Wir danken Ihnen für Ihr entgegengebrachtes Vertrauen und gratulieren Ihnen zu Ihrem
technisch hochwertigen Fronius Produkt. Die vorliegende Anleitung hilft Ihnen, sich mit
diesem vertraut zu machen. Indem Sie die Anleitung sorgfältig lesen, lernen Sie die
vielfältigen Möglichkeiten Ihres Fronius-Produktes kennen. Nur so können Sie seine
Vorteile bestmöglich nutzen.
Bitte beachten Sie auch die Sicherheitsvorschriften und sorgen Sie so für mehr Sicherheit am Einsatzort des Produktes. Sorgfältiger Umgang mit Ihrem Produkt unterstützt
dessen langlebige Qualität und Zuverlässigkeit. Das sind wesentliche Voraussetzungen
für hervorragende Ergebnisse.
WARNUNG! Fehlerhaft durchgeführte Arbeiten können schwerwiegende
Personen- und Sachschaden verursachen. Alle in dieser Bedienungsanleitung angeführten Arbeiten dürfen nur von geschultem Fachpersonal durchgeführt werden. Alle in dieser Bedienungsanleitung beschriebenen Funktionen dürfen nur von geschultem Fachpersonal angewandt werden. Alle
beschriebenen Arbeiten erst ausführen und alle beschriebenen Funktionen
erst anwenden wenn folgende Dokumente vollständig gelesen und verstanden wurden:
-Diese Bedienungsanleitung
-Sämtliche Bedienungsanleitungen der Systemkomponenten,
insbesondere Sicherheitsvorschriften
Sicherheit
Grundlagen
Gerätekonzept
Anschlüsse am
Interface - TS/
TPS, MW/TT
Geräteserie
CANopen ist eine weit verbreitete CAN-Anwendungsschicht, die im Verband CAN-inAutomation entwickelt und inzwischen zur internationalen Normung angenommen
wurde.
CANopen besteht aus der Protokolldefinition (Kommunikationsprofil) so wie den Geräteprofilen, die den Dateninhalt für die jeweilige Geräteklasse normieren. Zur schnellen
Kommunikation der Ein- und Ausgangsdaten dienen die Prozessdaten-Objekte (PDO).
Die CANopen-Geräteparameter und Prozessdaten sind in einem Objektverzeichnis
strukturiert. Der Zugriff auf beliebige Daten dieses Objektverzeichnisses erfolgt über die
Servicedaten-Objekte (SDO). Weiter gibt es einige Spezialobjekte (oder Telegrammarten) für Netzwerk-Management (NMT), Synchronisation, Fehlermeldungen etc.
CANopen zeichnet sich durch geringes Bauvolumen und hohe Modularität aus.
Die einfache und platzsparende Montage auf einer Norm C-Schiene und die direkte
Verdrahtung von Aktoren und Sensoren ohne Querverbindungen zwischen den Klemmen standardisiert die Installation. Das einheitliche Beschriftungskonzept erleichtert
zusätzlich die Installation.
(1) Zugentlastung mit
Kabeldurchführungen
zum Durchführen der Datenleitung
CANopen und der Spannungsversorgung für den Feldbus-Koppler
(2) LocalNet Anschluss
zum Anschließen des VerbindungsSchlauchpaketes.
Anschlüsse am Interface
(2)
(1)
2
Anschlüsse am
Interface - TSt
Geräteserie
(1) LocalNet Anschluss-OUT
zum Anschließen des VerbindungsSchlauchpaketes
2)LocalNet Anschluss-IN
zum Anschließen der Stromquelle
(3) Zugentlastung mit
Kabeldurchführungen
zum Durchführen der Datenleitung
CANopen und der Spannungsversorgung für den Feldbus-Koppler
DE
Zusatzhinweise
Anwendungsbeispiel - TS/TPS,
MW/TT Geräteserie
(2)
Anschlüsse am Interface
(1)(3)
HINWEIS! Solange das Roboterinterface am LocalNet angeschlossen ist,
bleibt automatisch die Betriebsart „2-Takt Betrieb“ angewählt
(Anzeige: Betriebsart 2-Takt Betrieb).
Nähere Informationen zur Betriebsart „Sonder-2-Takt Betrieb für Roboterinterface“ den
Kapiteln „MIG/MAG-Schweißen“ und „Parameter Betriebsart“ der Bedienungsanleitung
der Stromquelle entnehmen.
Wichtig! Die externe Spannungsversorgung des Feldbus-Kopplers darf nicht
über die Stromquelle erfolgen. Für die
externe Spannungsversorgung Roboter
oder Steuerung verwenden.
1.Interface-Deckel (2) abmontieren
2.Zugentlastung (3) von Interface
3.CANopen-Datenleitung und Kabel für
(2)(3)
Zugentlastung entfernen
5
abmontieren
die externe Spannungsversorgung
durch Kabeldurchführung in der
Zugentlastung durchführen
Hutschiene mit Schirm verbinden - MW/TT, TS/TPS
Geräteserie
(7)
Der Anschluss der CANopen-Datenleitung erfolgt am 5-poligen Anschluss-Stecker CANopen (5) gemäß
folgender Steckerbelegung:
5nicht benutzt
4CAN high
3Abschirmung
2CAN low
1CAN Ground
4.CANopen-Datenleitungen polrichtig
an Pin 2 und Pin 4 anschließen
Wichtig! Der Feldbus-Koppler ist auf
einer isolierten Hutschiene montiert.
Darauf achten, dass die Hutschiene
keinen elektrischen Kontakt zur Erde der
Stromquelle hat.
5.Abschirmung der CANopen-Datenleitung (4) elektrisch mit der isolierten
Hutschiene (6) verbinden:
Abschirmung an Pin 3 des Anschluss-Steckers CANopen anschließen
6.Kontrollieren, ob die Abschirmung
Roboterseitig mit der Erde Roboter
verbunden ist
7.Externe Spannungsversorgung von
Roboter oder Steuerung am FeldbusKoppler (7) anschließen
Externe Spannungsversorgung anschließen
8.CANopen-Datenleitung und Kabel für die externe Spannungsversorgung mittels
Kabelbindern an Kabeldurchführung in der Zugentlastung montieren
9.Zugentlastung mit dem original Befestigungsmaterial am Interface so montieren,
dass die Zugentlastung ihre Originalposition wieder einnimmt
10. LocalNet-Stecker vom Verbindungs-Schlauchpaket an Anschluss LocalNet am
Interface anschließen
6
Feldbus-Koppler
VORSICHT! Gefahr von Sachschäden. Vor Beginn der Arbeiten sicherstel-
len, dass die Kabel für die externe Spannungsversorgung des Interfaces
spannungsfrei sind und bis zum Abschluss aller Arbeiten spannungsfrei
bleiben.
anschließen - TSt
Geräteserie
Zugentlastung entfernen
(2)
DE
1.Interface-Deckel (2) abmontieren
2.Zugentlastung (3) von Interface
abmontieren
3.CANopen-Datenleitung und Kabel für
die externe Spannungsversorgung
durch Kabeldurchführung in der
Zugentlastung durchführen
(3)
Der Anschluss der CANopen-Datenleitung erfolgt am 5-poligen Anschluss-Stecker CANopen (5) gemäß
folgender Steckerbelegung:
5
4
3
2
1
(4)
Anschluss CANopen
(6)
5nicht benutzt
4CAN high
3Abschirmung
2CAN low
1CAN Ground
4.CANopen-Datenleitungen polrichtig
an Pin 2 und Pin 4 anschließen
(5)
Wichtig! Der Feldbus-Koppler ist auf
einer isolierten Hutschiene montiert.
Darauf achten, dass die Hutschiene
keinen elektrischen Kontakt zur Erde der
Stromquelle hat.
5.Abschirmung der CANopen-Datenleitung (4) elektrisch mit der isolierten
Hutschiene (6) verbinden:
Abschirmung an Pin 3 des Anschluss-Steckers CANopen anschließen
6.kontrollieren, ob die Abschirmung
Roboterseitig mit der Erde Roboter
verbunden ist
Hutschiene mit Schirm verbinden - TSt Geräteserie
7
Feldbus-Koppler
anschließen - TSt
Geräteserie
(Fortsetzung)
7.Externe Spannungsversorgung von
Roboter oder Steuerung am FeldbusKoppler (7) anschließen
8.CANopen-Datenleitung und Kabel für
die externe Spannungsversorgung
mittels Kabelbindern an der Kabeldurchführung in der Zugentlastung
(7)
montieren
9.Zugentlastung mit dem original
Befestigungsmaterial am Interface so
montieren, dass die Zugentlastung
ihre Originalposition wieder einnimmt
Externe Spannungsversorgung anschließen
10. LocalNet-Stecker vom Verbindungs-Schlauchpaket am Anschluss LocalNet-OUT
anschließen
11. Anschluss LocalNet der Stromquelle mittels LocalNet-Kabel mit Anschluss LocalNet-IN am Interface verbinden
Parallele Verdrahtung bei
mehr als zwei
Stromquellen
Bei Systemen mit mehr als zwei Stromquellen die Stromquellen parallel verdrahten.
HINWEIS! CANopen-Datenleitung an den Enden mit Widerständen (120 oder
121 Ohm) versehen, um Reflexionen und damit Übertragungsprobleme zu
vermeiden.
