Fronius WeldCube Connector Operating Instruction [EN]

Operating instructions
WeldCube Connector U/I WeldCube Connector U/I/WFS WSM WeldCube Connector U/I/WFS Euro WeldCube Connector Advanced
Operating instructions
42,0426,0363,EA 005-10062022
Table of contents
Safety Instructions 5
Explanation of Safety Instructions 5 General 5 Intended use 6 Grid Connection 6 Environmental Conditions 6 Obligations of the Operating Company 7 Obligations of Personnel 7 Residual current circuit breaker 7 Personal Protection and Protection of Others 7 Data on noise emission values 8 Danger from toxic gases and vapors 8 Danger from Flying Sparks 9 Risks from grid current and welding current 9 Stray welding currents 10 EMC Device Classifications 10 EMC measures 11 EMF measures 11 Particular hazard areas 11 Requirement for the shielding gas 13 Danger from Shielding Gas Cylinders 13 Danger Posed by Shielding Gas Leak 13 Safety Measures at the Setup Location and During Transport 14 Safety Measures in Normal Operation 14 Maintenance and repair 15 Safety Inspection 15 Disposal 15 Safety symbols 16 Data backup 16 Copyright 16
General 17
Device concept 17 Application areas 17 Operating principle 17 Safety symbols on the device 18 Requirements 19 Options 19 FCC/RSS/EU compliance 20 Bluetooth trademarks 21
System configurations 22
System configurations with WeldCube Connector U/I 22 System configurations with WeldCube Connector U/I/WFS Euro 25 System configurations with WeldCube Connector U/I/WFS WSM 26 System configurations with WeldCube Connector Advanced 26
Operating controls, connections and mechanical components 27
Operating controls, connections, and mechanical components 27 Power LED, status LED 29
Connection Options 30
Connection Options 30 Connection via LAN 30 Connection via WLAN 30
Instructions for installation and operation 31
Installation information 31 Operating Instructions 31 Fronius Data Channel 31
Commissioning 33
Safety 33 Requirements 33 Start-up 33
SmartManager - the website of the WeldCube Connector 36
EN-US
3
General 36 Starting and logging into SmartManager 36 Unlock function if logging in does not work 37 Changing the password/logging out 37 Settings 38 Selecting the language 38 Status display 39 Fronius 39
Current system data 40
Current system data 40
Documentation logbook 41
Documentation logbook 41 Basic settings 42
Device Options 43
Default settings 43 Designation & location 43 Date and time 43 Network settings 43
Save and restore 44
Save and restore 44 Automatic backup 44
User management 46
General 46 Users 46 User roles 46 Export & import 47 CENTRUM 47
Overview 48
Overview 48 Expanding all groups/collapsing all groups 48 Saving as an xml file 48
Update 49
Update 49 Finding the update file (performing an update) 49 Fronius WeldConnect 50
Troubleshooting 51
Error display 51 Troubleshooting 51
Service, maintenance and disposal 52
Safety 52 Monthly maintenance activities 52 Calibration 52 Disposal 52
Technical data 53
WeldCube Connector 53 Wire sensor 54
4
Safety Instructions
EN-US
Explanation of Safety Instruc­tions
DANGER!
Indicates an immediate danger.
Death or serious injury may result if appropriate precautions are not taken.
WARNING!
Indicates a possibly dangerous situation.
Death or serious injury may result if appropriate precautions are not taken.
CAUTION!
Indicates a situation where damage or injury could occur.
Minor injury or damage to property may result if appropriate precautions are
not taken.
NOTE!
Indicates the possibility of flawed results and damage to the equipment.
General
NOTE!
The WeldCube Connector is integrated into an existing welding system for data collection.
Therefore, all safety and warning notices relevant to the welding process apply to the WeldCube Connector.
Observe the Operating Instructions for all system components of the weld-
ing system, in particular the safety instructions and warning notices!
