Freescale MWE 61 C 9100 GNR 1 Service Manual

www.DataSheet4U.com
Freescale Semiconductor
Technical Data
RF LDMOS Wideband Integrated
Document Number: MWE6IC9100N
Rev. 2, 6/2007
Power Amplifiers
Final Application
Typical GSM Performance: VDD = 26 Volts, I
P
= 100 Watts CW, Full Frequency Band (869- 960 MHz)
out
Power Gain — 33.5 dB Power Added Efficiency — 54%
GSM EDGE Application
Typical GSM EDGE Performance: V
870 mA, P
Power Gain — 35.5 dB
= 50 Watts Avg., Full Frequency Band (869-960 MHz)
out
= 28 Volts, I
DD
Power Added Efficiency — 39% Spectral Regrowth @ 400 kHz Offset = -63 dBc Spectral Regrowth @ 600 kHz Offset = -81 dBc EVM — 2% rms
Capable of Handling 10:1 VSWR, @ 32 Vdc, 960 MHz, 3 dB Overdrive,
Designed for Enhanced Ruggedness
Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 0 to 50.8 dBm CW (or
1 mW to 120 W CW) P
out
.
Features
Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source Scattering Parameters
On- Chip Matching (50 Ohm Input, DC Blocked)
Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function
(1)
Integrated ESD Protection
200°C Capable Plastic Package
RoHS Compliant
In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
= 120 mA, I
DQ1
= 230 mA, I
DQ1
= 950 mA,
DQ2
DQ2
=
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
960 MHz, 100 W, 26 V
GSM/GSM EDGE
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1618-01
TO-270 WB- 14
PLASTIC
MWE6IC9100NR1
CASE 1621-01
TO-270 WB- 14 GULL
PLASTIC
MWE6IC9100GNR1
CASE 1617-01
TO-272 WB- 14
PLASTIC
MWE6IC9100NBR1
NC
1
V
DS1
V
DS1
RF
in
V
GS1
V
GS2
V
DS1
Quiescent Current
Temperature Compensation
(1)
RF
out/VDS2
RF RF
V
GS1
V
GS2
V
DS1
Note: Exposed backside of the package is
Figure 1. Functional Block Diagram
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1977 or AN1987.
Freescale Semiconductor, Inc., 2007. All rights reserved.
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
2 3
NC NC
4
NC
5 6
in
7
in
8
NC
9 10 11
NC
12
(Top View)
the source terminal for the transistors.
14
13
RF
RF
/V
out
/V
out
Figure 2. Pin Connections
DS2
DS2
RF Device Data Freescale Semiconductor
1
Table 1. Maximum Ratings
Rating Symbol Value Unit
Drain-Source Voltage V
Gate- Source Voltage V
Storage Temperature Range T
Operating Junction Temperature T
Table 2. Thermal Characteristics
Characteristic Symbol Value
Thermal Resistance, Junction to Case
R
DSS
GS
stg
J
θ
JC
-0.5, +66 Vdc
-0.5, +6 Vdc
-65 to +200 °C
200 °C
(1,2)
Unit
°C/W
GSM Application Stage 1, 26 Vdc, I (P
= 100 W CW) Stage 2, 26 Vdc, I
out
GSM EDGE Application Stage 1, 28 Vdc, I (P
= 50 W Avg.) Stage 2, 28 Vdc, I
out
DQ1
DQ2
DQ1
DQ2
= 120 mA = 950 mA
= 230 mA = 870 mA
1.82
0.38
1.77
0.44
Table 3. ESD Protection Characteristics
Test Methodology Class
Human Body Model (per JESD22- A114) 2 (Minimum)
Machine Model (per EIA/JESD22-A115) B (Minimum)
Charge Device Model (per JESD22-C101) III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Rating Package Peak Temperature Unit
Per JESD 22-A113, IPC/JEDEC J-STD - 020 3 260 °C
Table 5. Electrical Characteristics (T
Characteristic Symbol Min Typ Max Unit
Stage 1 — Off Characteristics
Zero Gate Voltage Drain Leakage Current
(VDS = 66 Vdc, VGS = 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Stage 1 — On Characteristics
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 35 µAdc)
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 120 mAdc)
Fixture Gate Quiescent Voltage
(VDD = 26 Vdc, ID = 120 mAdc, Measured in Functional Test)
1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.
2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.