Stromquelle 1
CAN high (4)
CAN Ground (1)
CAN low (2)
Abschirmung
Hutschiene
Parallele Verdrahtung bei mehr als 2 Stromquellen
Stromquelle 2
CAN high (4)
CAN Ground (1)
CAN low (2)
Hutschiene
8
Feldbus-Koppler
konfigurieren Knotenadresse
und Datenübertragungs-Geschwindigkeit
(Baud-Rate)
einstellen
Wichtig! Vor Inbetriebnahme des Feldbus-Kopplers muss die Knotenadresse und die
Datenübertragungs-Geschwindigkeit (Baud-Rate) eingestellt werden.
1.Sicherstellen, dass alle beteiligten
Geräte und Komponenten vom Netz
getrennt und ausgeschaltet sind
2.Sicherstellen, dass das Interface vom
Netz getrennt ist
Wichtig! CANopen verwendet die
Adresse „0“ zum Ansprechen aller
Baugruppen. Diese Adresse nicht an
den Dip-Schaltern einstellen.
3.Knotenadresse an den Dip-Schaltern
1 - 6 im Bereich von 0 - 63 einstellen:
Schalter 1 = niederwertigstes Bit (20)
Schalter 6 = höchstwertigstes Bit (25)
Dipschalter am Feldbus-Koppler:
1 - 6 zur Einstellung der Knotenadresse
7 - 8 zur Einstellung der Baud-Rate
Das Bit ist gesetzt, wenn sich der
Schalter in Schalterstellung ON
befindet.
z.B. Knotenadresse = 14:
Schalter 2 + 3 + 4 auf ON
Jede Adresse darf im CANopenNetzwerk nur einmal vorkommen.
4.Datenübertragungs-Geschwindigkeit
(Baud-Rate) gemäß Tabelle an den
Dip-Schaltern 7 und 8 einstellen
5.Interface-Deckel mit den Originalschrauben so montieren, dass der
Interface-Deckel seine Originalposition einnimmt
Die Änderung von Knotenadresse
und Baud-Rate wird aktiv, sobald am
Feldbus-Koppler wieder die externe
Spannungsversorgung anliegt.
9
Eigenschaften der Datenübertragung
Übertragungstechnik
Netzwerk TopologieLinearer Bus
Busabschluss (121 Ohm) an beiden Enden, um
Signalreflexionen auszuschließen
Stichleitungen nach Möglichkeit vermeiden
MediumAbgeschirmtes 2x2 adrig verdrilltes Kabel mit
einem Wellenwiderstand von 108 - 132 Ohm.
CANopen-Datenleitung vollständig abschirmen.
Masseschleifen vermeiden: Abschirmung an
beiden Stellen erden.
Bei Auftreten von Hochfrequenz-Störpegeln,
hervorgerufen durch Übertragung von der
Hutschiene auf die Abschirmung der CANopen
Datenleitung:
Aufliegen der Abschirmung auf den Feldbus-
Kopplern vermeiden
Anzahl von Stationenmax. 64 Teilnehmer
Max. Bus Längeabhängig von der eingestellten Baud-Rate:
20 m bei 1 MBit/s, 100 m bei 500 kBit/s,
250 m bei 250 kBit/s, 500 m bei 125 kBit/s
Übertragungs-Geschwindigkeit1MBit/s, 500 kBit/s, 250 kBit/s, 125 kBit/s
SteckverbinderOpen Style Connector 5 polig
Prozessdaten-Breite96 Bit (Standardkonfiguration)
Prozessdaten-FormatIntel
Sicherheitseinrichtung
Damit die Stromquelle den Vorgang bei ausgefallener Datenübertragung unterbrechen
kann, verfügt der Feldbus-Knoten über eine Abschaltüberwachung. Findet innerhalb
von 700 ms keine Datenübertragung statt, werden alle Ein- und Ausgänge zurückgesetzt und die Stromquelle befindet sich im Zustand „Stop“. Nach wiederhergestellter
Datenübertragung erfolgt die Wiederaufnahme des Vorganges durch folgende Signale:
-Signal „Roboter bereit“
-Signal „Quellen-Störung quittieren“
10
Fehlerdiagnose, Fehlerbehebung
WARNUNG! Ein elektrischer Schlag kann tödlich sein. Vor Beginn von
Arbeiten am Interface alle beteiligten Geräte und Komponenten
-ausschalten
-vom Netz trennen
-gegen Wiedereinschalten sichern.
Sicherheit
DE
Feldbus-Status
LEDs und Betriebszustand
LEDs
Tritt ein Fehler auf, signalisieren die Feldbus-Status LEDs und die Betriebszustand
LEDs die Art des Fehlers und die Fehlerstelle.
Betriebszustand LEDs:
(7) (8)
(1) I/O ERR
(2) I/O RUN
Feldbus-Status LEDs:
(6)
(5)
(4)
(3)
(2)
(1)
LED-Anzeigen am Feldbus-Koppler
Wichtig! Nach der Fehlerbeseitigung beendet der Feldbus-Koppler in manchen Fällen
die Blinksequenz nicht. Durch Aus- und Einschalten der Versorgungsspannung oder
durch einen Software Reset den Feldbus-Koppler neu starten.
(3) RX Overflow
(4) TX Overflow
(5) RUN
(6) CAN ERR
Ursache:Kein weiterer Teilnehmer im Netz vorhanden (tritt z.B. beim ersten
gestarteten Knoten auf).
2 x Blinken
jeweils ca. 200 ms an / 200 ms aus, gefolgt von 1 s Pause
Ursache:Die Guarding- oder Heartbeat-Überwachung hat angesprochen, es
werden keine Guarding- oder Heartbeat-Telegramme mehr empfangen. Voraussetzung für Guarding-Überwachung: Guard-Time und
Life-Time Factor sind > 0
Voraussetzung für Heartbeat-Überwachung: Consumer-Heartbeat >
0; Der Feldbus-Koppler ist Pre-Operational (PDOs abgeschaltet),
die Ausgänge sind im Fehlerzustand
3 x Blinken
jeweils ca. 200 ms an / 200 ms aus, gefolgt von 1 s Pause
Ursache:Es ist ein Synchronisations-Fehler aufgetreten. Es wurden in der
eingestellten Überwachungszeit (Objekt 0 x 1006 x 1,5) keine Sync.
Telegramme empfangen. Der Busknoten ist Pre-Operational (PDOs
abgeschaltet), die Ausgänge sind im Fehlerzustand.
4 x Blinken
jeweils ca. 200 ms an / 200 ms aus, gefolgt von 1 s Pause
Ursache:Event-Timer-Fehler: Innerhalb der eingestellten Event Time
(0x1400ff, Subindex 5) hat der Feldbus-Koppler kein RxPDO empfangen. Der Buskoppler ist Pre-Operational (PDOs abgeschaltet)
die Ausgänge sind im Fehlerzustand.
14
Feldbus-Status
LED: RUN
LED RUN aus
Ursache:Firmwarestand < C0: Busknoten ist im Zustand Stopped. Keine
Kommunikation mit SDO oder PDO möglich
Schnelles Blitzen
ca. 50 ms an / 50 ms aus (im Wechsel mit CAN ERR LED)
Ursache:Die automatische Baud-Raten-Erkennung hat noch keine gültige
Baud-Rate gefunden. Noch nicht genügend Telegramme auf dem
Bus.
1x Blinken
ca. 200 ms an / 1 s aus)
Ursache:Busknoten ist im Zustand Stopped. Keine Kommunikation mit SDO
oder PDO möglich.
Wechselblinken
jeweils ca. 200 ms an / 200 ms aus
Ursache:Busknoten ist im Zustand Pre-Operational. Der Knoten wurde noch
nicht gestartet.
LED RUN leuchtet durchgehend
Busknoten ist im Zustand Operational
DE
Feldbus-Status
LED: TX Overflow
Feldbus-Status
LED: RX Overflow
LED TX Overflow leuchtet durchgehend
Ursache:Ein Transmit Queue Überlauf ist eingetreten. Der Feldbus-Koppler
konnte seine Nachrichten nicht absetzen, z.B. auf Grund zu hoher
Buslast.
Behebung:Feldbus-Koppler Reset durchführen
LED RX Overflow leuchtet durchgehend
Ursache:Ein Receive Queue Überlauf ist eingetreten. Der Feldb-Kuskoppler
hat Nachrichten verloren, z.B. auf Grund von burstartigem Auftreten
von kurzen Telegrammen.
Behebung:Feldbus-Koppler Reset durchführen
15
Daten im Prozessabbild CANopen (4,100,251)
AllgemeinesDer in dieser Bedienungsanleitung beschriebene CANopen-Knoten basiert auf dem
Kommunikationsprofil DS-401 von CANopen / CAN in Automation.
Nach CANopen sind die Analogeingänge TxPDO2 per Default auf Transmission Type
255 (ereignisgesteuert) eingestellt.
Die Änderung eines Eingangswertes (= „Ereignis“) über die Ereignisteuerung ist im
Objekt 0x6423 deaktiviert, um ein Überfluten des Busses mit Analogsignalen zu verhindern.