The device has been manufactured in line with the state of the art and according to recognized safety standards. If used incorrectly or misused, however, it can cause:
Serious or fatal injury to the operator or third parties
-
Damage to the device and other material assets belonging to the operating
-
company Inefficient operation of the device
-
All persons involved in the commissioning, operation, maintenance, and servicing of the device must
Be suitably qualified
-
Have knowledge of welding and
-
Have fully read and precisely followed these Operating Instructions
-
The Operating Instructions must always be kept to hand wherever the device is being used. In addition to the Operating Instructions, all applicable local rules and regulations regarding accident prevention and environmental protection must also be followed.
5
All safety and danger notices on the device:
Must be kept in a legible state
-
Must not be damaged/marked
-
Must not be removed
-
Must not be covered, pasted, or painted over
-
For the location of the safety and danger notices on the device, refer to the sec­tion headed "General Information" in the operating instructions for the device. Before switching on the device, eliminate any faults that could compromise safety.
Your personal safety is at stake!
Intended use The device is intended exclusively for measuring welding data in the designated
power range as shown on the rating plate.
The device must be properly installed and set up to ensure it functions as inten­ded.
Utilization for any other purpose, or in any other manner, shall be deemed to be not in accordance with the intended purpose. The manufacturer accepts no liab­ility for any damage resulting from improper use.
Intended use also means
Reading and adhering to all instructions in the Operating Instructions
-
Carefully reading and obeying all safety instructions and danger notices
-
Carrying out all the specified inspection and maintenance work.
-
Never use a welding system for the following:
Thawing pipes
-
Charging batteries
-
Starting motors
-
The manufacturer shall not be liable for faulty or incorrect work results.
Grid Connection Devices with a high output can influence the energy quality of the grid due to
their current consumption.
This may affect a number of device types in terms of:
connection restrictions
-
-
criteria regarding maximum permissible grid impedance
-
criteria regarding the minimum required short-circuit power
*)
both at the interface with the public grid
*)
*)
See technical data
Environmental Conditions
6
In this case, the operator or the person using the device should check whether or not the device is allowed to be connected, where appropriate through discussion with the power supply company.
IMPORTANT! Ensure secure grounding of the grid connection!
Operation or storage of the device outside the stipulated area will be deemed as not in accordance with the intended purpose. The manufacturer accepts no liab­ility for any damage resulting from improper use.
Temperature range of the ambient air:
During operation: -10°C to +40°C (14°F to 104°F)
-
During transport and storage: -20°C to +55°C (-4°F to 131°F)
-
Relative humidity:
Up to 50% at 40°C (104°F)
-
Up to 90% at 20°C (68°F)
-
Ambient air: free of dust, acids, corrosive gases or substances, etc. Altitude above sea level: up to 2000 m (6561 ft. 8.16 in.)
EN-US
Obligations of the Operating Company
Obligations of Personnel
Residual current circuit breaker
The operating company must only allow persons to work with the device if they
Are familiar with the basic occupational safety and accident prevention regu-
-
lations and are trained in handling the device Have read and understood these Operating Instructions, especially the sec-
-
tion "Safety Rules," and have confirmed this with their signature Are trained according to the requirements for the work results
-
The safety-conscious work of the personnel must be checked regularly.
All persons who are assigned to work with the device must do the following be­fore beginning the work:
Follow the basic regulations for occupational safety and accident prevention
-
Read these Operating Instructions, especially the section "Safety Rules," and
-
confirm that they have understood and will follow them by signing
Before leaving the workplace, ensure that no personal injury or property damage can occur in one's absence.
Local regulations and national guidelines may mean that a residual current cir­cuit breaker is required when connecting a device to the public grid. The residual current circuit breaker recommended for the device by the manu­facturer can be found in the technical data.
