3 Hardware Features ................................................................................................................................... 5
3.1 Power Supply ....................................................................................................................................................................... 6
3.3 Hi-Speed Dual Role USB ................................................................................................................................................... 6
3.6 CAN Bus .................................................................................................................................................................................. 9
3.7 Elevator Connections ..................................................................................................................................................... 10
5 Mechanical Form Factor ...................................................................................................................... 17
TWR-SER2 User’s ManualPage 2 of 17
1 Overview
The Serial2 Tower Board (TWR-SER2) is a peripheral Tower System Module designed to be used with a
compatible MCU/MPU Tower Card. The TWR-SER2 provides additional interfaces that are common to
feature rich MPU’s.
Industrial-grade High Speed Dual Role USB PHY (utilizes MPU’s ULPI interface)Full Speed / Low Speed Host only USB (utilizes USB Host controller interface) Four Serial Ports
o Serial-to-USB (MC9S08JS16) w/ USB mini-B connector
o RS-232 / RS-485 Transceivers on shared DB9 connector
o 2x RS-232 Transceivers with option for full flow control on 2x5 Headers
A block diagram for the TWR-SER2 is shown in the figure below.
The documents listed below should be referenced for more information on the Freescale Tower
system and the TWR-SER2. Refer to http://www.freescale.com/tower for the latest revision of all
released Tower documentation.
TWR-SER2 Schematics TWR-SER2 Quick Start Guide Freescale MC9S08JS16 Microcontroller with integrated USB Transceiver DP83849I PHYTER DUAL Industrial Temp Ethernet PHY Transceiver USB3300 Industrial Temp Hi-Speed USB PHY with ULPI Interface TJA1051T/3 High-Speed CAN Transceiver
3 Hardware Features
This section provides more details about the features and functionality of the TWR-SER2.
TWR-SER2 User’s ManualPage 5 of 17
3.1 Power Supply
It is intended that the TWR-SER2 be powered from a source in an assembled Tower System via the
5.0V and 3.3V supplies on the TWR-ELEV. This includes the functional Tower Elevator USB power
connector, a capable MCU/MPU controller module, or other Tower System module capable of
providing power to the entire Tower System. The TWR-SER2 is can also provide power to the Tower
System when configured and used as a USB device through the Hi-Speed USB connection (Jumper J24).
3.2 Dual Ethernet PHYs
The TWR-SER2 module utilizes an industrial applicable National Semiconductor Dual Ethernet PHY
Transceiver (DP83849I). The DP83849I features two fully independent 10/100 ports for multi-port
applications. The TWR-SER2 is capable of supporting a single MII interface, a single RMII interface, or
dual RMII interfaces.
The Ethernet PHY is configurable via two sets of micro dip switches (SW1 and SW2).
Refer to these settings for typical Ethernet setting. For specific setting details refer to the TWR-SER2
Jumper Options section.
10/100 Dual RMII
o J8 and J9 should be un-shunted
o Configure SW1 (1-8) as 11000000
o Configure SW2 (1-8) as 10100000
10/100 Signal Port RMII
o J9 should be un-shunted
o Configure SW1 (1-8) as 11000000
o Configure SW2 (1-8) as 10100000
10/100 Signal Port MII
o J9 should be un-shunted
o Configure SW1 (1-8) as 00110000
o Configure SW2 (1-8) as 00010000
3.3 Hi-Speed Dual Role USB
The TWR-SER2 features Hi-Speed Dual Role USB. This feature is implemented using the SMSC
USB3300 USB Transceiver with ULPI interface. The ULPI interface is connected to the TWR-SER2 PCI
edge connector connect to a Tower MCU module.
Refer to these settings to configure the High Speed USB ULPI Transceiver.
