Freescale MRF5S9101MR1, MRF5S9101MBR1 Technical Data

C
O
O
Freescale Semiconductor
Technical Data
Replaced by MRF5S9101NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations.
RF Power Field Effect Transistors
N- Channel Enhancement -Mode Lateral MOSFETs
Designed for GSM and GSM EDGE base station applications with frequencies from 869 to 960 MHz. Suitable for multicarrier amplifier applications.
GSM Application
Typical GSM Performance: VDD = 26 Volts, IDQ = 700 mA, P
100 Watts CW, Full Frequency Band (869 - 894 MHz and 921-960 MHz)
Power Gain - 17.5 dB Drain Efficiency - 60%
GSM EDGE Application
N
Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 650 mA, P
50 Watts Avg., Full Frequency Band (869- 894 MHz and 921-960 MHz)
Power Gain — 18 dB Spectral Regrowth @ 400 kHz Offset = -63 dBc Spectral Regrowth @ 600 kHz Offset = -78 dBc EVM — 2.3% rms
Capable of Handling 10:1 VSWR, @ 26 Vdc, @ 100 W CW Output Power,
@ f = 960 MHz
Characterized with Series Equivalent Large - Signal Impedance Parameters
Internally Matched for Ease of Use
RMATI
Qualified Up to a Maximum of 32 V
Integrated ESD Protection
200°C Capable Plastic Package
In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
Operation
DD
out
=
out
=
Document Number: MRF5S9101
Rev. 3, 5/2006
MRF5S9101MR1
MRF5S9101MBR1
869- 960 MHz, 100 W, 26 V
GSM/GSM EDGE
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 1486-03, STYLE 1
TO-270 WB - 4
PLASTIC
MRF5S9101MR1
CASE 1484-04, STYLE 1
TO-272 WB - 4
PLASTIC
MRF5S9101MBR1
Table 1. Maximum Ratings
Rating Symbol Value Unit
Drain-Source Voltage V
HIVE INF
Gate-Source Voltage V
Total Device Dissipation @ TC = 25°C
Derate above 25°C
Storage Temperature Range T
AR
Operating Junction Temperature T
Table 2. Thermal Characteristics
Characteristic Symbol Value
Thermal Resistance, Junction to Case
Case Temperature 80°C, 100 W CW Case Temperature 80°C, 50 W CW
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
R
DSS
GS
P
stg
θ
D
J
JC
- 0.5, +68 Vdc
- 0.5, +15 Vdc
427
2.44
- 65 to +150 °C
200 °C
(1,2)
0.41
0.47
W
W/°C
ARCHIVE INFORMATION
Unit
°C/W
Freescale Semiconductor, Inc., 2006. All rights reserved.
RF Device Data Freescale Semiconductor
MRF5S9101MR1 MRF5S9101MBR1
1
C
O
O
Table 3. ESD Protection Characteristics
Test Methodology Class
Human Body Model (per JESD22-A114) 1C (Minimum)
Machine Model (per EIA/JESD22-A115) A (Minimum)
Charge Device Model (per JESD22-C101) IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Rating Package Peak Temperature Unit
Per JESD 22-A113, IPC/JEDEC J - STD - 020 3 260 °C
Table 5. Electrical Characteristics (T
Characteristic Symbol Min Typ Max Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 68 Vdc, VGS = 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(VDS = 26 Vdc, VGS = 0 Vdc)
N
Gate-Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
On Characteristics
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 400 µAdc)
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 700 mAdc)
Drain-Source On- Voltage
RMATI
(VGS = 10 Vdc, ID = 2 Adc)
Forward Transconductance
(VDS = 10 Vdc, ID = 6 Adc)
Dynamic Characteristics
Output Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Reverse Transfer Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, P