Personal Protec­tion and Protec­tion of Others
You are exposed to numerous hazards while handling the device, for example:
Flying sparks and pieces of hot metal
-
Arc radiation that poses a risk of injury to the eyes and skin
-
Hazardous electromagnetic fields that pose a risk of death for individuals
-
with pacemakers Electrical risks from grid current and welding current
-
Increased noise exposure
-
Harmful welding fumes and gases
-
Wear suitable protective clothing when dealing with the device. The protective clothing must have the following properties:
Flame resistant
-
Insulating and dry
-
Covering the entire body and in good condition with no damage
-
Safety helmet
-
Cuffless pants
-
7
Protective clothing involves the following:
Protecting the face and eyes from UV radiation, heat and flying sparks with a
-
face guard featuring a regulation-compliant filter Wearing regulation-compliant protective goggles with side protection behind
-
the face guard Wearing rigid, wet-insulating footwear
-
Protecting hands with appropriate gloves (featuring electrical insulation and
-
thermal protection) Wearing ear protection to reduce noise exposure and protect against injury
-
Keep persons, especially children, away during the operation of the devices and during the welding process. If persons are in the vicinity, however:
Instruct them about all hazards (blinding hazard due to arcs, risk of injury
-
from flying sparks, welding fumes hazardous to health, noise exposure, pos­sible hazard due to grid current or welding current, etc.) Provide suitable protective equipment or
-
Construct suitable protective walls and curtains.
-
Data on noise emission values
Danger from tox­ic gases and va­pors
The device produces a maximum noise level of <80 dB(A) (ref. 1pW) when idling and in the cooling phase following operation in relation to the maximum permit­ted operating point at standard loading in accordance with EN 60974-1.
A workplace-specific emission value for welding (and cutting) cannot be spe­cified because this value depends on the welding process and the environmental conditions. It is influenced by a wide range of parameters, such as the welding process itself (MIG/MAG, TIG welding), the selected current type (direct cur­rent, alternating current), the power range, the type of weld metal, the resonance properties of the workpiece, the workplace environment, and many other factors.
The fumes produced during welding contain toxic gases and vapors.
Welding fumes contain substances that cause cancer, as stated in monograph 118 from the International Agency for Research on Cancer.
Use at-source extraction source and a room extraction system. If possible, use a welding torch with an integrated extraction device.
Keep your head out of the welding fumes and gases.
Take the following precautionary measures for fumes and harmful gases:
Do not breathe them in.
-
Extract them from the work area using appropriate equipment.
-
Ensure that there is a sufficient supply of fresh air. Ensure that there is a ventila­tion flow rate of at least 20 m³ per hour.
Use a welding helmet with air supply if there is insufficient ventilation.
If there is uncertainty as to whether the extraction capacity is sufficient, com­pare the measured toxic emission values against the permissible limit values.
The following components are factors that determine how toxic the welding fumes are:
The metals used for the workpiece
-
Electrodes
-
Coatings
-
Cleaning agents, degreasers, and the like
-
The welding process used
-
8
Consult the corresponding material safety data sheets and manufacturer's in­structions for the components listed above.
Danger from Fly­ing Sparks
Recommendations for exposure scenarios, risk management measures and identifying working conditions can be found on the European Welding Associ­ation website under Health & Safety (https://european-welding.org).
Keep flammable vapors (such as solvent vapors) out of the arc radiation range.
When no welding is taking place, close the valve of the shielding gas cylinder or the main gas supply.
Flying sparks can cause fires and explosions.
Never undertake welding near flammable materials.
Flammable materials must be kept at least 11 meters (36 ft. 1.07 in.) from the arc or protected with a certified cover.
Keep suitable, tested fire extinguishers on hand.
Sparks and pieces of hot metal may also get into surrounding areas through small cracks and openings. Take appropriate measures to ensure that there is no risk of injury or fire.
Do not undertake welding in areas at risk of fire and explosion, or on sealed tanks, drums, or pipes if these have not been prepared in accordance with cor­responding national and international standards.
EN-US
Risks from grid current and welding current
Do not undertake welding on containers in which gases, fuels, mineral oils, and the like are/were stored. Residues pose a risk of explosion.
An electric shock can be fatal.
Do not touch voltage-carrying parts inside or outside the device.
