Designed primarily for CW large -signal output and driver applications with
frequencies up to 450 MHz. Devices are unmatched and are suitable for use in
industrial, medical and scientific applications.
• Facilitates Manual Gain Control, ALC and Modulation Techniques
• 200°C Capable Plastic Package
• RoHS Compliant
• TO-270 - 2 in Tape and Reel. R1 Suffix = 500 Units per 24 mm,
13 inch Reel.
• TO-272 - 2 in Tape and Reel. R1 Suffix = 500 Units per 44 mm,
13 inch Reel.
Document Number: MRF6V2010N
Rev. 1, 5/2007
MRF6V2010NR1
MRF6V2010NBR1
10- 450 MHz, 10 W, 50 V
LATERAL N - CHANNEL
BROADBAND
RF POWER MOSFETs
CASE 1265-08, STYLE 1
TO-270-2
PLASTIC
MRF6V2010NR1
CASE 1337-03, STYLE 1
TO-272-2
PLASTIC
MRF6V2010NBR1
Table 1. Maximum Ratings
RatingSymbolValueUnit
Drain-Source VoltageV
Gate-Source VoltageV
Storage Temperature RangeT
Operating Junction TemperatureT
DSS
GS
stg
J
-0.5, +110Vdc
-0.5, +10Vdc
- 65 to +150°C
200°C
Table 2. Thermal Characteristics
CharacteristicSymbolValue
Thermal Resistance, Junction to Case
Case Temperature 81°C, 10 W CWR
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF
calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
θ
JC
(1,2)
3.0°C/W
Unit
Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device DataFreescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
1
Table 3. ESD Protection Characteristics
Test MethodologyClass
Human Body Model (per JESD22-A114)2 (Minimum)
Machine Model (per EIA/JESD22 - A115)A (Minimum)
Charge Device Model (per JESD22-C101)IV (Minimum)
Table 4. Moisture Sensitivity Level
Test MethodologyRatingPackage Peak TemperatureUnit
Per JESD 22-A113, IPC/JEDEC J- STD - 0203260°C
Table 5. Electrical Characteristics (T
CharacteristicSymbolMinTypMaxUnit
Off Characteristics
Zero Gate Voltage Drain Leakage Current
= 100 Vdc, VGS = 0 Vdc)
(V
DS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
Drain-Source Breakdown Voltage
(ID = 5 mA, VGS = 0 Vdc)
Gate-Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
On Characteristics
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 28 µAdc)
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 30 mAdc, Measured in Functional Test)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 30 mA, P
Power GainG
Drain Efficiencyη
Input Return LossIRL—-14-9dB
= 25°C unless otherwise noted)
C
I
DSS
I
DSS
V
(BR)DSS
I
GSS
V
GS(th)
V
GS(Q)
V
DS(on)
C
C
C
rss
oss
iss
ps
D
——2.5mA
——50µAdc
110——Vdc
——10µAdc
11.683Vdc
1.52.683.5Vdc
—0.26—Vdc
—0.13—pF
—7.3—pF
—16.3—pF
= 10 W, f = 220 MHz, CW
out
22.523.925.5dB
5862—%
ATTENTION: The MRF6V2010N and MRF6V2010NB are high power devices and special considerations
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263
(for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to
ensure proper mounting of these devices.
MRF6V2010NR1 MRF6V2010NBR1
2
RF Device Data
Freescale Semiconductor
C14 C15
RF
OUTPUT
B2
V
SUPPLY
+
L2
B1
V
BIAS
+
+
C4C2
C5
RF
INPUT
C7C6
C8
L3
R1L1
Z1
Z2Z3 Z4
C1
Z5Z11Z6
DUT
C9C10
Z7
Z8Z9
C3
C12C13C11C16
Z10
C18
C17
Z10.235″ x 0.082″ Microstrip
Z21.190″ x 0.082″ Microstrip
Z30.619″ x 0.082″ Microstrip
Z40.190″ x 0.270″ Microstrip
Z50.293″ x 0.270″ Microstrip
Z60.120″ x 0.270″ Microstrip
Z70.062″ x 0.270″ Microstrip
Z80.198″ x 0.082″ Microstrip
Z95.600″ x 0.082″ Microstrip
Z100.442″ x 0.082″ Microstrip
Z110.341″ x 0.082″ Microstrip
PCBArlon GX- 0300 - 55 - 22, 0.030″, εr = 2.55
Figure 1. MRF6V2010NR1(NBR1) Test Circuit Schematic
Table 6. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values
PartDescriptionPart NumberManufacturer
B1, B295 Ω, 100 MHz Long Ferrite Beads2743021447Fair-Rite