Host Mode – TWR-SER2 will be connected to a device, such as a USB Memory Stick using the
appropriate mini USB adaptor.
o J24 should be un-shunted
TWR-SER2 User’s ManualPage 6 of 17
Jumper
Pin
Description
J1
2-3
RXD_SEL – Specifies the SCI RX signal is routed to the RS232 Transceiver
J2
2-3
TXD_SEL – Specifies the SCI TX signal is routed to the RS232 Transceiver
J13
1-2
SER_SEL – Disables communication to and from the RS485 Transceiver
Jumper
Pin
Description
J1
1-2
RXD_SEL – Specifies the SCI RX signal is routed to the RS485 Transceiver
J2
1-2
TXD_SEL – Specifies the SCI TX signal is routed to the RS485 Transceiver
J13
2-3
SER_SEL – Disables communication to and from the RS232 Transceiver
MULTI_SEL
(J2)
Pin
Description
1-2
Connects RS485 Receive EN and Driver EN
3-4
Connects RS485 RX+ to TX+; Loopback
5-6
Connects RS485 RX- to TX-; Loopback
7-8
NC
9-10
Connects 5V supply to DB9 pin 6
Device Mode – TWR-SER2 will be connected to a host, such as a host PC.
o J24 should be shunted, if it is desired that the entire Tower system be powered via this
connection.
3.4 Low/Full-Speed Host USB
The TWR-SER2 features a Host Type-A USB receptacle. The USB differential signals are connected
directly to the Tower Elevator USB Signals and will be connected to a compatible Tower System
MCU/MPU module’s USB Host controller. In addition to the differential data pair, the MCU should
provide the VBUS_EN signal and respond to the VBUS_OC signals. J16 and J21 should be shunted to
connect VBUS enable/over-current control to the MCU signals.
3.5 Serial Communications Interface
The TWR-SER2 is capable of providing up to four additional SCI’s. The number of accessible SCI’s on
the TWR-SER2 will depend on the capabilities and Tower Elevator signals connections of the
MCU/MPU Module.
3.5.1 RS-232/485 Interface
UART1 (RXD/TXD) is connected to both an RS-232 transceiver and an RS-485 transceiver, selectable
by a series of selection jumpers (J1, J2, & J13). The RS-232 and RS-485 transceivers are terminated
at a common DB9 connector (J11). This SCI does not feature any type of flow control capabilities.
Additional configurations related to the RS485 interface can be made using the MULTI_SEL jumper
(J2). Refer to the following tables for jumper setting details.
TWR-SER2 User’s ManualPage 7 of 17
Pins
Description
1-2
Remove to Isolate UART0_TX
3-4
Remove to Isolate UART0_RX
J19 & J20
Pin #
Signal Name
1
NC 2 NC
3
RXD
4
RTS
5
TXD
6
CTS 7 NC 8 NC
9
GND
10
NC
3.5.2 Serial-to-USB
UART0 (RXD/TXD) is connected to a Freescale MC9S08JS16. The MC9S08JS16 provides a Serial-toUSB conversion that will transmit/receive external data via its USB transceiver connected to an
USB mini-B connector. When this USB receptacle is connected to a host PC it will enumerate as a
USB CDC. The driver required for the CDC device is located on the included CD and is also available
on the TWR-SER2 webpage found at www.freescale.com/tower.
If needed the UART0 transceiver signals can be isolated from the Tower Elevator using J7.
3.5.3 Additonal RS232 Interfaces
UART2 and UART3 (RXD/TXD/RTS/CTS) are connected to additional RS-232 transceivers. The RS232 transceivers are terminated to 2x5 headers (refer to table for pinout).
These interfaces are capable of utilizing the optional RTS/CTS signals for flow control.
TWR-SER2 User’s ManualPage 8 of 17
10 Pin IDC
0.1” 2x5
DB-9 Male
Function
1 1 DCD
2 6 DSR
3 2 RX 4 7
RTS 5 3
TX 6 8
CTS 7 4
DTR
8 9 RI 9 5
GND
10
NC
NC
Pins
Description
1-2
Remove to Isolate UARTx_TX
3-4
Remove to Isolate UARTx_RX
5-6
Remove to Isolate UARTx_RTS
7-8
Remove to Isolate UARTx_CTS
Pin #
Signal Names
Signal Description
1
Not Used
2 CAN_V+
Power
3
CAN_GND
Ground
4
CAN_L
Dominant Low
5
CAN_H
Dominant High
6
Not Used
The 2x5 header is intended to be used with a DB-9 Male to 10 PIN IDC socket adaptor cable. The cable
should conform to the following pin assignments.
By default the UART2 and UART3 transceiver signals are isolated from the Tower Elevator. The signals
can be connected to the Tower Elevator connector using J22 and J23 respectively.