Es empfiehlt sich, das Sendeverhalten der Analog-PDOs vor dem Aktivieren zu parametrieren:
-Inhibit-Zeit (Objekt 0x1800ff, SubIndex 3) einstellen
und / oder
-Grenzwertüberwachung (Objekt 0x6424 + 0x6425) einstellen
und / oder
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326200 01H
2H2nd object to be mappedUnsigned326200 02H
3H3rd object to be mappedUnsigned326200 03H
4H4th object to be mappedUnsigned326200 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326411 01H
2H2nd object to be mappedUnsigned326411 02H
3H3rd object to be mappedUnsigned326411 03H
4H4th object to be mappedUnsigned326411 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326000 01H
2H2nd object to be mappedUnsigned326000 02H
3H3rd object to be mappedUnsigned326000 03H
4H4th object to be mappedUnsigned326000 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326200 01H
2H2nd object to be mappedUnsigned326200 02H
3H3rd object to be mappedUnsigned326200 03H
4H4th object to be mappedUnsigned326200 04H
Daten im Prozessabbild MIG/
MAG (Eingang
Stromquelle - TSt
Geräteserie)
(Fortsetzung)
Sub-Index DescriptionData TypeData Length
3HWrite_8_Outputs_11H-18HUnsigned81
1H - 8H Merker-Nummer1 - 5
4HWrite_8_Outputs_19H-20HUnsigned81
1H - 7H Nicht verwendet8HNicht verwendet-
Object 1601H - 2nd Receive PDO Mapping Parameter:
Sub-Index DescriptionValue Range Default Value
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326411 01H
2H2nd object to be mappedUnsigned326411 02H
3H3rd object to be mappedUnsigned326411 03H
4H4th object to be mappedUnsigned326411 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326000 01H
2H2nd object to be mappedUnsigned326000 02H
3H3rd object to be mappedUnsigned326000 03H
4H4th object to be mappedUnsigned326000 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326200 01H
2H2nd object tUnsigned326200 03H
4H4th object to be mappedUnsigned326200 04H
1HDC / ACHigh
2HDC- / DC+High
3HKalottenbildungHigh
4HPulsen disableHigh
5HPulsbereichs-Auswahl Bit 0High
6HPulsbereichs-Auswahl Bit 1High
7HPulsbereichs-Auswahl Bit 2High
8HSchweißsimulationHigh
Object 1601H - 2nd Receive PDO Mapping Parameter:
Sub-Index DescriptionValue Range Default Value
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326411 01H
2H2nd object to be mappedUnsigned326411 02H
3H3rd object to be mappedUnsigned326411 03H
4H4th object to be mappedUnsigned326411 04H
24
Daten im Prozessabbild WIG
(Eingang Stromquelle- TS/TPS,
MW/TT Geräteserie )
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326000 01H
2H2nd object to be mappedUnsigned326000 02H
3H3rd object to be mappedUnsigned326000 03H
4H4th object to be mappedUnsigned326000 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
1 H - FH Drahtgeschwindigkeit (Istwert) 0-FFFFH -327,68 - +327,67
27
Daten im Prozessabbild CANopen + E-Set Bauteilnummer (4,100,251 + 4,100,458)
AllgemeinesDer in dieser Bedienungsanleitung beschriebene CANopen-Knoten basiert auf dem
Kommunikationsprofil DS-401 von CANopen / CAN in Automation.
Nach CANopen sind die Analogeingänge TxPDO2 per Default auf Transmission Type
255 (ereignisgesteuert) eingestellt.
Die Änderung eines Eingangswertes (= „Ereignis“) über die Ereignisteuerung ist im
Objekt 0x6423 deaktiviert, um ein Überfluten des Busses mit Analogsignalen zu verhindern.
Es empfiehlt sich, das Sendeverhalten der Analog-PDOs vor dem Aktivieren zu parametrieren:
-Inhibit-Zeit (Objekt 0x1800ff, SubIndex 3) einstellen
und / oder
-Grenzwertüberwachung (Objekt 0x6424 + 0x6425) einstellen
und / oder
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326200 01H
2H2nd object to be mappedUnsigned 326200 02H
3H3rd object to be mappedUnsigned 326200 03H
4H4th object to be mappedUnsigned 326200 04H
5H5th object to be mappedUnsigned 326200 05H
6H6th object to be mappedUnsigned 326200 06H
7H7th object to be mappedUnsigned 326200 07H
8H8th object to be mappedUnsigned 326200 08H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 01H
2H2nd object to be mappedUnsigned 326411 02H
3H3rd object to be mappedUnsigned 326411 03H
4H4th object to be mappedUnsigned 326411 04H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 05H
2H2nd object to be mappedUnsigned 326411 06H
3H3rd object to be mappedUnsigned 326411 07H
4H4th object to be mappedUnsigned 326411 08H
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326000 01H
2H2nd object to be mappedUnsigned 326000 02H
3H3rd object to be mappedUnsigned 326000 03H
4H4th object to be mappedUnsigned 326000 04H
5H5th object to be mappedUnsigned 326000 05H
6H6th object to be mappedUnsigned 326000 06H
7H7th object to be mappedUnsigned 326000 07H
8H8th object to be mappedUnsigned 326000 08H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326401 05H
2H2nd object to be mappedUnsigned 326401 06H
3H3rd object to be mappedUnsigned 326401 07H
4H4th object to be mappedUnsigned 326401 08H
1 H - FH Drahtgeschwindigkeit (Istwert) 0-FFFFH -327,68 - +327,67
DE
33
Daten im Prozessabbild Twin CANopen (4,100,399)
Allgemeines
Daten im Prozessabbild Twin
CANopen (Eingang Stromquelle
- TS/TPS, MW/TT
Geräteserie)
Der in dieser Bedienungsanleitung beschriebene CANopen-Knoten basiert auf dem
Kommunikationsprofil DS-401 von CANopen / CAN in Automation.
Nach CANopen sind die Analogeingänge TxPDO2 per Default auf Transmission Type
255 (ereignisgesteuert) eingestellt.
Die Änderung eines Eingangswertes (= „Ereignis“) über die Ereignisteuerung ist im
Objekt 0x6423 deaktiviert, um ein Überfluten des Busses mit Analogsignalen zu verhindern.
Es empfiehlt sich, das Sendeverhalten der Analog-PDOs vor dem Aktivieren zu parametrieren:
-Inhibit-Zeit (Objekt 0x1800ff, SubIndex 3) einstellen
und / oder
-Grenzwertüberwachung (Objekt 0x6424 + 0x6425) einstellen
und / oder
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326200 01H
2H2nd object to be mappedUnsigned 326200 02H
3H3rd object to be mappedUnsigned 326200 03H
4H4th object to be mappedUnsigned 326200 04H
5H5th object to be mappedUnsigned 326200 05H
6H6th object to be mappedUnsigned 326200 06H
7H7th object to be mappedUnsigned 326200 07H
8H8th object to be mappedUnsigned 326200 08H
34
Daten im Prozessabbild Twin
CANopen (Eingang Stromquelle
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 01H
2H2nd object to be mappedUnsigned 326411 02H
3H3rd object to be mappedUnsigned 326411 03H
4H4th object to be mappedUnsigned 326411 04H
Daten im Prozessabbild Twin
CANopen (Eingang Stromquelle
- TS/TPS, MW/TT
Geräteserie)
(Fortsetzung)
Object 1602H – 3rd Receive PDO Mapping Parameter:
Sub-Index DescriptionValue Range Default Value
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 05H
2H2nd object to be mappedUnsigned 326411 06H
3H3rd object to be mappedUnsigned 326411 07H
4H4th object to be mappedUnsigned 326411 08H
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326000 01H
2H2nd object to be mappedUnsigned 326000 02H
3H3rd object to be mappedUnsigned 326000 03H
4H4th object to be mappedUnsigned 326000 04H
5H5th object to be mappedUnsigned 326000 05H
6H6th object to be mappedUnsigned 326000 06H
7H7th object to be mappedUnsigned 326000 07H
8H8th object to be mappedUnsigned 326000 08H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326401 01H
2H2nd object to be mappedUnsigned 326401 02H
3H3rd object to be mappedUnsigned 326401 03H
4H4th object to be mappedUnsigned 326401 04H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326401 05H
2H2nd object to be mappedUnsigned 326401 06H
3H3rd object to be mappedUnsigned 326401 07H
4H4th object to be mappedUnsigned 326401 08H
Stromquelle 1
1 H - FH Drahtgeschwindigkeit (Istwert)0-FFFFH-327,68 - +327,67
2HRead_16_Inputs_2HUnsigned161
Stromquelle 2
1 H - FH Drahtgeschwindigkeit (Istwert)0-FFFFH-327,68 - +327,67
40
Technische Daten
DE
Buskoppler
BK5120
Spannungsversorgung24 V DC, -15 / +20 %
Stromaufnahmeca. 100 mA
Potentialtrennung500 Veff (K-Bus / Versorgungsspannung)
Anzahl der Busklemmen64
Peripheriebytes512 Eingangsbytes
512 Ausgangsbytes
Konfigurations-Schnittstellevorhanden für Software KS2000
Slaveadresseeinstellbar über Dip-Schalter
Spannungsfestigkeit500 Veff (Powerkontakt / Versorgungsspannung)
Betriebstemperatur0° C ... +55° C
Lagertemperatur-20° C ... +85° C
relative Feuchte95 % ohne Betauung
Vibrations/Schockfestigkeitgemäß EN 60068-2-6 / EN 60068-2-27,EN 60068-2-
29
EMV-Festigkeit / Aussendunggemäß EN 61000-6-2 (EN 50082) /
EN 61000-6-4 (EN 50081)
EinbaulageBeliebig
SchutzartIP20
41
42
Dear Reader
Introduction
Thank you for choosing Fronius - and congratulations on your new, technically highgrade Fronius product! This instruction manual will help you get to know your new
machine. Read the manual carefully and you will soon be familiar with all the many
great features of your new Fronius product. This really is the best way to get the most
out of all the advantages that your machine has to offer.
