The MWE6IC9100N wideband integrated circuit is designed with on-chip
matching that makes it usable from 869 to 960 MHz. This multi- stage
structure is rated for 26 to 32 Volt operation and covers all typical cellular base
station modulations.
FinalApplication
• Typical GSM Performance: VDD = 26 Volts, I
P
= 100 Watts CW, Full Frequency Band (869- 960 MHz)
out
Power Gain — 33.5 dB
Power Added Efficiency — 54%
GSM EDGE Application
• Typical GSM EDGE Performance: V
870 mA, P
Power Gain — 35.5 dB
= 50 Watts Avg., Full Frequency Band (869-960 MHz)
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 960 MHz, 3 dB Overdrive,
Designed for Enhanced Ruggedness
• Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 0 to 50.8 dBm CW (or
1 mW to 120 W CW) P
out
.
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source Scattering Parameters
• On- Chip Matching (50 Ohm Input, DC Blocked)
• Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function
(1)
• Integrated ESD Protection
• 200°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
= 120 mA, I
DQ1
= 230 mA, I
DQ1
= 950 mA,
DQ2
DQ2
=
MWE6IC9100NR1
MWE6IC9100GNR1
MWE6IC9100NBR1
960 MHz, 100 W, 26 V
GSM/GSM EDGE
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1618-01
TO-270 WB- 14
PLASTIC
MWE6IC9100NR1
CASE 1621-01
TO-270 WB- 14 GULL
PLASTIC
MWE6IC9100GNR1
CASE 1617-01
TO-272 WB- 14
PLASTIC
MWE6IC9100NBR1
NC
1
V
DS1
V
DS1
RF
in
V
GS1
V
GS2
V
DS1
Quiescent Current
Temperature Compensation
(1)
RF
out/VDS2
RF
RF
V
GS1
V
GS2
V
DS1
Note: Exposed backside of the package is
Figure 1. Functional Block Diagram
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1977 or AN1987.
Freescale Semiconductor, Inc., 2007. All rights reserved.
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
2
3
NC
NC
4
NC
5
6
in
7
in
8
NC
9
10
11
NC
12
(Top View)
the source terminal for the transistors.
14
13
RF
RF
/V
out
/V
out
Figure 2. Pin Connections
DS2
DS2
RF Device DataFreescale Semiconductor
1
Table 1. Maximum Ratings
RatingSymbolValueUnit
Drain-Source VoltageV
Gate- Source VoltageV
Storage Temperature RangeT
Operating Junction TemperatureT
Table 2. Thermal Characteristics
CharacteristicSymbolValue
Thermal Resistance, Junction to Case
R
DSS
GS
stg
J
θ
JC
-0.5, +66Vdc
-0.5, +6Vdc
-65 to +200°C
200°C
(1,2)
Unit
°C/W
GSM ApplicationStage 1, 26 Vdc, I
(P
= 100 W CW)Stage 2, 26 Vdc, I
out
GSM EDGE ApplicationStage 1, 28 Vdc, I
(P
= 50 W Avg.)Stage 2, 28 Vdc, I
out
DQ1
DQ2
DQ1
DQ2
= 120 mA
= 950 mA
= 230 mA
= 870 mA
1.82
0.38
1.77
0.44
Table 3. ESD Protection Characteristics
Test MethodologyClass
Human Body Model (per JESD22- A114)2 (Minimum)
Machine Model (per EIA/JESD22-A115)B (Minimum)
Charge Device Model (per JESD22-C101)III (Minimum)
Table 4. Moisture Sensitivity Level
Test MethodologyRatingPackage Peak TemperatureUnit
Per JESD 22-A113, IPC/JEDEC J-STD - 0203260°C
Table 5. Electrical Characteristics (T
CharacteristicSymbolMinTypMaxUnit
Stage 1 — Off Characteristics
Zero Gate Voltage Drain Leakage Current
(VDS = 66 Vdc, VGS = 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Stage 1 — On Characteristics
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 35 µAdc)
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 120 mAdc)
Fixture Gate Quiescent Voltage
(VDD = 26 Vdc, ID = 120 mAdc, Measured in Functional Test)
1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF
calculators by product.
= 25°C unless otherwise noted)
C
I
I
I
V
GS(th)
V
GS(Q)
V
GG(Q)
DSS
DSS
GSS
——10µAdc
——1µAdc
——10µAdc
1.523.5Vdc
—2.7—Vdc
69.412Vdc
(continued)
MWE6IC9100NR1 MWE6IC9100GNR1 MWE6IC9100NBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (T
= 25°C unless otherwise noted) (continued)
C
CharacteristicSymbolMinTypMaxUnit
Stage 2 — Off Characteristics
Zero Gate Voltage Drain Leakage Current
I
DSS
——10µAdc
(VDS = 66 Vdc, VGS = 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(V
= 28 Vdc, VGS = 0 Vdc)
DS
Gate- Source Leakage Current
I
DSS
I
GSS
——1µAdc
——10µAdc
(VGS = 5 Vdc, VDS = 0 Vdc)
Stage 2— On Characteristics
Gate Threshold Voltage
V
GS(th)
1.523.5Vdc
(VDS = 10 Vdc, ID = 290 µAdc)
Gate Quiescent Voltage
V
GS(Q)
—2.7—Vdc
(VDS = 26 Vdc, ID = 950 mAdc)
Fixture Gate Quiescent Voltage
V
GG(Q)
68.612Vdc
(VDD = 26 Vdc, ID = 950 mAdc, Measured in Functional Test)
Drain-Source On - Voltage
V
DS(on)
0.050.40.8Vdc
(VGS = 10 Vdc, ID = 1 Adc)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, P
Power GainG
= 100 W CW, I
out
ps
= 120 mA, I
DQ1
= 950 mA, f = 960 MHz
DQ2
3133.536dB
Input Return LossIRL—-15-10dB
Power Added EfficiencyPAE5254—%
P
@ 1 dB Compression Point, CWP1dB100112—W
out
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V
I
Z10.089″ x 0.083″ Microstrip
Z20.157″ x 0.315″ Microstrip
Z30.157″ x 0.397″ Microstrip
Z40.139″ x 0.060″ Microstrip
Z50.024″ x 0.386″ Microstrip
Z60.352″ x 0.902″ Microstrip
Z70.039″ x 0.607″ Microstrip
Z80.555″ x 1.102″ Microstrip
Z101.117″ x 0.083″ Microstrip
Z110.067″ x 0.431″ Microstrip
Z120.067″ x 0.084″ Microstrip
Z130.381″ x 0.067″ Microstrip
Z140.418″ x 0.084″ Microstrip
Z150.421″ x 0.084″ Microstrip
Z16, Z172.550″ x 0.157″ Microstrip
PCBTaconic TLX8-0300, 0.030″, εr = 2.55
Z90.343″ x 0.083″ Microstrip
Figure 3. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Schematic
Table 6. MWE6IC9100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values