3.6 CAN Bus
The TWR-SER2 features a Controller Area Network interface using an NXP TJA1051T/3 CAN
transceiver. The signals from the transceiver are connected to a 6-pin (2x3) header using the following
CAN Bus Pin Out.
TWR-SER2 User’s ManualPage 9 of 17
Table 1 – 2x3 Header CAN Bus Pin Out
Pins
Description
1-2
Remove to Isolate CAN_S
3-4
Remove to Isolate CAN_TX
5-6
Remove to Isolate CAN_RX
TWR-SER2 Primary Connector
Pin
Name
Usage
Used
Jmp
Pin
Name
Usage
Used
Jmp
B1
5V
5.0V Power
X A1
5V
5.0V Power
X B2
GND
Ground
X A2
GND
Ground
X B3
3.3V
3.3V Power
X A3
3.3V
3.3V Power
X B4
ELE_PS_SENSE
Elevator Power Sense
X A4
3.3V
3.3V Power
X B5
GND
Ground
X A5
GND
Ground
X B6
GND
Ground
X A6
GND
Ground
X B7
SDHC_CLK / SPI1_CLK
A7
I2C0_SCL
B8
SDHC_D3 / SPI1_CS1_b
A8
I2C0_SDA
B9
SDHC_D3 / SPI1_CS0_b
A9
GPIO9 / UART1_CTS
B10
SDHC_CMD / SPI1_MOSI
A10
GPIO8 / SDHC_D2
B11
SDHC_D0 / SPI1_MISO
A11
GPIO7 / SD_WP_DET
B12
ETH_COL
MII_COL
X A12
ETH_CRS
MII_CRS
X
B13
ETH_RXER
MII_RXER / RMII0_RXER
X A13
ETH_MDC
MII_MDC /
RMII0_MDC
X
B14
ETH_TXCLK
MII_TXCLK
X A14
ETH_MDIO
MII_MDIO /
RMII0_MDIO
X
B15
ETH_TXEN
MII_TXEN / RMII0_TXEN
X A15
ETH_RXCLK
MII_RXCLK
X
B16
ETH_TXER
A16
ETH_RXDV
MII_RXDV /
RMII0_CRS_DV
X
B17
ETH_TXD3
MII_TXD3
X A17
ETH_RXD3
MII_RXD3
X
B18
ETH_TXD2
MII_TXD2
X A18
ETH_RXD2
MII_RXD2
X
B19
ETH_TXD1
MII_TXD1 / RMII0_TXD1
X A19
ETH_RXD1
MII_RXD1 /
RMII0_RXD1
X
B20
ETH_TXD0
MII_TXD0 / RMII0_TXD0
X A20
ETH_RXD0
MII_RXD0 /
RMII0_RXD0
X
B21
GPIO1 /UART1_RTS
X
A21
I2S0_MCLK
If needed the CAN transceiver signals can be isolated from the Tower Elevator using J4.
3.7 Elevator Connections
The TWR-SER2 features two expansion card-edge connectors that interface to Elevator boards in a
Tower System: the Primary and Secondary Elevator connectors. Table 2 provides the pinout for the
Primary and Secondary Elevator Connector. An “X” in the “Used” column indicated that there is a
connection from the TWR-MEM to that pin on the Elevator connector. An “X” in the “Jmp” column
indicates that a jumper is available that can configure or isolate the connection from the Elevator
connector.