Please also take special note of the safety rules - and observe them! In this way, you
will help to ensure more safety at your product location. And of course, if you treat your
product carefully, this definitely helps to prolong its enduring quality and reliability - things
which are both essential prerequisites for getting outstanding results.
EN
ud_fr_st_et_0049301/2012
Contents
General ......................................................................................................................................................... 2
Interface connections - TS/TPS, MW/TT range ....................................................................................... 2
Interface connections - TSt series ........................................................................................................... 3
For your information ................................................................................................................................. 3
Application example - TS/TPS, MW/TT range ......................................................................................... 3
Application example - TSt range .............................................................................................................. 4
Instructions for installing the external variant of the interface ................................................................. 4
Connecting and configuring the field bus coupler ........................................................................................ 5
Connections, settings and indicators on the field bus coupler ................................................................ 5
Connecting the field bus coupler - TS/TPS, MW/TT range ..................................................................... 5
Connecting the field bus coupler - TSt range .......................................................................................... 7
Parallel wiring for more than two power sources ..................................................................................... 8
Configuring field bus coupler - setting node address and data transfer speed (baud rate) .................... 9
Data transfer properties .............................................................................................................................. 10
Field bus status LEDs and operating status LEDs .................................................................................11
Operating status LEDs........................................................................................................................... 12
Field bus status LED: CAN ERR ........................................................................................................... 14
Field bus status LED: RUN .................................................................................................................... 15
Field bus status LED: TX overflow ......................................................................................................... 15
Field bus status LED: RX overflow ........................................................................................................ 15
EN
Data in the CANopen process image (4,100,251) ...................................................................................... 16
General .................................................................................................................................................. 16
Data in the MIG/MAG process image (power source input - TS/TPS, MW/TT range) .......................... 16
MIG/MAG power source modes - TS/TPS, MW/TT range..................................................................... 18
Data in MIG/MAG process image (power source output - TS/TPS, MW/TT range) .............................. 18
Data in MIG/MAG process image (power source input - TSt range) ..................................................... 20
MIG/MAG power source modes (TSt range) ......................................................................................... 22
Data in MIG/MAG process image (power source output - TSt range) ................................................... 22
Data in TIG process image (power source input - TS/TPS, MW/TT range) .......................................... 24
TIG power source modes (TS/TPS, MW/TT range) .............................................................................. 25
TIG pulse range settings (TS/TPS, MW/TT range)................................................................................ 26
Data in TIG process image (power source output - TS/TPS, MW/TT range) ........................................ 26
Data in process image CANopen + installation set component number (4,100,251 + 4,100,458) ............ 28
General .................................................................................................................................................. 28
Data in CANopen process image + installation kit component number (power source input - TS/TPS,
Data in the Twin CANopen process image (4,100,399) ............................................................................. 34
General .................................................................................................................................................. 34
Data in Twin CANopen process image (power source input - TS/TPS, MW/TT range) ........................ 34
Data in Twin CANopen process image (power source output - TS/TPS, MW/TT range) ...................... 38
Technical data ............................................................................................................................................. 41
Bus coupler BK5120 .............................................................................................................................. 41
1
General remarks
WARNING! Carrying out work incorrectly can cause serious injury and
damage. All activities described in these operating instructions may only be
carried out by trained and qualified personnel. All functions described in
these operating instructions may only be used by trained and qualified
personnel. Do not carry out any of the work or use any of the functions
described until you have fully read and understood the following documents:
-These operating instructions
-All the operating instructions for the system components, especially the
safety rules
Safety
Basics
Device concept
Interface connections - TS/TPS,
MW/TT range
CANopen is a widely used CAN Application Layer that was developed by the CAN in
Automation organisation and has been accepted for international standardisation.
CANopen consists of the protocol definition (communication profile) as well as machine
profiles which standardise the data content for the respective machine class. The
Process Data Objects (PDO) serve to communicate the input and output data quickly.
The CANopen machine parameters and process data are structured in an object
dictionary. Access to data in this object dictionary takes place via the Service Data
Objects (SDO). There are also some special objects (or telegram types) for network
management (NMT), synchronisation, error messages, etc.
The CANopen is characterised by its low construction volume and high modularity.
The fact that it can simply be fitted to a standard C-rail (thus saving space) and employs
direct cabling of actuators and sensors without any interconnections between the
terminals makes installation very straightforward. The uniform labelling concept further
simplifies the installation.
(1) Strain-relief device
cable glands
for feeding through the CANopen
data line and the power supply for the
field bus coupler
(2) LocalNet connection
for connecting the interconnecting
hosepack.
(2)
Interface connections
(1)
2
Interface connections - TSt range
(1) LocalNet OUT connection
for connecting the interconnecting
hosepack
2)LocalNet IN connection
for connecting the power source
(3) Strain-relief device with
cable glands
for feeding through the CANopen
data line and the power supply for the
field bus coupler
EN
For your information
Application
example - TS/
TPS, MW/TT
range
(2)
Interface connections
(1)(3)
NOTE! While the robot interface is connected to the LocalNet, „2-step mode“
remains selected
(display: 2-step mode).
Further information on the „Special 2-step mode for robot interface“ can be found in the
sections headed „MIG/MAG welding“ and „Mode welding parameters“ in the power
source operating instructions.
(10)
(4)
(9)
(3)
(5)
(1)(2)
Application example TS/TPS, MW/TT range
(1) Power source
(2) Cooling unit
(3) CANopen
(4) Interconnecting hosepack
(5) CANopen data cable
(6) Robot control
(7) Welding wire drum
(8) Robot
(9) Welding torch
(10) Wirefeeder
3
(6)(7)
(8)
Application
example - TSt
range
(3)
(4)
(5)
(6)
Instructions for
installing the
external variant
of the interface
(2)
(1)
Application example TSt range
(1) Cooling unit
(2) Power source
(3) CANopen
(4) Interconnecting hosepack
(5) Wire-feed unit
(6) Welding torch
(7) Robot control
(8) Welding wire drum
(9) Robot
(10) CANopen data cable
NOTE! The following guidelines must be followed when installing the external
variant of the interface:
-The cables must be routed separately from mains leads
-The field bus coupler must be installed separately from mains leads or
components
-The field bus coupler may only be installed somewhere that provides
protection from dirt and water
-Make sure that the 24 V supply voltage is safely isolated from highervoltage circuits.
(10)
(7)
(8)
(9)
4
Connecting and configuring the field bus coupler
WARNING! An electric shock can be fatal. Before starting work, ensure that
all devices and components are
-switched off
-disconnected from the mains
-secured to prevent them being switched back on again.
CAUTION! Risk of damage. Before starting work ensure that the cable for
the external power supply to the interface is de-energised and remains deenergised until all work is complete.
Safety
EN
Connections,
settings and
indicators on the
field bus coupler
Connecting the
field bus coupler
- TS/TPS, MW/TT
series
(4)
(3)
(2)
(1)
Elements on the field bus coupler
(1) DIP switches 1 - 8
(2) Operating status LEDs
(3) CANopen connecting plug
(4) Field bus status LEDs
(5) Connections for external power
supply
(5)
1.Remove interface cover (2)
2.Remove strain-relief device (3) from
3.Feed the CANopen data line and
(2)(3)
Removing the strain-relief device
5
interface
cable for the external power supply
through the cable gland in the strainrelief device
Connecting the
field bus coupler
- TS/TPS, MW/TT
series
(continued)
(4)
5
4
3
2
1
(5)
(6)
Connecting the DIN rail to the shield - MW/TT, TS/
TPS series
(7)
The CANopen data line is connected
via the 5-pin CANopen connecting
plug (5) in accordance with the
following plug layout:
5Not in use
4CAN high
3Shield
2CAN low
1CAN Ground
4.Connect the CANopen data lines to
pin 2 and pin 4 (observe polarity)
Important! The field bus coupler is
mounted on an insulated DIN rail.
Ensure that the DIN rail has no electrical
contact with the earth of the power source.