Power Gain G
Drain Efficiency η
HIVE INF
Input Return Loss IRL -15 -9 dB
P
@ 1 dB Compression Point, CW P1dB 100 110 W
out
1. Part is internally input matched.
(1)
= 25°C unless otherwise noted)
C
AR
I
DSS
I
DSS
I
GSS
V
GS(th)
V
GS(Q)
V
DS(on)
g
fs
C
oss
C
rss
= 100 W, IDQ = 700 mA, f = 960 MHz
out
ps
D
10 µAdc
1 µAdc
1 µAdc
2 2.8 3.5 Vdc
3.7 Vdc
0.21 0.3 Vdc
7 S
70 pF
2.2 pF
16 17.5 19 dB
56 60 %
(continued)
ARCHIVE INFORMATION
MRF5S9101MR1 MRF5S9101MBR1
2
RF Device Data
Freescale Semiconductor
C
O
O
Table 5. Electrical Characteristics (T
Characteristic Symbol Min Typ Max Unit
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) V
I
= 650 mA, 869 MHz<Frequency<894 MHz, 920 MHz<Frequency<960 MHz
DQ
Power Gain
Drain Efficiency η
Error Vector Magnitude EVM 2.3 % rms
Spectral Regrowth at 400 kHz Offset SR1 -63 dBc
Spectral Regrowth at 600 kHz Offset SR2 -78 dBc
= 25°C unless otherwise noted) (continued)
C
G
ps
D
= 28 Vdc, P
DD
18 dB
42 %
= 50 W Avg.,
out
N
RMATI
HIVE INF
AR
ARCHIVE INFORMATION
RF Device Data Freescale Semiconductor
MRF5S9101MR1 MRF5S9101MBR1
3
C
O
O
V
BIAS
R1
C1
C7
C4R2
Z13
R3
Z11
C8 C2C5
V
SUPPLY
+
C21
N
RMATI
RF
INPUT
Z10
Z9 Z7
C19
Z1 0.698 x 0.827 Microstrip Z2 0.720 x 0.788 Microstrip Z3 0.195 x 0.087Microstrip Z4 0.524 x 0.087Microstrip Z5 0.233 x 0.087Microstrip Z6 0.560 x 0.087 Microstrip Z7 0.095 x 0.827 Microstrip Z8 0.472 x 0.087 Microstrip Z9 0.384 x 0.087 Microstrip
C10
Figure 1. MRF5S9101MR1(MBR1) 900 MHz Test Circuit Schematic
Z8
C17
C13C16
DUT
Z1
Z12
Z10 1.491 x 0.087 Microstrip Z11, Z12* 1.6 x 0.089 Microstrip
Z13* 1.2 x 0.059 Microstrip
PCB Taconic TLX8-0300, 0.030″, εr = 2.55
*Variable for tuning
Z2
C12
C9 C3C6
(quarter wave length for supply purpose)
(quarter wave length for bias purpose)
C14
Z3
C15
Z4
Z5
C18 C20
RF
OUTPUT
Z6
C11
Table 6. MRF5S9101MR1(MBR1) 900 MHz Test Circuit Component Designations and Values
Part Description Part Number Manufacturer
C1, C2, C3
C4, C5, C6 10 nF 200B Chip Capacitors 200B103MW ATC
C7, C8, C9 33 pF 100B Chip Capacitors 100B330JW ATC
HIVE INF
C10, C11 22 pF 100B Chip Capacitors 100B220GW AT C
C12, C13 10 pF 100B Chip Capacitors 100B100GW AT C
C14, C15, C16, C17 8.2 pF 100B Chip Capacitors 100B8R2CW ATC
C18 5.6 pF 100B Chip Capacitor 100B5R6CW ATC
AR
C19 4.7 pF 100B Chip Capacitor 100B4R7BW ATC
C20 3.9 pF 100B Chip Capacitor 100B3R9BW ATC
C21
R1, R2
R3
4.7 mF Chip Capacitors (2220)
220 mF, 50 V Electrolytic Capacitor, Axial
10 kW, 1/4 W Chip Resistors (1206)
10 W, 1/4 W Chip Resistor (1206)
GRM55ER7H475KA01 Murata
516D227M050NP7B Sprague
ARCHIVE INFORMATION
MRF5S9101MR1 MRF5S9101MBR1
4
RF Device Data
Freescale Semiconductor
C
O
O
C1
C21
V
V
GG
C4
R1
R2
C7
R3
C16
C13
C8
C5
C14
DD
C2
N
RMATI
C10
C19
C17
MRF5S9101N 900 MHz Rev 2
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.