= 25°C unless otherwise noted)
C
I
I
I
V
GS(th)
V
GS(Q)
V
GG(Q)
DSS
DSS
GSS
10 µAdc
1 µAdc
10 µAdc
1.5 2 3.5 Vdc
2.7 Vdc
6 9.4 12 Vdc
(continued)
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (T
= 25°C unless otherwise noted) (continued)
C
Characteristic Symbol Min Typ Max Unit
Stage 2 — Off Characteristics
Zero Gate Voltage Drain Leakage Current
I
DSS
10 µAdc
(VDS = 66 Vdc, VGS = 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(V
= 28 Vdc, VGS = 0 Vdc)
DS
Gate- Source Leakage Current
I
DSS
I
GSS
1 µAdc
10 µAdc
(VGS = 5 Vdc, VDS = 0 Vdc)
Stage 2 — On Characteristics
Gate Threshold Voltage
V
GS(th)
1.5 2 3.5 Vdc
(VDS = 10 Vdc, ID = 290 µAdc)
Gate Quiescent Voltage
V
GS(Q)
2.7 Vdc
(VDS = 26 Vdc, ID = 950 mAdc)
Fixture Gate Quiescent Voltage
V
GG(Q)
6 8.6 12 Vdc
(VDD = 26 Vdc, ID = 950 mAdc, Measured in Functional Test)
Drain-Source On - Voltage
V
DS(on)
0.05 0.4 0.8 Vdc
(VGS = 10 Vdc, ID = 1 Adc)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, P
Power Gain G
= 100 W CW, I
out
ps
= 120 mA, I
DQ1
= 950 mA, f = 960 MHz
DQ2
31 33.5 36 dB
Input Return Loss IRL -15 -10 dB
Power Added Efficiency PAE 52 54 %
P
@ 1 dB Compression Point, CW P1dB 100 112 W
out
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V I
= 870 mA, 869 - 894 MHz and 920 - 960 MHz EDGE Modulation
DQ2
Power Gain G
ps
= 28 Vdc, P
DD
= 50 W Avg., I
out
35.5 dB
DQ1
= 230 mA,
Power Added Efficiency PAE 39 %
Error Vector Magnitude EVM 2 % rms
Spectral Regrowth at 400 kHz Offset SR1 -63 dBc
Spectral Regrowth at 600 kHz Offset SR2 -81 dBc
RF Device Data Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
3
RF
INPUT
C8
1
C11
NC
2
3
NC
4
NC
NC
5
6
7
NC
8
9
10
11
12
NC
V
DD1
+
C17 C22
Z2
Z3
Z1
V
GG1
R1
C15
V
GG2
R2
Z4
C13
DUT
Quiescent Current
Temperature
Compensation
13
14
C1
Z5 Z6
C2
Z16
Z7 Z8 Z9
Z17
C9
C20
C7 C23
C3
C5
C4
+
Z10 Z15Z14
Z11
Z12
V
DD2
RF
OUTPUT
C6
Z13
C14C19C16
C12
C10 C24 C21
C18
V
DD1
Z1 0.089 x 0.083Microstrip Z2 0.157 x 0.315Microstrip Z3 0.157 x 0.397Microstrip Z4 0.139 x 0.060Microstrip Z5 0.024 x 0.386Microstrip Z6 0.352 x 0.902Microstrip Z7 0.039 x 0.607Microstrip Z8 0.555 x 1.102Microstrip
Z10 1.117 x 0.083Microstrip Z11 0.067 x 0.431Microstrip Z12 0.067 x 0.084Microstrip Z13 0.381 x 0.067Microstrip Z14 0.418 x 0.084Microstrip Z15 0.421 x 0.084Microstrip Z16, Z17 2.550 x 0.157″ Microstrip PCB Taconic TLX8-0300, 0.030″, εr = 2.55
Z9 0.343 x 0.083Microstrip
Figure 3. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Schematic
Table 6. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values
Part Description Part Number Manufacturer
C1, C2 10 pF Chip Capacitors ATC100B100GT500XT ATC
C3, C4, C5 3.9 pF Chip Capacitors ATC100B3R9BT500XT ATC
C6 0.5 pF Chip Capacitor ATC100B0R5BT500XT AT C
C7, C8, C9, C10, C11, C12, C13, C14
C15, C16, C17, C18, C19, C20, C21
C22, C23 470 µF, 63 V Electrolytic Capacitors, Radial 222212018470 Vishay
C24 330 pF Chip Capacitor ATC100B331JT200XT ATC
R1, R2 4.7 k, 1/8 W Chip Resistors WCR08054K7G Welwyn
33 pF Chip Capacitors ATC100B330JT500XT ATC
6.8 µF Chip Capacitors C4532X5R1H685MT TDK
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
4
RF Device Data
Freescale Semiconductor
MWE6IC9100N
Rev. 4
C17
V
DD1
C7
C8
C15
C16
C22
V
DD2
C20
C11
C1
C23
C3
C5
C6
C4
C13
V
GG1
R1
C14
C12
C19
R2
V
GG2
C2
CUT OUT AREA
C21
C24
C10
C9
C18
Figure 4. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Layout
RF Device Data Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
5
TYPICAL CHARACTERISTICS
38 70
G
34
30
26
22
, POWER GAIN (dB)
ps
18
G
14
10
840
860 980900 920
IRL
880
ps
PAE
VDD = 26 Vdc, P
= 120 mA, I
I
DQ1
= 100 W CW
out
= 950 mA
DQ2
940 960
64
58
52
46
40
34
28
f, FREQUENCY (MHz)
Figure 5. Power Gain, Input Return Loss and Power Added
Efficiency versus Frequency @ P
38 52
34
30
26
22
, POWER GAIN (dB)
ps
18
G
14
10
840
G
ps
PAE
VDD = 28 Vdc, P I
= 230 mA, I
DQ1
IRL
880
860 980900 920
f, FREQUENCY (MHz)
= 100 Watts CW
out
= 50 W Avg.