5.Make electrical connection between
shield of CANopen data line (4) and
insulated DIN rail (6):
Connect shield on pin 3 of the CANopen connection plug
6.Check that the shield is connected on
the robot side with the robot earth
7.Connect external power supply from
robot or control to the field bus
coupler (7)
Connecting the external power supply
8.Secure the CANopen data line and cable for the external power supply to the
strain-relief device using the cable ties on the cable gland
9.Attach the strain-relief device to the interface using the original fixings. Ensure that
the strain-relief device assumes its original position
10. Connect the LocalNet plug on the interconnecting hosepack to the LocalNet connection on the interface
6
Connecting the
CAUTION! Risk of damage. Before starting work ensure that the cable for
the external power supply to the interface is de-energised and remains deenergised until all work is complete.
field bus coupler
- TSt range
Removing the strain-relief device
(2)
(3)
1.Remove interface cover (2)
2.Remove strain-relief device (3) from
interface
3.Feed the CANopen data line and
cable for the external power supply
through the cable gland in the strainrelief device
The CANopen data line is connected
via the 5-pin CANopen connecting
plug (5) in accordance with the
following plug layout:
EN
5
4
3
2
1
(4)
CANopen connection
(6)
5Not in use
4CAN high
3Shield
2CAN low
1CAN Ground
4.Connect the CANopen data lines to
pin 2 and pin 4 (observe polarity)
(5)
Important! The field bus coupler is
mounted on an insulated DIN rail.
Ensure that the DIN rail has no electrical
contact with the earth of the power source.
5.Make electrical connection between
shield of CANopen data line (4) and
insulated DIN rail (6):
Connect shield on pin 3 of the CANopen connection plug
6.Check that the shield is connected on
the robot side with the robot earth
Connecting the DIN rail to the shield - TSt range
7
Connecting the
field bus coupler
- TSt range
(continued)
7.Connect external power supply from
robot or control to the field bus
coupler (7)
8.Secure the CANopen data line and
cable for the external power supply to
the strain-relief device using the
cable ties on the cable gland
(7)
9.Attach the strain-relief device to the
interface using the original fixings.
Ensure that the strain-relief device
assumes its original position
Connecting the external power supply
10. Connect LocalNet plug on the interconnecting hosepack to the LocalNet OUT
connection
11. Using a LocalNet cable, connect the LocalNet connection on the power source to
the LocalNet IN connection on the interface
Parallel wiring for
more than two
power sources
In systems with more than two power sources, wire the power sources in parallel.
NOTE! In order to avoid reflections and the resulting transmission problems,
connect resistors (120 or 121 Ohm) to both ends of the CANopen data line.
Power source 1
CAN high (4)
CAN ground (1)
CAN low (2)
Shield
DIN rail
Parallel wiring for more than 2 power sources
Power source 2
CAN high (4)
CAN ground (1)
CAN low (2)
DIN rail
8
Configuring field
bus coupler setting node
address and data
transfer speed
(baud rate)
Important! The node address and the data transfer speed (baud rate) must be set
before commissioning the field bus coupler.
1.Ensure that all devices and components have been switched off and
disconnected from the mains
2.Ensure that the interface is disconnected from the mains
Important! CANopen uses the
address „0“ for triggering all components. Do not set this address on the
DIP switches.
3.Set the node address on DIP switches 1 - 6 in the range 0 - 63:
Switch 1 = least significant bit (20)
Switch 6 = most significant bit (25)
DIP switches on the field bus coupler:
1 - 6 for setting the node address
7 - 8 for setting the Baud rate
The bit is set if the switch is in the ON
position.
Each address must only appear once
in the CANopen network.
4.Set data transfer speed (baud rate)
on DIP switches 7 and 8 as shown in
the table
5.Using the original screws, fit the
interface lid back into its original
position
The change of node address and
baud rate comes into effect once the
field bus coupler is powered by the
external power supply again.
9
Data transmission properties
Transmission
technology
Network topologyLinear bus
Bus terminators (121 Ohm) at both ends to
exclude signal reflections
Avoid spur lines if possible
MediumScreened 2x2 core twisted cable with a surge
impedance of 108 - 132 Ohm.
Screen CANopen data line completely.
Avoid ground loops: earth shield at both points.
If high frequency interference occurs as the result
of transmission from the DIN rail to the CANopen
data line shield:
do not attach the shield to the field bus couplers
Number of stationsmax. 64 nodes
Max. bus lengthdepends on the baud rate:
20 m for 1 MBit/s, 100 m for 500 kBit/s,
250 m for 250 kBit/s, 500 m for 125 kBit/s
Transmission speed1MBit/s, 500 kBit/s, 250 kBit/s, 125 kBit/s
ConnectorOpen style connector, 5-pin
Process data width96 bits (standard configuration)
Process data formatIntel
Safety feature
The field bus nodes are equipped with a shutdown monitor so the power source can
interrupt the process if data transmission drops out. If there is no data transmission
within 700 ms, all inputs and outputs are reset and the power source goes into „Stop“.
Once data transmission has been re-established, the following signals resume the
process:
-„Robot ready“ signal
-„Source error reset“ signal
10
Troubleshooting
WARNING! An electric shock can be fatal. Before starting work on the
interface, ensure that all devices and components are:
-switched off
-disconnected from the mains
-secured to prevent them being switched back on again.
Safety
EN
Field bus status
LEDs and operating status LEDs
If an error occurs, the field bus status/operating status LEDs signal the type of error and
where it occurred.
Operating status LEDs:
(7) (8)
(1) I/O ERR
(2) I/O RUN
Field bus status LEDs:
(6)
(5)
(4)
(3)
(2)
(1)
LED indicators on the field bus coupler
Important! In some cases, the field bus coupler does not complete the flashing sequence once the error has been rectified. Restart the field bus coupler by switching the
supply voltage off and on again, or by resetting the software.
(3) RX overflow
(4) TX overflow
(5) RUN
(6) CAN ERR
Supply LEDs:
(7) Bus coupler supply
(8) Power contacts supply
Operating status
LEDs
The operating status LEDs I/O ERR and I/O RUN monitor local communications
between the field bus coupler and field bus terminals.
The green I/O RUN LED lights when there are no errors.
The red I/O ERR LED flashes at two different frequencies if an error occurs between
the field bus coupler and field bus terminals.
(a)(b)(c)
Flash code
11
(a) Rapid flashing:
Start of the error code
(b) First slow pulse:
Error type (error argument)
(c) Second slow pulse:
Error location
Important! The number of pulses indicates the location of the last field bus terminal prior to where the error occurred.
Passive field bus terminals (e.g. supply
terminals) are not counted.
Operating status
LEDs
The operating status LEDs I/O ERR and I/O RUN monitor local communications
between the field bus coupler and field bus terminals.
The green I/O RUN LED lights when there are no errors.
The red I/O ERR LED flashes at two different frequencies if an error occurs between
the field bus coupler and field bus terminals.
(a) Rapid flashing:
Start of the error code
(b) First slow pulse:
Error type (error argument)
(c) Second slow pulse:
Error location
(a)(b)(c)
Important! The number of pulses indicates the location of the last field bus terminal prior to where the error occurred.
Passive field bus terminals (e.g. supply
terminals) are not counted.
Flash code
Error code Error
CauseRemedy
argument
steady,
continuous
flashing
0 pulses
Problems with electromagnetic
compatibility (EMC)
Check power supply for
extremes in undervoltage or
overvoltage
Carry out EMC measures
If there is an operating status
error, it can be localised by
restarting the field bus coupler
(switching it off and on again)
1 pulse
0 pulses
EEPROM check sum error
Set manufacturer’s setting with
the KS2000 software
1 pulse
Inline code buffer overflow.
Attach fewer terminals
Too many entries in the table
2 pulsesUnknown data typeUpdate field bus coupler
software
2 pulsesprogrammed configurationCheck that programmed
0 pulses
configuration is correct
n pulses
(n>0)
Incorrect table entry/field bus
coupler
Incorrect table entry/field bus
coupler
(Terminal n) table comparison
incorrect
3 pulses0 pulsesField bus terminals command
error
No terminal inserted, attach
terminal
A terminal is faulty
Disconnect half the terminals
and check whether the error
occurs with the remaining
terminals. Continue this
process until the faulty terminal
is found
12
Operating status
LEDs
(continued)
Error code Error
argument
4 pulses0 pulses
n pulsesBreak behind terminals
CauseRemedy
Field bus terminals
Data error
Check whether the n+1
terminal is correctly connected,
and change if necessary
Check whether the end
(0: field bus coupler)
terminal KL9010 is connected
EN
5 pulsesn pulsesField bus terminals error during
register communication with
terminals
9 pulses0 pulses
Check sum error in program
flash.
n pulsesThe field bus terminal n does
not correspond with the
configuration that existed when
the boot project was created
13 pulses0 pulsesOperating status time
command error
14 pulsesn pulsesthe field bus terminal n has an
incorrect format
15 pulsesn pulses
Number of field bus terminals
is no longer correct
16 pulsesn pulses
Length of operating status data
(no. of bits) no longer correct. n
= bit length after reboot.
17 pulsesn pulses
Number of field bus terminals
no longer correct. n = number
of terminals after reboot
18 pulsesn pulses
Designation of field bus
terminals no longer correct
after reset. n = number of field
bus terminals
Replace terminals
Restore manufacturer’s setting
with the KS 2000 software
Restore manufacturer’s setting
with the KS 2000 software, this
deletes the boot project
One bus terminal is faulty.
Halve the number of bus
terminals and check the
remaining bus terminals for
errors. Repeat this process
until the faulty field bus
terminal is located.