Figure 2. MRF5S9101MR1(MBR1) 900 MHz Test Circuit Component Layout
CUT OUT AREA
C12
C15
C9
C18
C20
C6
C11
C3
HIVE INF
AR
RF Device Data Freescale Semiconductor
ARCHIVE INFORMATION
MRF5S9101MR1 MRF5S9101MBR1
5
C
O
O
TYPICAL CHARACTERISTICS - 900 MHz
N
RMATI
HIVE INF
19
18
AR
18
G
ps
η
D
16
14
, POWER GAIN (dB)
13
ps
G
12
IRL
11
10
860
880 900 920 940 960 980 1000
Figure 3. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ P
19
18
G
ps
17
16
η
D
15
14 −8
, POWER GAIN (dB)
13
ps
G
IRL
12
11 − 20
10
860
880 900 920 940 960 980 1000
Figure 4. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ P
IDQ = 1500 mA
VDD = 26 Vdc IDQ = 700 mA
f, FREQUENCY (MHz)
VDD = 26 Vdc IDQ = 700 mA
f, FREQUENCY (MHz)
= 100 Watts CW
out
= 40 Watts CW
out
19
18
70
6017
50
4015
30
0
−15
−30
−45
1020
50
45
40
35
30
−12
−16
−24
1020
VDD = 12 V
INPUT RETURN LOSS (dB)IRL,
, DRAIN EFFICIENCY (%)
D
η
INPUT RETURN LOSS (dB)IRL,
, DRAIN EFFICIENCY (%)
D
η
ARCHIVE INFORMATION
17
700 mA
16
500 mA
, POWER GAIN (dB)
ps
G
15
300 mA
14
1
Figure 5. Power Gain versus Output Power
MRF5S9101MR1 MRF5S9101MBR1
6
10 100
P
, OUTPUT POWER (WATTS)
out
900 mA
1300 mA
1100 mA
VDD = 26 Vdc f = 940 MHz
1000
17
16
, POWER GAIN (dB)
ps
G
15
20 V
14
0
20 40 60 80 100 120 140 160 180
Figure 6. Power Gain versus Output Power
16 V
P
, OUTPUT POWER (WATTS) CW
out
24 V
Freescale Semiconductor
32 V
28 V
200
RF Device Data
C
O
O
TYPICAL CHARACTERISTICS - 900 MHz
20
G
19
TC = −30_ C
18
25_C
17
85_C
16
, POWER GAIN (dB)
15
ps
G
14
13
N
Figure 7. Power Gain and Drain Efficiency
η
D
P
, OUTPUT POWER (WATTS) CW
out
versus CW Output Power
RMATI
HIVE INF
ps
10010
9
VDD = 28 Vdc
850
IDQ = 650 mA f = 940 MHz
640
530
320
210
EVM, ERROR VECTOR MAGNITUDE (% rms)
0
1
Figure 9. Error Vector Magnitude and Drain
TC = −30_ C
25_C
85_C
VDD = 26 Vdc IDQ = 700 mA f = 940 MHz
P
, OUTPUT POWER (WATTS) AVG.
out
Efficiency versus Output Power
70
60
50
40
30
20
10
0
10001
3.5
VDD = 28 Vdc
3
IDQ = 650 mA
2.5
2
1.5
, DRAIN EFFICIENCY (%)
D
η
10
1
0.5
EVM, ERROR VECTOR MAGNITUDE (% rms)
0
900
910 920 930 940 950 960 970
Figure 8. Error Vector Magnitude versus
η
EVM
TC = 85_C
D
25_C
f, FREQUENCY (MHz)
Frequency
60
−30_C
0
100
P
= 50 W Avg.
out
40 W Avg.
, DRAIN EFFICIENCY (%)
D
η
25 W Avg.
980
SR 400 kHz
−63 P
= 50 W Avg.