Table 2 - TWR-SER2 Primary Elevator Connector Pinout
TWR-SER2 User’s ManualPage 10 of 17
TWR-SER2 Primary Connector
Pin
Name
Usage
Used
Jmp
Pin
Name
Usage
Used
Jmp
B22
GPIO2 / SDHC_D1
X A22
I2S0_DOUT_SCK
B23
GPIO3
A23
I2S0_DOUT_WS
B24
CLKIN0
RMII_REF_CLK
X X A24
I2S0_DIN0
B25
CLKOUT1
A25
I2S0_DOUT0
B26
GND
Ground
X A26
GND
Ground
X B27
AN7
A27
AN3
B28
AN6
A28
AN2
B29
AN5
A29
AN1
B30
AN4
A30
AN0
B31
GND
Ground
X A31
GND
Ground
X B32
DAC1
A32
DAC0
B33
TMR3
A33
TMR1
B34
TMR2
A34
TMR0
B35
GPIO4
USB_VBUS_EN
X X A35
GPIO6
USB_VBUS_OC
X
X
B36
3.3V
3.3V Power
X A36
3.3V
3.3V Power
X B37
PWM7
A37
PWM3
X
B38
PWM6
A38
PWM2
X
B39
PWM5
X A39
PWM1
X
B40
PWM4
X A40
PWM0
X
B41
CAN0_RX
CAN_RX
X
X
A41
UART0_RX
UART0_RX
X
X
B42
CAN0_TX
CAN_TX
X
X
A42
UART0_TX
UART0_TX
X
X
B43
1WIRE
CAN_S
X
X
A43
UART1_RX
UART1_RX
X
X
B44
SPI0_MISO (IO1)
X
A44
UART1_TX
UART1_TX
X
X
B45
SPI0_MOSI (IO0)
X
A45
VSSA
B46
SPI0_CS0_b
X
A46
VDDA
B47
SPI0_CS1_b
X
A47
CAN1_RX
B48
SPI0_CLK
X
A48
CAN1_TX
B49
GND
Ground
X A49
GND
Ground
X B50
I2C1_SCL
A50
GPIO14
B51
I2C1_SDA
A51
GPIO15
B52
GPIO5 / SPI0_HOLD (IO3)
X A52
GPIO16 / SPI0_WP (IO2)
B53 USB D+ Pulldown Control
X
A53
GPIO17
B54 USB D- Pulldown Control
X
A54
USB0_DM
USB D-
X
B55
IRQ_H
A55
USB0_DP
USB D+
X
B56
IRQ_G
A56
USB0_ID
B57
IRQ_F
A57
USB0_VBUS
USB VBUS HST
X
B58
IRQ_E
A58
I2S0_DIN_SCK
B59
IRQ_D
A59
I2S0_DIN_WS
B60
IRQ_C
A60
I2S0_DIN1
B61
IRQ_B
A61
I2S0_DOUT1
B62
IRQ_A
A62
RSTIN_b
B63
EBI_ALE / EBI_CS1_b
A63
RSTOUT_b
Reset to Ethernet
PHY / SPI
X B64
EBI_CS0_b
A64
CLKOUT0
CLOCKOUT0
X B65
GND
Ground
X A65
GND
Ground
X
TWR-SER2 User’s ManualPage 11 of 17
TWR-SER2 Primary Connector
Pin
Name
Usage
Used
Jmp
Pin
Name
Usage
Used
Jmp
B66
EBI_AD15
A66
EBI_AD14
B67
EBI_AD16
A67
EBI_AD13
B68
EBI_AD17
A68
EBI_AD12
B69
EBI_AD18
A69
EBI_AD11
B70
EBI_AD19
A70
EBI_AD10
B71
EBI_R/W_b
A71
EBI_AD9
B72
EBI_OE_b
A72
EBI_AD8
B73
EBI_D7
A73
EBI_AD7
B74
EBI_D6
A74
EBI_AD6
B75
EBI_D5
A75
EBI_AD5
B76
EBI_D4
A76
EBI_AD4
B77
EBI_D3
A77
EBI_AD3
B78
EBI_D2
A78
EBI_AD2
B79
EBI_D1
A79
EBI_AD1
B80
EBI_D0
A80
EBI_AD0
B81
GND
Ground
X A81
GND
Ground
X B82
3.3V
3.3V Power
X A82
3.3V
3.3V Power
X
TWR-SER2 User’s ManualPage 12 of 17
TWR-SER2 Secondary Connector
Pin
Name
Usage
Used
Jmp
Pin
Name
Usage
Used
Jmp
D1
5V
5.0V Power
X C1
5V
5.0V Power
X D2
GND
Ground
X C2
GND
Ground
X D3
3.3V
3.3V Power
X C3
3.3V
3.3V Power
X D4
ELE_PS_SENSE
Elevator Power Sense
C4
3.3V
3.3V Power
X D5
GND
Ground
X C5
GND
Ground
X D6
GND
Ground
X C6
GND
Ground
X D7
SPI2_CLK
C7