Restart field bus coupler. If
error recurs, replace field bus
terminal
Restart field bus coupler. If
error recurs, restore
manufacturer’s setting with the
KS 2000 software
Restart field bus coupler. If
error recurs, restore
manufacturer’s setting with the
KS 2000 software
Restart field bus coupler. If
error recurs, restore
manufacturer’s setting with the
KS 2000 software
Restart field bus coupler. If
error recurs, restore
manufacturer’s setting with the
KS 2000 software
13
Field bus status
LED: CAN ERR
CAN ERR LED off
No CAN bus errors
Rapid flashing
on/off approx. 50 ms each (alternating with RUN LED)
Cause:Automatic baud rate detection has not yet found a valid baud rate.
Not enough telegrams on the bus.
1 x flash
on approx. 200 ms / off approx 1 s
Cause:CAN warning limit exceeded. There are too many Error Frames on
Cause:no further nodes on the network (e.g. occurs on first node that is
started).
2 x flashes
each approx. 200 ms on / 200 ms off, followed by 1 s pause
Cause:The guarding or heartbeat monitor has tripped, no more guarding/
heartbeat telegrams are received. Requirement for guarding monitor: Guard time and life time factor are > 0
Requirement for heartbeat monitor: Consumer heartbeat > 0. The
field bus coupler is pre-operational (PDOs switched off), the outputs
are in error status
3 x flashes
each approx. 200 ms on / 200 ms off, followed by 1 s pause
Cause:A synchronisation error has occurred. No Sync telegrams were
received during the watchdog time (object 0 x 1006 x 1.5). The bus
node is pre-operational (PDOs switched off), the outputs are in error
status
4 x flashes
each approx. 200 ms on / 200 ms off, followed by 1 s pause
Cause:Event timer error: The field bus coupler did not receive an RxPDO
within the specified event time (0x1400ff, subindex 5). The bus
coupler is pre-operational (PDOs switched off), the outputs are in
error.
14
Field bus status
LED: RUN
RUN LED off
Cause:Firmware status < C0: the bus node is „Stopped“. No communicati-
on with SDO or PDO possible
Rapid flashing
on/off approx. 50 ms each (alternating with CAN ERR LED)
Field bus status
LED: TX overflow
Cause:Automatic baud rate detection has not yet found a valid baud rate.
Not enough telegrams on the bus.
1x flash
on approx. 200 ms / off approx 1 s
Cause:the bus node is „Stopped“. No communication with SDO or PDO
possible.
Alternating flashing
each on/off approx. 200 ms
Cause:The bus node is „Pre-Operational“. The node has not been started
yet.
RUN LED lit continuously
The bus node is „Operational“.
TX Overflow LED on steady
Cause:A transmit queue overflow has occurred. The field bus coupler was
not able to deliver its message, e.g. because bus loading too high.
Remedy:Reset field bus coupler
EN
Field bus status
LED: RX overflow
RX Overflow LED on steady
Cause:A receive queue overflow has occurred. The field bus coupler has
lost messages, e.g. because of short telegrams occurring in bursts.
Remedy:Reset field bus coupler
15
Data in the process image CANopen (4,100,251)
General remarksThe CANopen node described in these operating instructions is based on the communi-
cation profile DS-401 from CANopen/CAN in Automation.
According to CANopen, the default setting of analog inputs TxPDO2 is transmission
type 255 (event control).
In order to prevent the bus overflowing with analog signals, the „event“ (change of an
input value) is deactivated via the event control in object 0x6423.
It is advisable to configure the transmission behaviour of the analog PDOs prior to
activation:
-Set inhibit time (object 0x1800ff, sub-index 3)
and/or
-Set limit value monitor (object 0x6424 + 0x6425)
and/or
-Delta function (object 0x6426)
Data in MIG/MAG
process image
(power source
input - TS/TPS,
MW/TT range)
Object 6423H - Event control analog inputs:
SubindexDescriptionValue rangeDefault value
0HGlobal interrupt enableBoolean0H
Object 1600H - 1st Receive PDO Mapping parameter:
SubindexDescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326200 01H
2H2nd object to be mappedUnsigned326200 02H
3H3rd object to be mappedUnsigned326200 03H
4H4th object to be mappedUnsigned326200 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326411 01H
2H2nd object to be mappedUnsigned326411 02H
3H3rd object to be mappedUnsigned326411 03H
4H4th object to be mappedUnsigned326411 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326000 01H
2H2nd object to be mappedUnsigned326000 02H
3H3rd object to be mappedUnsigned326000 03H
4H4th object to be mappedUnsigned326000 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
1 H - FH Wire speed (actual value)0-FFFFH-327,68 - +327,67
19
Data in MIG/MAG
process image
(power source
input - TSt range)
Object 6423H - Event control analog inputs:
Sub-index DescriptionValue rangeDefault value
0HGlobal interrupt enableBoolean0H
Object 1600H - 1st Receive PDO Mapping parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326200 01H
2H2nd object to be mappedUnsigned326200 02H
3H3rd object to be mappedUnsigned326200 03H
4H4th object to be mappedUnsigned326200 04H
1HWelding startHigh
2HRobot readyHigh
3HModes bit 0High
4HModes bit 1High
5HModes bit 2High
6HNot in use7H - 8H SpareMust be 0
2HWrite_8_Outputs_9H-10HUnsigned81
1HGas testHigh
2HWire feedHigh
3HNot in use4HSource error resetHigh
5HNot in use6HTorch blow outHigh
7H - 8H Spare
20
Data in MIG/MAG
process image
(power source
input - TSt range)
(continued)
Sub-index DescriptionData typeData length
3HWrite_8_Outputs_11H-18HUnsigned81
1H - 8H Flag number1 - 5
4HWrite_8_Outputs_19H-20HUnsigned81
1H - 7H Not in use8HNot in use-
Object 1601H - 2nd Receive PDO Mapping Parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326411 01H
2H2nd object to be mappedUnsigned326411 02H
3H3rd object to be mappedUnsigned326411 03H
4H4th object to be mappedUnsigned326411 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326000 01H
2H2nd object to be mappedUnsigned326000 02H
3H3rd object to be mappedUnsigned326000 03H
4H4th object to be mappedUnsigned326000 04H
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
Data in TIG
process image
(power source
input - TS/TPS,
MW/TT range)
Object 6423H - Event control analog inputs:
Sub-index DescriptionValue rangeDefault value
0HGlobal interrupt enableBoolean0H
Object 1600H - 1st Receive PDO Mapping parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326200 01H
2H2nd object tUnsigned326200 03H
4H4th object to be mappedUnsigned326200 04H
1HDC/ACHigh
2HDC- / DC +High
3HCap shapingHigh
4HPulse disableHigh
5HPulse range bit 0High
6HPulse range bit 1High
7HPulse range bit 2High
8HWelding simulationHigh
Object 1601H - 2nd Receive PDO Mapping Parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326411 01H
2H2nd object to be mappedUnsigned326411 02H
3H3rd object to be mappedUnsigned326411 03H
4H4th object to be mappedUnsigned326411 04H
24
Data in TIG
process image
(power source
input - TS/TPS,
MW/TT range)
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326000 01H
2H2nd object to be mappedUnsigned326000 02H
3H3rd object to be mappedUnsigned32
6000 03H
4H4th object to be mappedUnsigned326000 04H
1HArc stableHigh
2HNot in use-3HProcess activeHigh
4HMain current signalHigh
5HCollision protectionLow active
6HPower source readyHigh
7HCommunication readyHigh
8HManufacturer-specificmust be 0
2HRead _8_Inputs_9H-10HUnsigned81
1H - FHError number 0 – 255
3HRead_8_Inputs_11H-18HUnsigned81
1H - 8HNot in use
4HRead_8_Inputs_19H-20HUnsigned81
1HNot in use-2HHigh frequency activeHigh
3HNot in use-4HWire availableHigh
5HNot in use-6HNot in use-7HPulse highHigh
8HNot in use--
26
Data in TIG
process image
(power source
output - TS/TPS,
MW/TT range)
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
Data in process image CANopen + installation set
component number (4,100,251 + 4,100,458)
General remarksThe CANopen node described in these operating instructions is based on the communi-
cation profile DS-401 from CANopen/CAN in Automation.
According to CANopen, the default setting of analog inputs TxPDO2 is transmission
type 255 (event control).
In order to prevent the bus overflowing with analog signals, the „event“ (change of an
input value) is deactivated via the event control in object 0x6423.