AR
−68
−73
−78
−83
SPECTRAL REGROWTH @ 400 kHz and 600 kHz (dBc)
900
Figure 10. Spectral Regrowth at 400 kHz and
RF Device Data Freescale Semiconductor
out
SR 600 kHz
25 W Avg.
910 920 930 940 950 960 970
f, FREQUENCY (MHz)
600 kHz versus Frequency
25 W Avg.
40 W Avg.
40 W Avg.
50 W Avg.
VDD = 28 Vdc IDQ = 650 mA f = 940 MHz
980
−45 VDD = 28 Vdc
IDQ = 650 mA
−50 f = 940 MHz
−55
−60
−65
−70
−75
SPECTRAL REGROWTH @ 400 kHz (dBc)
−80
0
10 20 30 40 50 60 70 80
P
, OUTPUT POWER (WATTS) AVG.
out
Figure 11. Spectral Regrowth at 400 kHz
versus Output Power
TC = 85_C
ARCHIVE INFORMATION
25_C
−30_C
90
MRF5S9101MR1 MRF5S9101MBR1
7
C
O
O
N
TYPICAL CHARACTERISTICS - 900 MHz
−65 VDD = 28 Vdc
IDQ = 650 mA f = 940 MHz
−70
−75
−80
SPECTRAL REGROWTH @ 600 kHz (dBc)
−85
0
10 20 30 40 50 60 70 80
P
, OUTPUT POWER (WATTS) AVG.
out
Figure 12. Spectral Regrowth @ 600 kHz
versus Output Power
1.E+10
)
2
TC = 85_C
25_C
−30_C
90
RMATI
HIVE INF
AR
1.E+09
1.E+08
MTTF FACTOR (HOURS X AMPS
1.E+07 90
100 110 120 130 140 150 160 170 180 190 200
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by I
Figure 13. MTTF Factor versus Junction Temperature
2
for MTTF in a particular application.
D
210
2
ARCHIVE INFORMATION
MRF5S9101MR1 MRF5S9101MBR1
8
RF Device Data
Freescale Semiconductor
C
O
O
V
BIAS
R1
C1
C7
C4R2
Z14
R3
Z12
C8 C2C5
V
SUPPLY
+
C21
N
RMATI
RF
INPUT
Z11
C10
C19
Z1 0.432 x 0.827 Microstrip Z2 0.720 x 0.788 Microstrip Z3 0.195 x 0.087 Microstrip Z4 0.584 x 0.087 Microstrip Z5 0.173 x 0.087 Microstrip Z6 0.560 x 0.087 Microstrip Z7 0.378 x 0.827 Microstrip Z8 0.279 x 0.087 Microstrip Z9 0.193 x 0.087 Microstrip
Figure 14. MRF5S9101MR1(MBR1) 800 MHz Test Circuit Schematic
C22
C13C16
DUT
Z8
Z7Z10 Z9
C17
Z1
Z13
Z10 0.897 x 0.087 Microstrip Z11 1.161 x 0.087 Microstrip Z12, Z13* 1.6 x 0.089 Microstrip
Z14* 1.2 x 0.059 Microstrip
PCB Taconic TLX8-0300, 0.030″, εr = 2.55
*Variable for tuning
Z2
C12
C9 C3C6
(quarter wave length for supply purpose)
(quarter wave length for bias purpose)
C14
Z3 Z5
Z4
C15
C18 C20
C11
RF
OUTPUT
Z6
Table 7. MRF5S9101MR1(MBR1) 800 MHz Test Circuit Component Designations and Values
Part Description Part Number Manufacturer
C1, C2, C3
C4, C5, C6 10 nF 200B Chip Capacitors 200B103MW ATC
C7, C8, C9 33 pF 100B Chip Capacitors 100B330JW ATC
HIVE INF
C10, C11 22 pF 100B Chip Capacitors 100B220GW AT C
C12, C13, C17 10 pF 100B Chip Capacitors 100B100GW AT C
C14, C15 8.2 pF 100B Chip Capacitors 100B8R2CW ATC
C16, C22 6.8 pF 100B Chip Capacitors 100B6R8CW ATC
C18 5.6 pF 100B Chip Capacitor 100B5R6CW ATC
AR
C19, C20 2.7 pF 100B Chip Capacitors 100B2R7BW ATC
C21
R1, R2
R3
4.7 mF Chip Capacitors (2220)
220 mF, 50 V Electrolytic Capacitor, Axial
10 kW, 1/4 W Chip Resistors (1206)
10 W, 1/4 W Chip Resistor (1206)
GRM55ER7H475KA01 Murata
516D227M050NP7B Sprague
ARCHIVE INFORMATION
RF Device Data Freescale Semiconductor
MRF5S9101MR1 MRF5S9101MBR1
9
C
O
O
C1
C21
V
GG
R1 C4 C7
R2
C8 C5
V
DD
C2
N
RMATI
C17
C16
CUT OUT AREA
C13
C12 C15
C14
C9 C6
C18 C20
C11
C3
R3
C10
C22
C19
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.
