect” with a corresponding device also named
“Quick Connect” and display them on the upper-left corner of the screen. Expand the sections to view data directly
from the L30 device.
Each time the EnerVista UR Setup software is initialized, click the Quick Connect button to establish direct communications to the L30. This ensures that configuration of the EnerVista UR Setup software matches the L30 model number.
When direct communications with the L30 via Ethernet is complete, make the following changes:
1.From the Windows desktop, right-click the My Network Places icon and select Properties to open the network con-
nections window.
2.Right-click the Local Area Connection icon and select the Properties item.
3.Select the Internet Protocol (TCP/IP) item from the list provided and click the Properties button.
4.Set the computer to “Obtain a relay address automatically” as shown below.
1
If this computer is used to connect to the Internet, re-enable any proxy server settings after the laptop has been disconnected from the L30 relay.
AUTOMATIC DISCOVERY OF ETHERNET DEVICES
The EnerVista UR Setup software can automatically discover and communicate to all UR-series IEDs located on an Ethernet network.
Using the Quick Connect feature, a single click of the mouse will trigger the software to automatically detect any UR-series
relays located on the network. The EnerVista UR Setup software will then proceed to configure all settings and order code
options in the Device Setup menu, for the purpose of communicating to multiple relays. This feature allows the user to
identify and interrogate all UR-series devices in a particular location.
GE MultilinL30 Line Current Differential System1-15
1.3 ENERVISTA UR SETUP SOFTWARE1 GETTING STARTED
842743A3.CDR
Communications status indicators:
Green = OK
Red = No communications
UR icon = report is open
Quick action hot links
Expand the site list by double-clicking
or selecting the +/– box.
NOTE
1.3.5 CONNECTING TO THE L30 RELAY
1
When unable to connect because of an "ACCESS VIOLATION," access Device Setup and refresh the order code for the
device.
1.Open the Display Properties window through the Site List tree as shown below:
2.The Display Properties window will open with a status indicator on the lower left of the EnerVista UR Setup window.
3.If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the
back of the relay and that the relay has been properly setup for communications (steps A and B earlier).
If a relay icon appears in place of the status indicator, than a report (such as an oscillography or event record) is open.
Close the report to re-display the green status indicator.
4.The Display Properties settings can now be edited, printed, or changed according to user specifications.
Refer to chapter 4 in this manual and the EnerVista UR Setup Help File for more information about the using the
EnerVista UR Setup software interface.
QUICK ACTION HOT LINKS
The EnerVista UR Setup software has several new quick action buttons that provide users with instant access to several
functions that are often performed when using L30 relays. From the online window, users can select which relay to interrogate from a pull-down window, then click on the button for the action they wish to perform. The following quick action functions are available:
•View the L30 event record.
•View the last recorded oscillography record.
•View the status of all L30 inputs and outputs.
•View all of the L30 metering values.
•View the L30 protection summary.
•Generate a service report.
1-16L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.4 UR HARDWARE
EnerVista
Ethernet
10/100 Mbps
Regional
control
center
Modem
Remote
communications link
Local
control
Engineer
GE Multilin F485
communications converter
UR-series IED
Troubleshooting
Commissioning
Setting changes
Reports
RS485 115 kbps
RS232
EnerVista
EnerVista
842759A2.CDR
1.4UR HARDWARE1.4.1 MOUNTING AND WIRING
Please refer to Chapter 3: Hardware for detailed mounting and wiring instructions. Review all WARNINGS and CAUTIONS
carefully.
1.4.2 COMMUNICATIONS
The EnerVista UR Setup software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard straight-through serial cable is used. The DB-9 male
end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described
in the CPU communications ports section of chapter 3.
1
Figure 1–7: RELAY COMMUNICATIONS OPTIONS
To communicate through the L30 rear RS485 port from a PC RS232 port, the GE Multilin RS232/RS485 converter box is
required. This device (catalog number F485) connects to the computer using a “straight-through” serial cable. A shielded
twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the L30 rear communications port. The converter terminals
(+, –, GND) are connected to the L30 communication module (+, –, COM) terminals. Refer to the CPU communicationsports section in chapter 3 for option details. The line should be terminated with an R-C network (that is, 120 Ω, 1 nF) as
described in the chapter 3.
All messages are displayed on a 2 × 20 backlit liquid crystal display (LCD) to make them visible under poor lighting conditions. While the keypad and display are not actively being used, the display will default to user-defined messages. Any high
priority event driven message will automatically override the default message and appear on the display.