During MIG/MAG welding and TIG welding, the welding wire, the wirespool, the feed rollers, as well as all pieces of metal that are in contact with the welding wire, are live.
Always place the wirefeeder on a sufficiently insulated base or use a suitable in­sulating wirefeeder holder.
Ensure suitable personal protection with dry temporary backing or cover with sufficient insulation against the ground potential. The temporary backing or cov­er must completely cover the entire area between the body and the ground po­tential.
All cables and leads must be secured, undamaged, insulated, and adequately di­mensioned. Replace loose connections and scorched, damaged, or inadequately dimensioned cables and leads immediately. Before every use, check power connections for secure fit by hand. In the case of power cables with bayonet connectors, turn the power cable by at least 180° around the longitudinal axis and pretension.
Do not wrap cables or leads around your body or parts of the body.
Concerning the electrode (rod electrode, tungsten electrode, welding wire, etc.)
Never immerse it in liquids to cool it
-
Never touch it when the power source is switched on.
-
9
The open circuit voltage of a welding system may double, for example, between the electrodes of two welding systems. Touching the potentials of both elec­trodes at the same time may be life-threatening in some cases.
Have the grid and device supply lead regularly inspected by an electrician to en­sure that the ground conductor is functioning properly.
Protection class I devices require a grid with a ground conductor and a connector system with ground conductor contact for proper operation.
Operation of the device on a grid without a ground conductor and on a socket without a ground conductor contact is only permitted if all national regulations for protective separation are observed. Otherwise, this is considered gross negligence. The manufacturer accepts no li­ability for any damage resulting from improper use.
Use suitable equipment to ensure that the workpiece is sufficiently grounded if necessary.
Switch off unused devices.
When working at elevated heights, wear a safety harness to prevent falls.
Before working on the device, switch off the device and remove the grid plug.
Secure the device to prevent the grid plug from being connected and switched on again by applying a clearly legible and understandable warning sign.
Stray welding currents
After opening the device:
Discharge all electrically charged components
-
Ensure that all components are disconnected from the power supply.
-
If work is needed on voltage-carrying parts, bring in a second person who will switch off the main switch at the correct time.
If the following instructions are not observed, stray welding currents may occur, which pose a risk of the following:
Fire
-
Overheating of parts connected to the workpiece
-
Irreparable damage to ground conductors
-
Damage to the device and other electrical equipment
-
Ensure that the workpiece clamp is securely connected to the workpiece.
Secure the workpiece clamp as close to the spot to be welded as possible.
Position the device with sufficient insulation against electrically conductive envir­onments, e.g., insulation against electrically conductive floors or electrically con­ductive mounts.
Observe the following when using power distribution boards, twin-head mounts, etc.: Even the electrode of the welding torch/electrode holder not in use carries electric potential. Ensure that there is sufficient insulation when the unused welding torch/electrode holder is stored.
EMC Device Classifications
10
In automated MIG/MAG applications, only guide the wire electrode from the welding wire drum, large spool, or wirespool to the wirefeeder with insulation.
Devices in emission class A:
Are only designed for use in industrial settings
-
Can cause line-bound and radiated interference in other areas
-
Devices in emission class B:
Satisfy the emissions criteria for residential and industrial areas. This is also
-
true for residential areas in which the energy is supplied from the public low­voltage grid.
EMC device classification as per the rating plate or technical data.
EMC measures In certain cases, even though a device complies with the standard limit values for
emissions, it may affect the application area for which it was designed (e.g., when there is sensitive equipment at the same location, or if the site where the device is installed is close to either radio or television receivers). If this is the case, then the operating company is obliged to take appropriate ac­tion to rectify the situation.
Test and assess the immunity of equipment in the vicinity of the device in ac­cordance with national and international provisions. Examples of interference­prone equipment that could be affected by the device:
Safety devices
-
Grid power lines, signal lines, and data transfer lines
-
IT and telecommunications equipment
-
Devices for measuring and calibrating
-
Supporting measures to avoid EMC problems:
Grid power supply
1. If electromagnetic interference occurs despite a grid connection that
-
complies with regulations, take additional measures (e.g., use a suitable grid filter).