Figure 15. MRF5S9101MR1(MBR1) 800 MHz Test Circuit Component Layout
MRF5S9101N 800 MHz
Rev 2
HIVE INF
AR
MRF5S9101MR1 MRF5S9101MBR1
10
ARCHIVE INFORMATION
RF Device Data
Freescale Semiconductor
C
O
O
TYPICAL CHARACTERISTICS - 800 MHz
N
RMATI
HIVE INF
3.5
3
AR
2.5
2
1.5
1
0.5
EVM, ERROR VECTOR MAGNITUDE (% rms)
0
850
860860 870 880 890 900
f, FREQUENCY (MHz)
Figure 18. Error Vector Magnitude versus
Frequency
20
19 60
G
ps
18 55
17 50
η
D
16 45
15 −10
IRL
14 −12
, POWER GAIN (dB)
ps
13 −14
G
12 −16
11 − 18
10
820
830 840 850 860 870 880 890 900 910 920 930
Figure 16. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ P
20
19 40
G
ps
18 35
η
D
17 30
16 25
15 −10
14 −12
, POWER GAIN (dB)
ps
G
IRL
13
12
11 − 18
10
820
830 840 850 860 870 880 890 900 910 920 930
Figure 17. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ P
P
= 50 W Avg.
out
40 W Avg.
VDD = 28 Vdc IDQ = 650 mA
VDD = 26 Vdc IDQ = 700 mA
f, FREQUENCY (MHz)
VDD = 26 Vdc IDQ = 700 mA
f, FREQUENCY (MHz)
25 W Avg.
910
= 100 W CW
out
= 40 W CW
out
9
VDD = 28 Vdc IDQ = 650 mA
850
f = 880 MHz
640
530
320
210
EVM, ERROR VECTOR MAGNITUDE (% rms)
0
1
P
, OUTPUT POWER (WATTS) AVG.
out
Figure 19. Error Vector Magnitude and Drain
Efficiency versus Output Power
65
, DRAIN EFFICIENCY (%)
D
η
−20
940
45
−14
−16
−20
940
INPUT RETURN LOSS (dB)IRL,
, DRAIN EFFICIENCY (%)
D
η
10
INPUT RETURN LOSS (dB)IRL,
EVM
60
ARCHIVE INFORMATION
η
TC = 25_C
, DRAIN EFFICIENCY (%)η
0
100
RF Device Data Freescale Semiconductor
MRF5S9101MR1 MRF5S9101MBR1
11
C
O
O
TYPICAL CHARACTERISTICS - 800 MHz
−64
−66
−68
−70
−72
−74
−76
−78
−80
−82 850
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
N
RMATI
P
= 50 W Avg.
out
40 W Avg.
SR 400 kHz
25 W Avg.
SR 600 kHz
25 W Avg.
P
= 50 W Avg.
out
40 W Avg.
860 870 880 900890
f, FREQUENCY (MHz)
Figure 20. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
−65
−70
−75
VDD = 28 Vdc IDQ = 650 mA
VDD = 28 Vdc IDQ = 650 mA f = 880 MHz
910
−45
−50
−55
−60
−65
−70
−75
SPECTRAL REGROWTH @ 400 kHz (dBc)
−80 0
10 20 30 40 50 60 70 80
P
, OUTPUT POWER (WATTS) AVG.
out
Figure 21. Spectral Regrowth at 400 kHz
versus Output Power
TC = 25_C
VDD = 28 Vdc IDQ = 650 mA f = 880 MHz
90
HIVE INF
AR
−80
SPECTRAL REGROWTH @ 400 kHz (dBc)
−85 0
10 20 30 40 50 60 70 80
P
, OUTPUT POWER (WATTS) AVG.