I2C2_SCL
D8
SPI2_CS1_b
C8
I2C2_SDA
D9
SPI2_CS0_b
C9
GPIO25
D10
SPI2_MOSI
C10
ULPI_STOP
ULPI_STP
X
D11
SPI2_MISO
C11
ULPI_CLK
ULPI_USB_CLK
X
D12
ETH_COL
C12
GPIO26
D13
ETH_RXER
RMII1_RXER
X
C13
ETH_MDC
D14
ETH_TXCLK
C14
ETH_MDIO
D15
ETH_TXEN
RMII1_TXEN
X
C15
ETH_RXCLK
D16
GPIO18
C16
ETH_RXDV
RMII1_CRS_DV
X
D17
GPIO19 / SDHC_D4
C17
GPIO27 / SDHC_D6
D18
GPIO20 / SDHC_D5
C18
GPIO28 / SDHC_D7
D19
ETH_TXD1
RMII1_TXD1
X
C19
ETH_RXD1
RMII1_RXD1
X
D20
ETH_TXD0
RMII1_TXD0
X
C20
ETH_RXD0
RMII1_RXD0
X
D21
ULPI_NEXT / USB_HS_DM
ULPI_NXT
X C21
ULPI_DATA0 / I2S1_MCLK
ULPI_DATA0
X D22
ULPI_DIR / USB_HS_DP
ULPI_DIR
X C22
ULPI_DATA 1 / I2S1_DOUT_SCK
ULPI_DATA1
X D23
UPLI_DATA5 / USB_HS_VBUS
ULPI_DATA5
X C23
ULPI_DATA2 / I2S1_DOUT_WS
ULPI_DATA2
X D24
ULPI_DATA6 / USB_HS_ID
ULPI_DATA6
X C24
ULPI_DATA3 / I2S1_DIN0
ULPI_DATA3
X D25
ULPI_DATA7
ULPI_DATA7
X C25
ULPI_DATA4 / I2S1_DOUT0
ULPI_DATA4
X D26
GND
Ground
X C26
GND
Ground
X D27
LCD_HSYNC / LCD_P24
C27
AN11
D28
LCD_VSYNC / LCD_P25
C28
AN10
D29
AN13
C29
AN9
D30
AN12
C30
AN8
D31
GND
Ground
X C31
GND
Ground
X D32
LCD_CLK / LCD_P26
C32
GPIO29 / UART2_DCD
D33
TMR11
C33
TMR9
D34
TMR10
C34
TMR8
D35
GPIO21
C35
GPIO30 / UART3_DCD
D36
3.3V
3.3V Power
C36
3.3V
3.3V Power
X D37
PWM15
C37
PWM11
D38
PWM14
C38
PWM10
D39
PWM13
C39
PWM9
D40
PWM12
C40
PWM8
D41
CAN2_RX
C41
UART2_RXD / TSI0
UART2_RX
X
X
D42
CAN2_TX
C42
UART2_TXD / TSI1
UART2_TX
X
X
Table 3 - TWR-SER2 Secondary Elevator Connector Pinout
TWR-SER2 User’s ManualPage 13 of 17
TWR-SER2 Secondary Connector
Pin
Name
Usage
Used
Jmp
Pin
Name
Usage
Used
Jmp
D43
LCD_CONTRAST
C43
UART2_RTS / TSI2
UART2_RTS
X
X
D44
LCD_OE / LCD_P27
C44
UART2_CTS / TSI3
UART2_CTS
X
X
D45
LCD_D0 / LCD_P0
C45
UART3_RXD / TSI4
UART3_RX
X
X
D46
LCD_D1 / LCD_P1
C46
UART3_TXD / TSI5
UART3_TX
X
X
D47
LCD_D2 / LCD_P2
C47
UART3_RTS / CAN3_RX
UART3_RTS
X
X
D48
LCD_D3 / LCD_P3
C48
UART3_CTS / CAN3_TX
UART3_CTS
X
X
D49
GND
Ground
X C49
GND
Ground
X D50
GPIO23
C50
LCD_D4 / LCD_P4
D51
GPIO24
C51
LCD_D5 / LCD_P5
D52
LCD_D12 / LCD_P12
C52
LCD_D6 / LCD_P6
D53
LCD_D13 / LCD_P13
C53
LCD_D7 / LCD_P7
D54
LCD_D14 / LCD_P14
C54
LCD_D8 / LCD_P8
D55
IRQ_P / SPI2_CS2_b
C55
LCD_D9 / LCD_P9
D56
IRQ_O / SPI2_CS3_b
C56
LCD_D10 / LCD_P10
D57
IRQ_N
C57
LCD_D11 / LCD_P11
D58
IRQ_M
C58
I2S1_DIN_SCK
D59
IRQ_L
C59
I2S1_DIN_WS
D60
IRQ_K
C60
I2S1_DIN1
D61
IRQ_J
C61
I2S1_DOUT1
D62
IRQ_I
C62
LCD_D15 / LCD_P15
D63
LCD_D18 / LCD_P18 / SD_RX_0
C63
LCD_D16 / LCD_P16 / SD_GND
D64
LCD_D19 / LCD_P19 / SD_RXb_0
C64
LCD_D17 / LCD_P17 / SD_GND