It is advisable to configure the transmission behaviour of the analog PDOs prior to
activation:
-Set inhibit time (object 0x1800ff, sub-index 3)
and/or
-Set limit value monitor (object 0x6424 + 0x6425)
and/or
-Delta function (object 0x6426)
Data in CANopen
process image +
installation kit
component
number (power
source input TS/TPS, MW/TT
range)
Object 6423H - Event control analog inputs:
Sub-index DescriptionValue rangeDefault value
0HGlobal interrupt enableBoolean0H
Object 1600H - 1st Receive PDO Mapping parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326200 01H
2H2nd object to be mappedUnsigned 326200 02H
3H3rd object to be mappedUnsigned 326200 03H
4H4th object to be mappedUnsigned 326200 04H
5H5th object to be mappedUnsigned 326200 05H
6H6th object to be mappedUnsigned 326200 06H
7H7th object to be mappedUnsigned 326200 07H
8H8th object to be mappedUnsigned 326200 08H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 01H
2H2nd object to be mappedUnsigned 326411 02H
3H3rd object to be mappedUnsigned 326411 03H
4H4th object to be mappedUnsigned 326411 04H
1H - FH command value
Arc length correction (command value)0 - FFFFH -30% to +30%
3HOutput_3HUnsigned161
1H - FH command value
Pulse or dynamic correction (command value) *)100 - FFFFH -5% to +5%
4HOutput_4HUnsigned161
1H - FH command value
Burn-back correction (command value)100 - FFFFH -200ms to 200ms
29
Data in CANopen
process image +
installation kit
component
number (power
source input TS/TPS, MW/TT
range)
(continued)
Object 1602H – 3rd Receive PDO Mapping Parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 05H
2H2nd object to be mappedUnsigned 326411 06H
3H3rd object to be mappedUnsigned 326411 07H
4H4th object to be mappedUnsigned 326411 08H
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326000 01H
2H2nd object to be mappedUnsigned 326000 02H
3H3rd object to be mappedUnsigned 326000 03H
4H4th object to be mappedUnsigned 326000 04H
5H5th object to be mappedUnsigned 326000 05H
6H6th object to be mappedUnsigned 326000 06H
7H7th object to be mappedUnsigned 326000 07H
8H8th object to be mappedUnsigned 326000 08H
1HArc stableHigh
2HLimit signal (RCU5000i)High
3HProcess activeHigh
4HMain current signalHigh
5HCollision protectionLow active
6HPower source readyHigh
7HCommunication readyHigh
8HManufacturer-specificmust be 0
2HRead _8_Inputs_9H-10HUnsigned 81
1H - FH Error number0 – 255
3HRead_8_Inputs_11H-18HUnsigned 81
1H - 8H Not in use--
4HRead_8_Inputs_19H-20HUnsigned 81
1HStick controlHigh
(Wire released from weld pool)
2HNot in use-3HRobot access (RCU5000i)High
4HWire availableHigh
5HShort circuit time exceededHigh
6HData documentation readyHigh
7H - 8H Not in use--
31
Data in process
image CANopen
+ installation kit
component
number (power
source output TS/TPS, MW/TT
range)
0HNumber of mapped objectsUnsigned324H
1H1st object to be mappedUnsigned326401 01H
2H2nd object to be mappedUnsigned326401 02H
3H3rd object to be mappedUnsigned326401 03H
4H4th object to be mappedUnsigned326401 04H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326401 05H
2H2nd object to be mappedUnsigned 326401 06H
3H3rd object to be mappedUnsigned 326401 07H
4H4th object to be mappedUnsigned 326401 08H
1 H - FHWire speed (actual value) 0-FFFFH-327,68 - +327,67
EN
33
Data in the Twin CANopen process image (4,100,399)
General remarks
Data in Twin
CANopen process image
(power source
input - TS/TPS,
MW/TT range)
The CANopen node described in these operating instructions is based on the communication profile DS-401 from CANopen/CAN in Automation.
According to CANopen, the default setting of analog inputs TxPDO2 is transmission
type 255 (event control).
In order to prevent the bus overflowing with analog signals, the „event“ (change of an
input value) is deactivated via the event control in object 0x6423.
It is advisable to configure the transmission behaviour of the analog PDOs prior to
activation:
-Set inhibit time (object 0x1800ff, sub-index 3)
and/or
-Set limit value monitor (object 0x6424 + 0x6425)
and/or
-Delta function (object 0x6426)
Object 6423H - Event control analog inputs:
Sub-index DescriptionValue rangeDefault value
0HGlobal interrupt enableBoolean0H
Object 1600H - 1st Receive PDO Mapping parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326200 01H
2H2nd object to be mappedUnsigned 326200 02H
3H3rd object to be mappedUnsigned 326200 03H
4H4th object to be mappedUnsigned 326200 04H
5H5th object to be mappedUnsigned 326200 05H
6H6th object to be mappedUnsigned 326200 06H
7H7th object to be mappedUnsigned 326200 07H
8H8th object to be mappedUnsigned 326200 08H
34
Data in Twin
CANopen process image
(power source
input - TS/TPS,
MW/TT range)
1H - 7H Program number0 – 127
8HWelding simulationHigh active
With RCU5000i:
1H - 7H Job number256 – 999
8HWelding simulationHigh active
Object 1601H - 2nd Receive PDO Mapping Parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 01H
2H2nd object to be mappedUnsigned 326411 02H
3H3rd object to be mappedUnsigned 326411 03H
4H4th object to be mappedUnsigned 326411 04H
Power source 1
1H - FH Power (command value) 0 - FFFFH 0 to 100%
2HWrite_16_Outputs_2HUnsigned 161
Power source 1
1H - FH Arc length correction
(Command value)0 - FFFFH -30% to +30%
3HWrite_16_Outputs_3HUnsigned 161
Power source 1
1H - FH Pulse or dynamic correction
*)
100 - FFFFH -5% to +5%
(Command value)
4HWrite_16_Outputs_4HUnsigned 161
Power source 1
1H - FHBurn-back correction (command value) 100 - FFFFH -200ms to +200ms
36
Data in Twin
CANopen process image
(power source
input - TS/TPS,
MW/TT range)
(continued)
Object 1602H – 3rd Receive PDO Mapping Parameter:
Sub-index DescriptionValue rangeDefault value
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326411 05H
2H2nd object to be mappedUnsigned 326411 06H
3H3rd object to be mappedUnsigned 326411 07H
4H4th object to be mappedUnsigned 326411 08H
0HNumber of mapped objectsUnsigned 328H
1H1st object to be mappedUnsigned 326000 01H
2H2nd object to be mappedUnsigned 326000 02H
3H3rd object to be mappedUnsigned 326000 03H
4H4th object to be mappedUnsigned 326000 04H
5H5th object to be mappedUnsigned 326000 05H
6H6th object to be mappedUnsigned 326000 06H
7H7th object to be mappedUnsigned 326000 07H
8H8th object to be mappedUnsigned 326000 08H
Power source 1
1HArc stableHigh
2HLimit signal (RCU5000i)High
3HProcess activeHigh
4HMain current signalHigh
5HCollision protectionLow active
6HPower source readyHigh
7HCommunication readyHigh
8HManufacturer-specificmust be 0
2HRead _8_Outputs_9H-10HUnsigned 81
Power source 1
1H - FH Error number0 – 255
3HRead_8_Outputs_11H-18HUnsigned 81
Power source 1
1H - 8H Not in use--
38
Data in Twin
CANopen process image
(power source
output - TS/TPS,
MW/TT range)
(continued)
Sub-index DescriptionData typeData length
4HRead_8_Outputs_19H-20HUnsigned 81
Power source 1
1HStick controlHigh
(Wire released from weld pool)
2HNot in use-3HRobot access (RCU5000i)High
4HWire availableHigh
5HShort circuit time exceededHigh
6HData documentation readyHigh
7H - 8H Not in use--
5HRead_8_Outputs_21H-28HUnsigned 81
Power source 2
1HArc stableHigh
2HLimit signal (RCU5000i)High
3HProcess activeHigh
4HMain current signalHigh
5HCollision protectionLow active
6HPower source readyHigh
7HCommunication readyHigh
8HManufacturer-specificmust be 0
6HRead _8_Outputs_29H-30HUnsigned 81
Power source 2
1H - FH Error number0 – 255
7HRead_8_Outputs_31H-38HUnsigned 81
Power source 2
1H - 8H Not in use--
8HRead_8_Outputs_39H-40HUnsigned 81
Power source 2
1HStick controlHigh
(Wire released from weld pool)
2HNot in use-3HRobot access (RCU5000i)High
4HWire availableHigh
5HShort circuit time exceededHigh
6HData documentation readyHigh
7H - 8H Not in use--
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326401 01H
2H2nd object to be mappedUnsigned 326401 02H
3H3rd object to be mappedUnsigned 326401 03H
4H4th object to be mappedUnsigned 326401 04H
0HNumber of mapped objectsUnsigned 324H
1H1st object to be mappedUnsigned 326401 05H
2H2nd object to be mappedUnsigned 326401 06H
3H3rd object to be mappedUnsigned 326401 07H
4H4th object to be mappedUnsigned 326401 08H
Power source 1
1 H - FH Wire speed (actual value)0-FFFFH-327,68 - +327,67
2HRead_16_Inputs_2HUnsigned161
Power source 2
1 H - FH Wire speed (actual value)0-FFFFH-327,68 - +327,67
40
Technical data
Bus coupler
BK5120
Power supply24 V DC, -15 / +20 %
Current inputapprox. 100 mA
Electrical isolation500 Veff (K bus/supply voltage)
Number of bus terminals64
Peripheral bytes512 input bytes
512 output bytes
Configuration interfaceavailable for KS2000 software
Slave addresscan be set using DIP switches
Electrical strength500 Veff (power contact/supply voltage)
Operating temperature0° C - +55° C
Storage temperature-20° C - +85° C
Relative humidity95 % without condensation
Vibration/shock resistanceas per EN 60068-2-6 / EN 60068-2-27,EN 60068-2-29
EMC resistance/emissionas per EN 61000-6-2 (EN 50082) /
EN 61000-6-4 (EN 50081)
Installation positionany
ProtectionIP20
EN
41
42
Cher lecteur
Introduction
Nous vous remercions de votre confiance et vous félicitons d’avoir acheté un produit de
qualité supérieure de Fronius. Les instructions suivantes vous aideront à vous familiariser avec le produit. En lisant attentivement les instructions de service suivantes, vous
découvrirez les multiples possibilités de votre produit Fronius. C’est la seule manière
d’exploiter ses avantages de manière optimale.