Welding power-leads
2. Keep them as short as possible
-
Route them close together (also to avoid EMF problems)
-
Route them far from other lines
-
Equipotential bonding
3.
Workpiece grounding
4. If necessary, establish grounding using suitable capacitors.
-
Shield, if necessary
5. Shield other devices in the vicinity
-
Shield the entire welding installation
-
EN-US
EMF measures Electromagnetic fields may cause health problems that are not yet known:
Effects on the health of persons close by, e.g., those with pacemakers and
-
hearing aids Persons with pacemakers must seek advice from their doctor before staying
-
in the immediate vicinity of the device and the welding process Keep distances between welding power-leads and the head/torso of the
-
welder as great as possible for safety reasons Do not carry welding power-leads and hosepacks over your shoulder or wrap
-
them around your body or body parts
Particular haz­ard areas
Keep hands, hair, loose clothing, and tools away from moving parts, such as:
Fans
-
Gears
-
Rollers
-
Shafts
-
Wirespools and welding wires
-
11
Do not reach into rotating gears of the wire drive or into rotating drive parts.
Covers and side panels must only be opened/removed during maintenance and repair work.
During operation
Ensure that all covers are closed, and all side parts have been mounted prop-
-
erly. Keep all covers and side parts closed.
-
The protrusion of welding wire from the welding torch represents a high risk of injury (cuts to the hand, facial and eye injuries, etc.).
Therefore, always hold the welding torch away from the body (devices with wirefeeder) and use suitable protective goggles.
Do not touch the workpiece during or after welding – risk of burns.
Slag may fly off cooling workpieces. Therefore, also wear regulation-compliant protective equipment when reworking workpieces and ensure that other persons are sufficiently protected.
Leave the welding torch and other parts with a high operating temperature to cool before working on them.
Special regulations apply in areas at risk of fire or explosion – follow the appropriate national and international regulations.
Power sources for work in areas with increased electrical hazard (e.g., boilers) must be labeled with the symbol (Safety). However, the power source may not be located in such areas.
Risk of scalding due to leaking coolant. Switch off the cooling unit before discon­necting connections for the coolant supply or return.
When handling coolant, observe the information on the coolant safety data sheet. The coolant safety data sheet can be obtained from your service center or via the manufacturer's website.
Only use suitable load-carrying equipment from the manufacturer to transport devices by crane.
Attach chains or ropes to all designated attachments of the suitable load-
-
carrying equipment. Chains or ropes must be the smallest angle possible from vertical.
-
Remove gas cylinder and wirefeeder (MIG/MAG and TIG devices).
-
In the event of crane attachment of the wirefeeder during welding, always use a suitable, insulating wirefeeder hoisting attachment (MIG/MAG and TIG devices).
If the device is equipped with a carrier belt or handle, then this is used exclus­ively for transport by hand. The carrier belt is not suitable for transport by crane, counterbalanced lift truck, or other mechanical lifting tools.
All lifting equipment (belts, buckles, chains, etc.), which is used in association with the device or its components, must be checked regularly (e.g., for mechanic­al damage, corrosion, or changes due to other environmental influences). The test interval and scope must at least comply with the respective valid nation­al standards and guidelines.
12
There is a risk of colorless, odorless shielding gas escaping without notice if an adapter is used for the shielding gas connection. Use suitable Teflon tape to seal the thread of the shielding gas connection adapter on the device side before in­stallation.
Requirement for the shielding gas
Especially with ring lines, contaminated shielding gas can cause damage to equipment and reduce welding quality. Meet the following requirements regarding shielding gas quality:
Solid particle size < 40 µm
-
Pressure condensation point < -20 °C
-
Max. oil content < 25 mg/m³
-
Use filters if necessary.
EN-US
Danger from Shielding Gas Cylinders
Shielding gas cylinders contain compressed gas and may explode if damaged. Shielding gas cylinders are an integral part of the welding equipment, so they must be handled very carefully.