out
= 870 mA
DQ2
940 960
46
40
34
28
22
16
10
Figure 6. Power Gain, Input Return Loss and Power Added
Efficiency versus Frequency @ P
= 50 Watts Avg.
out
0
−4
−8
−12
−16
−20
IRL, INPUT RETURN LOSS (dB)
−24
PAE, POWER ADDED EFFICIENCY (%)
−28
−4
−8
−12
−16
−20
−24
IRL, INPUT RETURN LOSS (dB)
−28
PAE, POWER ADDED EFFICIENCY (%)
−30
36
I
= 1420 mA
DQ2
35
I
= 1190 mA
DQ2
I
DQ2
= 950 mA
34
33
, POWER GAIN (dB)
ps
I
G
= 590 mA
DQ2
32
I
= 470 mA
DQ2
VDD = 26 Vdc f = 945 MHz
31
1
P
out
10 200
, OUTPUT POWER (WATTS) CW
100
Figure 7. Power Gain versus Output Power
@ I
= 120 mA
DQ1
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
6
36
I
= 180 mA
I
DQ1
= 150 mA
DQ1
35
34
I
= 120 mA
DQ1
33
I
= 90 mA
, POWER GAIN (dB)
ps
G
DQ1
32
31
I
= 60 mA
DQ1
30
1
P
out
10 200
, OUTPUT POWER (WATTS) CW
Figure 8. Power Gain versus Output Power
@ I
= 950 mA
DQ2
Freescale Semiconductor
VDD = 26 Vdc f = 945 MHz
100
RF Device Data
TYPICAL CHARACTERISTICS
,
(
)
−10 VDD = 26 Vdc I
−20
= 120 mA, I
DQ1
f1 = 945 MHz, f2 = 945.1 MHz 100 kHz Tone Spacing
−30
= 950 mA
DQ2
3rd Order
−40
5th Order
−50
−60
7th Order
−70
IMD, INTERMODULATION DISTORTION (dBc)
−80
110
P
, OUTPUT POWER (WATTS) PEP
out
100
Figure 9. Intermodulation Distortion Products
versus Output Power
58
57
56
P3dB = 51.5 dBm (140 W)
55
54
P1dB = 50.9 dBm (123 W)
53
52
51
, OUTPUT POWER (dBc)
out
50
P
49
48
14 1715
16 18 19
P6dB = 51.95 dBm (156 W)
VDD = 26 Vdc, I
DQ1
Pulsed CW, 12 µsec(on), 1% Duty Cycle f = 945 MHz
20 21 22 23 24
Pin, INPUT POWER (dBm)
Ideal
= 120 mA, I
= 950 mA
DQ2
Actual
Actual
Figure 11. Pulsed CW Output Power versus
Input Power
40
38
VDD = 26 Vdc, I I
= 950 mA, f = 880 MHz
DQ2
DQ1
= 120 mA
−30_C
25_C
36
G
34
ps
TC = −30_C
85_C
25_C
32
, POWER GAIN (dB)
ps
30
G
28
85_C
PAE
26 0
101
P
, OUTPUT POWER (WATTS) CW
out
100
Figure 13. Power Gain and Power Added
Efficiency versus Output Power @ 880 MHz
−10 VDD = 26 Vdc, P I
DQ2
−20 (f1 + f2)/2 = Center Frequency of 945 MHz
−30
−40
−50
−60
−70
IMD, INTERMODULATION DISTORTION (dBc)
−80
200
0.1 10
38
36
G
ps
34
32
30
, POWER GAIN (dB)
ps
G
28
PAE
26
25
Figure 12. Power Gain and Power Added
Efficiency versus Output Power @ 945 MHz
70
60
50
40
30
20
10
300
34
33
32
31
, POWER GAIN (dB)
30
ps
G
29
PAE, POWER ADDED EFFICIENCY (%)
28
0 150
Figure 14. Power Gain versus Output Power
= 100 W (PEP), I
= 1 A, Two− Tone Measurements
out
= 150 mA
DQ1
3rd Order
5th Order
7th Order
1
TWO−TONE SPACING (MHz)
Figure 10. Intermodulation Distortion
Products versus Tone Spacing
TC = −30_C
25_C
85_C
VDD = 26 Vdc I
= 120 mA
DQ1
I
= 950 mA
DQ2
f = 945 MHz
101
P
, OUTPUT POWER (WATTS) CW
out
24 V
VDD = 20 V
50
P
, OUTPUT POWER (WATTS) CW
out
100
−30_C
25_C
85_C
100
32 V
I
= 120 mA
DQ1
I
= 950 mA
DQ2
f = 945 MHz
100
60
%
50
40
30
20
POWER ADDED EFFICIENCY
10
PAE
0
300
200
RF Device Data Freescale Semiconductor
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
7
Loading...
+ 16 hidden pages