out
Figure 22. Spectral Regrowth at 600 kHz
versus Output Power
TC = 25_C
90
ARCHIVE INFORMATION
MRF5S9101MR1 MRF5S9101MBR1
12
RF Device Data
Freescale Semiconductor
C
O
O
f = 990 MHz
f = 845 MHz
Z
load
f = 990 MHz
Z
f = 845 MHz
source
N
RMATI
HIVE INF
Zo = 5
VDD = 26 Vdc, IDQ = 700 mA, P
f
MHz
845
865
890
920 1.96 - j1.02 1.03 - j0.15
990 1.27 - j1.54 0.73 - j0.07
Z
source
4.29 - j2.23
3.94 - j1.24
2.72 - j0.96
1.58 - j1.43 1.03 - j0.05960
= 100 W CW
out
1.15 - j0.04
1.05 - j0.10
1.02 - j0.07
Z
load
AR
RF Device Data Freescale Semiconductor
Z
Z
Figure 23. Series Equivalent Source and Load Impedance
= Test circuit impedance as measured from
source
load
Input Matching Network
gate to ground.
= Test circuit impedance as measured
from drain to ground.
Device Under Test
Z
source
Z
load
Output Matching Network
MRF5S9101MR1 MRF5S9101MBR1
ARCHIVE INFORMATION
13
NOTES
MRF5S9101MR1 MRF5S9101MBR1
14
RF Device Data
Freescale Semiconductor
NOTES
RF Device Data Freescale Semiconductor
MRF5S9101MR1 MRF5S9101MBR1
15
PACKAGE DIMENSIONS
D1
A2
NOTE 7
GATE LEAD
4X
b1
M
aaa C
A1
c1
2X
D2
D3
B
E1
2X
E3
A
DRAIN LEAD
D
4X
e
A
2X
E
DATUM
H
PLANE
F
ZONE J
A
2X
E2
E5
E4
4
SEATING
C
PLANE
PIN 5
NOTE 8
1
23
CASE 1486- 03
E5
BOTTOM VIEW
ISSUE C
TO- 270 WB - 4
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M− 1994.
3. DATUM PLANE −H− IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO INCLUDE MOLD MISMATCH AND ARE DETER− MINED AT DATUM PLANE −H− .
5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. DATUMS −A− AND −B − TO BE DETERMINED AT DATUM PLANE −H −.
7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.
INCHES
DIMAMIN MAX MIN MAX
.100 .104 2.54 2.64
A1 .039 .043 0.99 1.09 A2 .040 .042 1.02 1.07
D .712 .720 18.08 18.29 D1 .688 .692 17.48 17.58 D2 .011 .019 0.28 0.48 D3 .600 − − − 15.24 − − −
E .551 .559 14 14.2 E1 .353 .357 8.97 9.07 E2 .132 .140 3.35 3.56 E3 .124 .132 3.15 3.35 E4 .270 − − − 6.86 − − − E5 .346 .350 8.79 8.89
F
.025 BSC
b1 .164 .170 4.17 4.32 c1 .007 .011 0.18 0.28
e
.106 BSC
aaa
.004 0.10
STYLE 1:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. GATE
5. SOURCE
MILLIMETERS
0.64 BSC
2.69 BSC
PLASTIC
MRF5S9101MR1
MRF5S9101MR1 MRF5S9101MBR1
16
RF Device Data
Freescale Semiconductor
RF Device Data Freescale Semiconductor
MRF5S9101MR1 MRF5S9101MBR1
17
MRF5S9101MR1 MRF5S9101MBR1
18
RF Device Data
Freescale Semiconductor
RF Device Data Freescale Semiconductor
MRF5S9101MR1 MRF5S9101MBR1
19
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800- 521 - 6274 or +1 - 480-768- 2130 support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8- 1, Shimo - Meguro, Meguro -ku, Tokyo 153 -0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800- 441 - 2447 or 303 - 675-2140 Fax: 303-675- 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS-compliant and/or Pb - free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS - compliant and/or non-Pb -free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
MRF5S9101MR1 MRF5S9101MBR1
Document Number: MRF5S9101 Rev. 3, 5/2006
20
RF Device Data
Freescale Semiconductor
Loading...