Freescale MPC866, MPC859 DATA SHEET

Freescale Semiconductor
Technical Data

MPC866/MPC859 Hardware Specifications

MPC866EC
Rev. 2, 2/2006
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC866/859 family (refer to Table 1 for a list of devices). The MPC866P is the superset device of the MPC866/859 family.This document describe s pertinent electrical and physical characteristics of the MPC8245. For functional characteristics of the processor, refer to the MPC866 PowerQUICC Family Users Manual (MPC866UM/D).

1Overview

The MPC866/859 is a derivative of Freesca le’s MPC860 PowerQUICC™ family of devices. It is a versatile single-chip integrated mic roprocessor and per ipher al combin ation th at can be used in a variety of controller applications and communications and networking systems. The MPC866/859/859DSL provides enhanced ATM func tionality over that of other ATM- enable d members of the MPC860 family.
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 8
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. Thermal Calculation and Measurement . . . . . . . . . . 12
8. Power Supply and Power Sequencing . . . . . . . . . . . 15
9. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 46
12. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 48
13. UTOPIA AC Electrical Specifications . . . . . . . . . . . 72
14. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 74
15. Mechanical Data and Ordering Information . . . . . . . 78
16. Document Revision History . . . . . . . . . . . . . . . . . . . 93
© Freescale Semiconductor, Inc., 2006. All rights reserved.
Features
Table 1 shows the functionality supported by the members of the MPC866/859 family.