1.4.3 FACEPLATE DISPLAY
GE MultilinL30 Line Current Differential System1-17
1.5 USING THE RELAY1 GETTING STARTED
1.5USING THE RELAY1.5.1 FACEPLATE KEYPAD
1
Display messages are organized into pages under the following headings: actual values, settings, commands, and targets.
The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.
The MESSAGE keys navigate through the subgroups. The VALUE keys scroll increment or decrement numerical setting
values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.
The decimal key initiates and advance to the next character in text edit mode or enters a decimal point. The HELP key may
be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.
1.5.2 MENU NAVIGATION
Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the following main heading
pages:
•Actual values.
•Settings.
•Commands.
•Targets.
•User displays (when enabled).
1.5.3 MENU HIERARCHY
The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double
scroll bar characters (), while sub-header pages are indicated by single scroll bar characters (). The header display
pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE
UP and DOWN keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing
the MESSAGE RIGHT key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE LEFT key from a setting value or actual value display returns to the header display.
HIGHEST LEVELLOWEST LEVEL (SETTING
SETTINGS
PRODUCT SETUP
SETTINGS
The relay is defaulted to the “Not Programmed” state when it leaves the factory. This safeguards against the installation of
a relay whose settings have not been entered. When powered up successfully, the Trouble LED will be on and the In Service LED off. The relay in the “Not Programmed” state will block signaling of any output relay. These conditions will remain
until the relay is explicitly put in the “Programmed” state.
1-18L30 Line Current Differential SystemGE Multilin
1 GETTING STARTED1.5 USING THE RELAY
NOTE
To put the relay in the “Programmed” state, press either of the VALUE keys once and then press ENTER. The faceplate
Trouble LED will turn off and the In Service LED will turn on. The settings for the relay can be programmed manually (refer
to Chapter 5) via the faceplate keypad or remotely (refer to the EnerVista UR Setup help file) via the EnerVista UR Setup
software interface.
1.5.5 RELAY PASSWORDS
It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user
password security access levels, COMMAND and SETTING:
1. COMMAND
The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:
•change state of virtual inputs
•clear event records
•clear oscillography records
•operate user-programmable pushbuttons
2. SETTING
The SETTING access level allows the user to make any changes to any of the setting values.
Refer to the Changing Settings section in Chapter 4 for complete instructions on setting up security level passwords.
1
1.5.6 FLEXLOGIC™ CUSTOMIZATION
FlexLogic™ equation editing is required for setting up user-defined logic for customizing the relay operations. See the FlexLogic™ section in Chapter 5 for additional details.
GE MultilinL30 Line Current Differential System1-19
1.5 USING THE RELAY1 GETTING STARTED
1.5.7 COMMISSIONING
1
The L30 requires a minimum amount of maintenance when it is commissioned into service. Since the L30 is a microprocessor-based relay, its characteristics do not change over time. As such, no further functional tests are required. Expected service life is 20 years for UR devices manufactured June 2014 or later when applied in a controlled indoors environment and
electrical conditions within specification.
Furthermore, the L30 performs a number of continual self-tests and takes the necessary action in case of any major errors
(see the Relay Self-tests section in chapter 7 for details). However, it is recommended that L30 maintenance be scheduled
with other system maintenance. This maintenance may involve the in-service, out-of-service, or unscheduled maintenance.
In-service maintenance:
1.Visual verification of the analog values integrity such as voltage and current (in comparison to other devices on the corresponding system).
2.Visual verification of active alarms, relay display messages, and LED indications.
3.LED test.
4.Visual inspection for any damage, corrosion, dust, or loose wires.
5.Event recorder file download with further events analysis.
Out-of-service maintenance:
1.Check wiring connections for firmness.
2.Analog values (currents, voltages, RTDs, analog inputs) injection test and metering accuracy verification. Calibrated
test equipment is required.
3.Protection elements setting verification (analog values injection or visual verification of setting file entries against relay
settings schedule).
4.Contact inputs and outputs verification. This test can be conducted by direct change of state forcing or as part of the
system functional testing.
5.Visual inspection for any damage, corrosion, or dust.
6.Event recorder file download with further events analysis.
7.LED Test and pushbutton continuity check.
Unscheduled maintenance such as during a disturbance causing system interruption:
1.View the event recorder and oscillography or fault report for correct operation of inputs, outputs, and elements.
If it is concluded that the relay or one of its modules is of concern, contact GE Multilin for prompt service.
1-20L30 Line Current Differential SystemGE Multilin
Loading...
+ 612 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.