Protect shielding gas cylinders with compressed gas from excessive heat, mech­anical impact, slag, open flames, sparks, and arcs.
Mount the shielding gas cylinders vertically and secure them in accordance with instructions so they cannot fall over.
Keep shielding gas cylinders away from welding or other electrical circuits.
Never hang a welding torch on a shielding gas cylinder.
Never touch a shielding gas cylinder with an electrode.
Risk of explosion: Never weld on a compressed shielding gas cylinder.
Always use suitable shielding gas cylinders for the application in question and the correct matching accessories (controller, hoses, and fittings, etc.) Only use shielding gas cylinders and accessories that are in good condition.
If a valve on a shielding gas cylinder is open, turn your face away from the outlet.
When no welding is taking place, close the valve of the shielding gas cylinder.
Leave the cap on the valve of the shielding gas cylinder when the cylinder is not connected.
Danger Posed by Shielding Gas Leak
Follow the manufacturer's instructions and applicable national and international provisions for shielding gas cylinders and accessories.
Risk of asphyxiation due to uncontrolled shielding gas leak
Shielding gas is colorless and odorless and may suppress the oxygen in the ambi­ent air in the event of leakage.
Ensure there is a sufficient supply of fresh air with a ventilation flow rate of
-
at least 20 m³ per hour. Please observe the safety and maintenance information for the shielding gas
-
cylinder or the main gas supply. When no welding is taking place, close the valve of the shielding gas cylinder
-
or the main gas supply. Always check the shielding gas cylinder or main gas supply for uncontrolled
-
gas leakage before each start-up.
13
Safety Measures at the Setup Location and During Transport
A toppling device can be deadly! Set up the device securely on an even, solid sur­face
The maximum permitted tilt angle is 10°.
-
Special regulations apply in areas at risk of fire or explosion
Follow the appropriate national and international regulations.
-
Use instructions and checks within the company to ensure that the vicinity of the workplace is always clean and organized.
Only set up and operate the device in accordance with the protection class shown on the rating plate.
When setting up the device, ensure that there is an all-round clearance of 0.5 m (1 ft. 7.69 in.) to allow cooling air to circulate unhindered.
Take care to ensure that the applicable national and regional guidelines and acci­dent prevention regulations are observed when transporting the device, espe­cially guidelines concerning hazards during transport and shipment.
Do not lift or transport any active devices. Switch off devices before transport or lifting.
Before transporting the device, completely drain the coolant and dismantle the following components:
wirefeeder
-
wirespool
-
shielding gas cylinder
-
Safety Measures in Normal Oper­ation
It is essential to conduct a visual inspection of the device to check for damage after it has been transported but before commissioning. Have any damage re­paired by trained service technicians before commissioning the device.
Only operate the device when all safety devices are fully functional. If the safety devices are not fully functional, there is a danger of:
Injury or death to the operator or a third party
-
Damage to the device and other material assets belonging to the operating
-
company Inefficient operation of the device
-
Safety devices that are not fully functional must be repaired before the device is switched on.
Never bypass or disable safety devices.
Before switching on the device, ensure that no one can be put in danger.
The device must be examined at least once a week for externally detectable dam­age and functionality of the safety devices.
Always secure the shielding gas cylinder well and remove before transporting by crane.
14
Only the original coolant from the manufacturer is suitable for use in our devices due to its properties (electrical conductivity, anti-freeze, material compatibility, flammability, etc.)
Only use appropriate original coolant from the manufacturer.
Do not mix original coolant from the manufacturer with other coolants.
Only connect system components from the manufacturer to the cooling unit cir­cuit.
Maintenance and repair
If there is damage due to use of other system components or other coolants, the manufacturer accepts no liability for this and all warranty claims are forfeited.
Cooling Liquid FCL 10/20 is not flammable. The ethanol-based coolant is flam- mable in certain conditions. Only transport the coolant in closed original contain­ers and keep away from sources of ignition.