D65
GND
Ground
X C65
GND
Ground
X D66
EBI_AD20 / LCD_P42 / SD_GND
C66
EBI_BE_32_24_b / LCD_P28 / SD_TX_0
D67
EBI_AD21 / LCD_P43 / SD_GND
C67
EBI_BE_23_16_b / LCD_P29 /
SD_TXb_0
D68
EBI_AD22 / LCD_P44 / SD_RX_1
C68
EBI_BE_15_8_b / LCD_P30 / SD_GND
D69
EBI_AD23 / LCD_P45 / SD_RXb_1
C69
EBI_BE_7_0_b / LCD_P31 / SD_GND
D70
EBI_AD24 / LCD_P46 / SD_GND
C70
EBI_TSIZE0 / LCD_P32 / SD_TX_1
D71
EBI_AD25 / LCD_P47 / SD_GND
C71
EBI_TSIZE1 / LCD_P33 / SD_TXb_1
D72
EBI_AD26 / LCD_P48 / SD_RX_2
C72
EBI_TS_b / LCD_P34 / SD_GND
D73
EBI_AD27 / LCD_P49 / SD_RXb_2
C73
EBI_TBST_b / LCD_P35 / SD_GND
D74
EBI_AD28 / LCD_P50 / SD_GND
C74
EBI_TA_b / LCD_P36 / SD_TX_2
D75
EBI_AD29 / LCD_P51 / SD_GND
C75
EBI_CS4_b / LCD_P37 / SD_TXb_2
D76
EBI_AD30 / LCD_P52 / SD_RX_3
C76
EBI_CS3_b / LCD_P38 / SD_GND
D77
EBI_AD31 / LCD_P53 / SD_RXb_3
C77
EBI_CS2_b / LCD_P39 / SD_GND
D78
LCD_D20 / LCD_P20 / SD_GND
C78
EBI_CS1_b / LCD_P40 / SD_TX_3
D79
LCD_D21 / LCD_P21 / SD_REFCLK
C79
GPIO31 / LCD_P41 / SD_TXb_3
D80
LCD_D22 / LCD_P22 /
SD_REFCLKb
C80
LCD_D23 / LCD_P23 / SD_GND
D81
GND
Ground
X C81
GND
Ground
X D82
3.3V
3.3V Power
X C82
3.3V
3.3V Power
X
TWR-SER2 User’s ManualPage 14 of 17
Switch Options
Setting
Description
SW1
Ethernet Strapping Functions / Settings
Dip 1
*On*
Enables RMII mode for Ethernet PHY A
Off
Enables MII mode for Ethernet PHY A
Dip 2
*On*
Connects RX_CRS to RMII0_CRS_DV (required for RMII operation)
Off
Disconnects RX_CRS from RMII0_CRS_DV (required for MII operation)
Dip 3
On
Connects RX_CRS to MII_CRS (required for MII operation)
*Off*
Disconnects RX_CRS from MII_CRS (required for RMII operation)
Dip 4
On
Connects RX_DV to MII_RXDV (required for MII operation)
*Off*
Disconnects RX_DV from MII_RXDV (required for RMII operation)
Dip 5
On
Enables Dual PHY Extender Mode
*Off*
Disables Extender Mode
Dip 6
On
PHY A - Auto Negotiation (Use AN0/AN1 to set highest capability)
*Off*
PHY A - Forced Mode (Use AN0/AN1 to set forced mode)
Dip 7
On
AN0_A - Full-Duplex on PHY A
*Off*
AN0_A - Half-Duplex on PHY A
Dip 8
On
AN1_A - 100Base-TX on PHY A
*Off*
AN1_A - 10Base-T on PHY A
SW2
Ethernet Strapping Functions / Settings
Dip 1
*On*
Enables RMII mode for Ethernet PHY B
Off
Enables MII mode for Ethernet PHY B
Dip 2
On
Connects CLOCKOUT0 to Ethernet PHY Clock
*Off*
Isolates CLOCKOUT0 from Ethernet PHY Clock
Dip 3
*On*
Connects onboard 50MHz clock to Ethernet PHY Clock
Off
Isolates onboard 50MHz clock from Ethernet PHY Clock
Dip 4
On