2Features

Table 1. MPC866 Family Functionality

Cache Ethernet
Par t
Instruction Data 10T 10/100
MPC866P 16 Kbytes 8 Kbytes Up to 4 1 4 2
MPC866T 4 Kbytes 4 Kbytes Up to 4 1 4 2
MPC859P 16 Kbytes 8 Kbytes 1112
MPC859T 4 Kbytes 4 Kbytes 1112
MPC859DSL 4 Kbytes 4 Kbytes 1 1 1
MPC852T
1
On the MPC859DSL, the SCC (SCC1) is for ethernet only. Also, the MPC859DSL does not support the Time Slot
Assigner (TSA).
2
On the MPC859DSL, the SMC (SMC1) is for UART only.
3
For more details on the MPC852T, please refer to the
3
4 KBytes4 Kbytes2121
MPC852T Hardware Specifications.
SCC SMC
1
1
2
The following list summarize s the key MPC866/859 features:
Embedded single-issue , 32- bit PowerPC™ core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
— The core performs branch predi ct ion with conditional prefetch, without conditional execution — 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
– 16-Kbyte instruction cache (MPC866P and MPC859P) is four-way, set-associative with 256 sets;
4-Kbyte instruction cache (MPC866T, MPC859T, and MPC859DSL) is two-wa y, set- associative with 128 sets.
– 8-Kbyte data cache (MPC866P and MPC859P) is two-way, set-associative with 256 sets; 4-Kbyte
data cache(MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache
blocks
– Caches are physic ally addresse d, implement a least rec ently used (LRU) replacement a lgorithm, and
are lockable on a cache block basis. — MMUs with 32-entry TLB, fully associative instruction and data TLBs — MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces
and 16 protection groups.
— Advanced on-chip-emulation debug mode
The MPC866/859 provides enhanced ATM functionality over that of the MPC860 SAR. The MPC866/859 adds major new features avail able in 'enhanced SAR' (ESAR) mode, including the following:
— Improved operation, administration, and maintenance (OAM) support — OAM performance monitoring (PM) support — Multiple APC priority leve ls available to support a range of traff ic pace requirements
MPC866/MPC859 Hardware Specifications, Rev. 2
2 Freescale Semiconductor
— ATM port-to-port switching capability without the need for RAM-based microcode — Simultaneous MII (10/100Ba se-T) and UTOPIA (half-duplex) capability — Optional statistical cell counters per PHY — UTOPIA level 2 compliant inte rface with added FIFO buffering to reduce the total cell transmission
time. (The earlier UTOPIA level 1 specification is also supported.) – Multi-PHY support on the MPC866, MPC859P, and MPC859T – Four PHY support on the MPC866/859
2
— Parameter RAM for both SPI and I
C can be relocated without RAM-based microcode — Supports full- duplex UTOPI A both master (ATM side) and slave ( PHY side) oper ation using a 'split ' bus — AAL2/VBR functionality is ROM-res ident.
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
Thirty-two address lines
Memory controller (eight banks) — Contains complete dynamic RAM (DRAM) controller — Each bank can be a chi p select or RAS
to support a DRAM bank — Up to 30 wait states programmable per memory bank — Glueless interfa ce to page mode/EDO/S DRAM, SRAM, EPROMs, flash EPROMs, and other memory
devices. — DRAM controller programmable to support most size and speed memory interfaces — Four CAS
lines, four WE lines, and one OE line — Boot chip-select avai lable at reset (options for 8-, 16-, or 32-bit memory) — Variable block sizes (32 Kbytes–256 Mbytes) — Selectable write protection — On-chip bus arbitrat ion logic
General-purpose timers — Four 16-bit timers casca dable to be two 32-bit timers — Gate mode can enab l e/d isa b le coun t ing — Interrupt can be masked on reference match and event capture
Fast Ethernet controller (FEC) — Simultaneous MII (10/100Ba se-T) and UTOPIA operation when using the UTOPIA multip lexed bus
System integration unit (SIU) — Bus monitor — Software watchdog — Periodic interrupt timer (PIT) — Low-power stop mode — Clock synthesizer — Decrementer and time base from the PowerPC architecture — Reset controller — IEEE 1149.1 test access port (JTAG)
Features
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 3
Features
Interrupts — Seven external interrupt request (IRQ) l ines — T welve port pins with interrupt capability — The MPC866P and MPC866T have 23 internal interrupt sour ces; the MPC859P, MPC859T, and
MPC859DSL have 20 internal interru pt sources. — Programmable priority between SCCs (MPC866P and MPC866T) — Programmable highest pri ority request
Communications processor module (CPM) — RISC controller — Communication-spec ific commands (for example ,
RESTART TRANSMIT)
GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and
— Supports continuous mode tr ansmission and reception on all serial channe ls — Up to 8-Kbytes of dual-port RAM — MPC866P and MPC866T have 16 serial DMA (SDMA) channels; MPC859P, MPC859T, and
MPC859DSL have 10 serial DMA (SDMA) channels.
— Three para lle l I/O regist ers with ope n -drai n capab i lity
Four baud rate generators — Independent (can be connected to any SCC or SMC) — Allow changes during operation — Autobaud support option
MPC866P and MPC866T have four SCCs (serial communication controller); MPC859P, MPC859T, and MPC859DSL have one SCC; and SCC1 on MPC859DSL supports Ethernet only.
— Serial ATM capability on all SCCs — Optional UTOPIA port on SCC4 — Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation — HDLC/SDLC — HDLC bus (implements an HDLC-based local area network (LAN)) — Asynchronous HDLC to support PPP (point-to-point protocol) — AppleTalk — Universal asynchro nous receiver transmitter (UART) — Synchronous UART — Serial infrared (Ir DA) — Binary synchronous communication (BISYNC) — T otally transparent (bit str eams) — T otally transparent (fra me based with optional cyclic redundancy check (CRC)
Two SMCs (serial management channels) (MPC859DSL has one SMC (SMC1) for UART.) — UART — Transparent — General circuit interface (GCI) controller — Can be connected to the time-division multiplexed (TDM) channels
MPC866/MPC859 Hardware Specifications, Rev. 2
4 Freescale Semiconductor
Features
One serial peripheral interface (SPI) — Supports master and slave modes — Supports multiple-m aster operation on the same bus
2
One inter-i ntegrated circuit (I
C) port — Supports master and slave modes — Multiple-master en vironment support
Time slot assigner (TSA) (MPC859DSL does not have TSA.) — Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation — Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user -defined — 1- or 8-bit resolution — Allows independent transm it and receive routing, frame synchronization, and clocking — Allows dynamic changes — On MPC866P and MPC866T , can be internally connected to six serial channels (four SCCs and two
SMCs); on MPC859P and MPC859T, can be connected to three serial channe ls (one SCC and two SMCs).
Parallel interface port (PIP) — Centronics interface support — Supports fast connection between compatible ports on MPC866/859 or MC68360
PCMCIA interface — Master (socket) interface, compliant with PCI Local Bus Specification (Rev 2.1) — Supports one or two PCMCIA sockets whether ESAR functio nality is enabled — Eight memory or I/O windows supported
Debug interface — Eight comparators : four operate on instr uction add ress, two operate on data address, and two ope rate on
data. — Supports conditions: = < > — Each watchpoint can generate a breakpoint internally
Normal high and normal low power modes to conserve power
1.8 V core and 3.3 V I/O operation with 5-V TTL compatibility; refer to Table 6 for a listing of the 5-V tolerant pins.
357-pin plastic ball grid array (PBGA) package
Operation up to 133 MHz
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 5
Features
The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in
Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.
Embedded
MPC8xx
Processor
Core
Fast Ethernet
Controller
DMAs
FIFOs
10/100
Base-T
Media Access
Control
MII
Instruction
Bus
Load/Store
Bus
Parallel I/O
4 Baud Rate
Generators
Parallel Interface Port
and UTOPIA
16-Kbyte
Instruction Cache
Instruction MMU
32-Entry ITLB
8-Kbyte
Data Cache
Data MMU
32-Entry DTLB
SCC1
Unified
Bus
4
Interrupt
Timers
Timers
Controllers
32-Bit RISC Controller
and Program
ROM
SCC3 SCC4
Time Slot Assigner
Time Slot Assigner
System Interface Unit (SIU)
Bus Interface
8-Kbyte
Dual-Port RAM
Memory Controller
Internal
Unit
System Functions
PCMCIA/ATA Interface
External
Bus Interface
Unit
16 Virtual
Serial
and
2
Independent
DMA
Channels
I2CSPISMC2SMC1SCC2
Serial Interface