Properly dispose of used coolant according to national and international regula­tions. The coolant safety data sheet can be obtained from your service center or via the manufacturer’s website.
When the system is cool, always check the coolant level before starting welding.
It is impossible to guarantee that bought-in parts are designed and manufac­tured to meet the demands made of them, or that they satisfy safety require­ments.
Use only original spare and wearing parts (also applies to standard parts).
-
Do not carry out any modifications, alterations, etc. to the device without the
-
manufacturer's consent. Components that are not in perfect condition must be replaced immediately.
-
When ordering, please give the exact designation and part number as shown
-
in the spare parts list, as well as the serial number of your device.
The housing screws provide the ground conductor connection for earthing the housing parts. Only use original housing screws in the correct number and tightened to the spe­cified torque.
EN-US
Safety Inspec­tion
Disposal To comply with European directives and national law, waste electrical and elec-
The manufacturer recommends that a safety inspection of the device be per­formed at least every 12 months.
The manufacturer recommends calibrating power sources within the same 12­month interval.
A safety inspection by a certified electrician is recommended:
After changes
-
After alterations
-
After repair, care, and maintenance
-
At least every 12 months
-
For the safety inspection, follow the appropriate national and international standards and guidelines.
You can obtain more information about the safety inspection and calibration from your service center. The service center will provide the necessary docu­ments upon request.
tronic equipment must be collected separately and sent for environmentally­friendly recycling. Used devices must be returned to a distributor or an approved collection and recycling facility in your area. Proper disposal of used devices pro­motes the sustainable recycling of material resources. Ignoring this may have po­tentially adverse effects on the environment and your health.
15
Packaging materials
Materials collected separately. Check the regulations in your area. Reduce the volume of cardboard.
Safety symbols Devices with the CE label satisfy the essential requirements of the low-voltage
and electromagnetic compatibility directive (e.g., relevant product standards of the EN 60974 series).
Fronius International GmbH declares that the device complies with Directive 2014/53/EU. The full text of the EU Declaration of Conformity is available on the following website: http://www.fronius.com
Devices marked with the CSA test mark satisfy the requirements of the relevant standards for Canada and the USA.
Data backup The user is responsible for backing up any changes made to the factory settings.
The manufacturer accepts no liability for any deleted personal settings.
Copyright Copyright of these Operating Instructions remains with the manufacturer.
Text and illustrations were accurate at the time of printing. Fronius reserves the right to make changes. The contents of the Operating Instructions shall not provide the basis for any claims whatsoever on the part of the purchaser. If you have any suggestions for improvement, or can point out any mistakes that you have found in the Operating Instructions, we will be most grateful for your com­ments.
16
General
Device concept With the WeldCube Connector, all
welding systems involved in production can be integrated into the Fronius WeldCube Premium documentation system, regardless of manufacturer.
If the power supply is lost, the Weld­Cube Connector stores the last data and ensures a safe shutdown process.
The WeldCube Connector is available in the following versions:
WeldCube Connector U/I
4,044,056 Measurement of welding current and welding voltage incl. voltage measurement adapter
EN-US
Application areas
Operating prin­ciple
WeldCube Connector U/I/WFS WSM
4,044,057 Measurement of welding current, welding voltage, and wire speed incl. wire sensor (for the power sources TransSteel 3000c Pulse, TransSteel 3500c, and the wirefeeder VR 5000)
WeldCube Connector U/I/WFS Euro
4,044,058 Measurement of welding current, welding voltage, and wire speed incl. Euro wire sensor
WeldCube Connector Advanced
4,044,067 Measurement of welding current, welding voltage, and wire speed Wire sensor optional (see options from page 19)
The WeldCube Connector is used in manual and automated MIG/MAG, TIG, and MMA applications.
Regardless of the welding process, the WeldCube Connector is always integrated between the power source and the grounding cable. The current is measured at the current sockets of the power source.
For functional system integration, the following components must be connected:
17
Loading...
+ 39 hidden pages