Connects onboard 25MHz clock to Ethernet PHY Clock
*Off*
Isolates onboard 25MHz clock from Ethernet PHY Clock
Dip 5
On
Disables onboard 25MHz / 50MHz clock
*Off*
Enables onboard 25MHz / 50MHz clock
Dip 6
On
PHY B - Auto Negotiation (Use AN0/AN1 to set highest capability)
*Off*
PHY B - Forced Mode (Use AN0/AN1 to set forced mode)
Dip 7
On
AN0_B - Full-Duplex on PHY B
*Off*
AN0_B - Half-Duplex on PHY B
Dip 8
On
AN1_B - 100Base-TX on PHY B
*Off*
AN1_B - 10Base-T on PHY B
4 Configuration Settings
There are several jumpers provided for isolation, configuration, and feature selection. Refer to the
following table for details. The default installed jumper settings are shown in *bold*.
4.1 Switch Settings
TWR-SER2 User’s ManualPage 15 of 17
Figure 3 - TWR-SER2 Switch Settings
Jumper Options
Setting
Description
J1
RS232/485 RX Select (UART 1)
1-2
RS485 Mode (connects RX to RO)
*2-3*
RS232 Mode (connects RX to R1OUT)
J2
RS232/485 TX Select (UART 1)
1-2
RS485 Mode (connects TX to DI)
*2-3*
RS232 Mode (connects TX to T1IN)
J4
CAN Isolation
1-2
Connects CAN_S to S
3-4
Connects CAN_TX to TXD
5-6
Connects CAN_RX to RXD
J7
JS16 RS232 Isolation (UART 0)
*1-2*
Connects RX to S08JS16 RXD
*3-4*
Connects TX to S08JS16 TXD
J8
Power Down Port B
1-2
Disables Ethernet PHY B
J9
Power Down Port A
1-2
Disables Ethernet PHY A
J11
RS485 Config (UART 1)
1-2
Loopback Mode (connects RE to DE)
3-4
Loopback Mode (connects TX0_P to RX0_P)
5-6
Loopback Mode (connects TX0_N to RX0_N)
7-8
NC
9-10
5V Supply to DB9
J13
RS232/485 Disable (UART 1)
*1-2*
Disables RS485
2-3
Disables RS232
J16
VBUS OC Isolation
1-2
Connects USB VBUS OC to Elevator
J21
VBUS EN Isolation
1-2
Connects USB VBUS EN to Elevator
J22
RS232 (UART2) Isolation
1-2
Connects TX to T1IN
3-4
Connects RX to R1OUT
5-6
Connects RTS to T2IN
7-8
Connect CTS to R2OUT
J23
RS232 (UART3) Isolation
1-2
Connects TX to T1IN
3-4
Connects RX to R1OUT
5-6
Connects RTS to T2IN
7-8
Connects CTS to R2OUT
J24
USB Device Mode
1-2
Device Mode (capable of powering Tower
System)
4.2 Jumper Settings
TWR-SER2 User’s ManualPage 16 of 17
Figure 4 - TWR-SER2 Jumper Settings
Freescale™ and the Freescale l ogo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
The TWR-SER2 is designed for the Freescale Tower System as a side mounting peripheral and complies
with the electrical and mechanical specification as described in Freescale Tower Electromechanical Specification.
TWR-SER2 User’s ManualPage 17 of 17
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.