Prière d’observer également les consignes de sécurité pour garantir une sécurité accrue
lors de l’utilisation du produit. Une utilisation soigneuse du produit contribue à sa longévité et sa fiabilité. Ce sont des conditions essentielles pour obtenir d’excellents résultats.
Conception de l’appareil ............................................................................................................................ 4
Raccordements avec l’interface - Série d’appareils TS/TPS, MW/TT ........................................................ 4
Raccords, possibilités de réglage et affichages au coupleur de bus de terrain.......................................... 7
Raccorder le coupleur de bus de terrain - Série d’appareils TS/TPS, MW/TT ........................................... 7
Raccorder le coupleur de bus de terrain - Série d’appareils TSt ................................................................ 9
Câblage en parallèle avec plus de deux sources de courant ....................................................................10
Configuration du coupleur de bus de terrain - réglage de l’adresse du noeud et de la vitesse de transmissi-
on des données (débit binaire) ................................................................................................................. 11
Propriétés de la transmission de données ....................................................................................................12
Technique de transmission ......................................................................................................................12
Dispositif de sécurité ...............................................................................................................................12
FR
Diagnostic d’erreur, élimination de l’erreur..................................................................................................... 13
Coupleur de bus BK5120 ......................................................................................................................... 43
2
3FR4
Généralités
AVERTISSEMENT ! Les erreurs en cours d’opération peuvent entraîner des
dommages corporels et matériels graves. Tous les travaux décrits dans les
présentes instructions de service ne doivent être effectués que par un personnel qualifié. Toutes les fonctions décrites dans les présentes instructions de
service ne doivent être mises en œuvre que par un personnel qualifié.
N’exécuter les travaux décrits ne mettre en œuvre les fonctions décrites que
lorsque tous les documents suivants ont été entièrement lus et compris :
-les présentes instructions de service
-toutes les instructions de service des composants périphériques, en
particulier les consignes de sécurité
Sécurité
Principes fondamentaux
Conception de
l’appareil
CANopen est une couche d’application CAN largement répandue, qui a été élaborée par
l’organisation CAN-in-Automation et a fait l’objet depuis d’une normalisation internationale.
CANopen se compose de la définition de protocole (profil de communication), ainsi que
des profils d’appareils, qui normalisent le contenu de données pour chaque classe
d’appareils respective. Les objets de données de processus (PDO) servent à assurer
une communication plus rapide des données d’entrée et de sortie.
Les paramètres d’appareils CANopen et les données de processus sont structurés dans
une liste d’objets. L’accès aux données quelconques de cette liste d’objets s’effectue par
le biais des objets de données de service (SDO). Il existe en outre quelques objets
spéciaux (ou modes télégramme) pour la gestion du réseau (NMT), la synchronisation,
les messages d’erreur, etc..
Le CANopen se distingue par un volume de construction peu encombrant et une grande
modularité.
Son montage simple et économe en place sur un rail normalisé C et le câblage direct
des acteurs et des capteurs sans raccordement croisé entre les bornes normalise
l’installation. De plus, le plan de marquage uniforme facilite l’installation.
Raccordements
avec l’interface Série d’appareils
TS/TPS, MW/TT
Raccordements avec l’interface
(2)
(1)
(1) Anti-traction avec
(2) Connexion LocalNet
passages de câbles
pour le passage du câble de données
CANopen et de l’alimentation électrique du coupleur de bus de terrain
pour le branchement du faisceau de
liaison.
Raccordements
avec l’interface Série d’appareils
TSt
(1) Connexion LocalNet-OUT
pour le branchement du faisceau de
liaison
2)Connexion LocalNet-IN
pour le branchement de la source de
courant
(3) Anti-traction avec
passages de câbles
pour le passage du câble de données
CANopen et de l’alimentation électrique du coupleur de bus de terrain
FR
Consignes
supplémentaires
Exemple
d’utilisation Série d’appareils
TS/TPS, MW/TT
(2)
Raccordements avec l’interface
(1)(3)
REMARQUE ! Tant que l’interface robot est connectée au LocalNet, le mode de
service « Mode 2 temps » reste automatiquement sélectionné
(affichage : Mode 2 temps).
Vous trouverez des informations plus détaillées concernant le mode de soudage « Mode
2 temps spécial pour interface robot » dans les chapitres « Soudage MIG/MAG » et «
Paramètres Mode de service » des Instructions de service de la source de courant.
(10)
(4)
(9)
(3)
(5)
(1)(2)
Exemple d’utilisation série d’appareils TS/TPS, MW/TT
(6)(7)
(1) Source de courant
(2) Refroidisseur
(3) CANopen
(4) Faisceau de liaison
(5) Câble de données CANopen
(6) Commande robot
(7) Fût de fil de soudage
(8) Robot
(9) Torche de soudage
(10) Dévidoir
5
(8)
Exemple
d’utilisation Série d’appareils
TSt
(3)
(4)
(5)
(6)
Remarques
relatives au
montage de la
variante externe
de l’interface
(2)
(1)
(10)
Exemple d’utilisation série d’appareils TSt
(1) Refroidisseur
(2) Source de courant
(3) CANopen
(4) Faisceau de liaison
(5) Dévidoir
(6) Torche de soudage
(7) Commande robot
(8) Fût de fil d’apport
(9) Robot
(10) Câble de données CANopen
REMARQUE! Lors du montage de la variante externe de l’interface, respecter les
prescriptions suivantes :
-La pose des câbles doit s’effectuer séparément des lignes affectées au
réseau d’alimentation
-Le montage du coupleur de bus doit s’effectuer séparément des lignes
affectées au réseau d’alimentation ou des composants reliés à ce dernier
-Le coupleur de bus de terrain doit être installé dans un endroit protégé de la
saleté et de l’eau
-Veiller à ce que la tension d’alimentation 24 V soit séparée des circuits
électriques d’une tension supérieure.
(7)
(8)
(9)
6
Raccorder et configurer le coupleur de bus de terrain
AVERTISSEMENT! Une décharge électrique peut être mortelle. Avant le début
des travaux
-déconnecter
-débrancher du secteur
-sécuriser contre toute remise en marche intempestive tous les appareils
ATTENTION! Risque de dommages matériels. Avant le début des travaux,
s’assurer que le câble pour l’alimentation électrique externe de l’interface soit
hors tension et le demeure pendant toute la durée des travaux.
Sécurité
FR
Raccords, possibilités de réglage
et affichages au
coupleur de bus
de terrain
Raccorder le
coupleur de bus
de terrain - Série
d’appareils TS/
TPS, MW/TT
(4)
(3)
(2)
(1)
Éléments du coupleur de bus de terrain
(5)
(1) Commutateurs Dip 1 - 8
(2) Voyants DEL d’état de service
(3) Prise de connexion CANopen
(4) Voyants DEL de statut du bus de
terrain
(5) Connecteurs pour l’alimentation
électrique externe
1.Démonter le couvercle de l’interface
(2)
2.Démonter l’anti-traction (3) de
l’interface
3.Passer le câble de données CANopen
et le câble pour l’alimentation électrique externe dans l’anti-traction par
le passage pour câbles
(2)(3)
Retirer le dispositif anti-traction
7
Raccorder le
coupleur de bus
de terrain - Série
d’appareils TS/
TPS, MW/TT
(suite)
(4)
Raccorder le câble de données CANopen au connecteur 5 pôles CANopen
(5) selon l’affectation suivante :
5Non utilisé
5
4
3
2
1
4CAN high
3Blindage
2CAN low
1CAN Ground
(5)
(6)
Raccorder le rail profilé avec le blindage - Série
d’appareils MW/TT, TS/TransPuls Synergic
(7)
4.Raccorder les câbles de données
CANopen aux broches 2 et 4 en
respectant la polarité
Important! Le coupleur de bus de terrain
est installé sur un rail profilé isolé.
S’assurer que le rail profilé n’a aucun
contact électrique avec la terre de la
source de courant.
5.Raccorder électriquement le blindage
du câble de données CANopen (4)
avec le rail profilé isolé (6) :
raccorder le blindage à la broche 3 du
connecteur CANopen
6.Vérifier si, côté robot, le blindage est
raccordé avec la terre du robot
7.Raccorder l’alimentation électrique
externe du robot ou de la commande
au coupleur de bus de terrain (7)
Raccorder l’alimentation électrique externe
8.Monter le câble de données CANopen et le câble pour l’alimentation électrique
externe à l’aide d’attache-câbles dans l’anti-traction par le passage pour câbles
9.Monter l’anti-traction sur l’interface avec le matériel de fixation original de manière à
ce que l’anti-traction reprenne sa position initiale
10. Raccorder la prise LocalNet du faisceau de liaison à la connexion Localnet sur
l’interface
8
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.