Figure 1. MPC866P Block Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
6 Freescale Semiconductor
Embedded
MPC8xx
Processor
Core
Fast Ethernet
Controller
DMAs
FIFOs
10/100
Base-T
Media Access
Control
MII
Instruction
Bus
Load/Store
Bus
Parallel I/O
4 Baud Rate
Generators
Parallel Interface Port
and UTOPIA
4-Kbyte
Instruction Cache
Instruction MMU
32-Entry ITLB
4-Kbyte
Data Cache
Data MMU
32-Entry DTLB
4
Timers
Controllers
32-Bit RISC Controller
Timers
Unified
Bus
Interrupt
and Program
ROM
System Interface Unit (SIU)
Bus Interface
8-Kbyte
Dual-Port RAM
Memory Controller
Internal
External
Bus Interface
Unit
Unit
System Functions
PCMCIA/ATA Interface
10 Virtual
Serial
and
2
Independent
DMA
Channels
Features
SCC1
Time Slot Assigner
Time Slot Assigner*
I2CSPISMC2*SMC1
Serial Interface
The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache.
* The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA
controllers.

Figure 2. MPC859P/859T/MPC859DSL Block Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 7
Maximum Tolerated Ratings

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC866/859. Table 2 shows the maximum tolerated ratings, and Table 3 shows the operating temperatures.

Table 2. Maximum Tolerated Ratings

Rating Symbol Value Unit
Supply voltage
Input voltage
Storage temperature range T
1
The power supply of the device must start its ramp from 0.0 V.
2
Functional operating conditions are provided with the DC electrical specifications in Tab l e 6 . Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. See page 15. Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to power-up and normal operation (that is, if the MPC866/859 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).
1
2
VDDH – 0.3 to 4.0 V
VDDL – 0.3 to 2.0 V
VDDSYN – 0.3 to 2.0 V
Difference between VDDL to VDDSYN 100 mV
V
in
stg
GND – 0.3 to VDDH V
–55 to +150 °C

Table 3. Operating Temperatures

Rating Symbol Value Unit
Temperature
Temperature (extended) T
1
Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures are guaranteed as
junction temperature, T
1
(standard)
T
A(min)
T
j(max)
A(min)
T
j(max)
.
j
C
95 °C
–40 °C
100 °C
This device contains circ uitry protecting against damage due to high- sta tic voltage or electrical fiel ds; however, it is advised that nor mal precautions be taken to avoid a pplication of any voltages highe r than maximum-rated voltag es to this high -impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for exampl e, either GND or VDD).
MPC866/MPC859 Hardware Specifications, Rev. 2
8 Freescale Semiconductor
Thermal Characteristics

4 Thermal Characteristics

Table 4 shows the thermal characteristics for the MPC866/859.

Table 4. MPC866/859 Thermal Resistance Data

Rating Environment Symbol Value Unit
Junction-to-ambient
1
Natural Convection Single-layer board (1s) R
Four-layer board (2s2p) R
Airflow (200 ft/min) Single-layer board (1s) R
Four-layer board (2s2p) R
Junction-to-board
Junction-to-case
Junction-to-package top
4
5
6
Natural Convection Ψ
Airflow (200 ft/min) Ψ
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
2
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
3
Per JEDEC JESD51-6 with the board horizontal.
4
Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
6
Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC JESD51-2.
θJA
θJMA
θJMA
θJMA
R
θJB
R
θJC
JT
JT
2
3
3
3
37 °C/W
23
30
19
13
6
2
2
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 9
Power Dissipation

5 Power Dissipation

Table 5 shows power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1
mode, where CPU frequency is twice the bus speed.

Table 5. Power Dissipation (PD)

Die Revision Bus Mode
0 1:1 50 MHz 110 140 mW
2:1 66 MHz 140 160 mW
1
Typical power dissipation at VDDL and VDDSYN is at 1.8 V. and VDDH is at 3.3 V.
2
Maximum power dissipation at VDDL and VDDSYN is at 1.9 V, and VDDH is at 3.465 V.
Values in Table 5 represent VDDL based powe r di ssipati on a nd do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry. The VDDSYN power dissipation is negligi ble.

6 DC Characteristics

CPU
Frequency
66 MHz 150 180 mW
80 MHz 170 200 mW
100 MHz 210 250 mW
133 MHz 260 320 mW
Typical
1
Maximum
2
NOTE
Unit
Table 6 shows the DC electrical characteristics for the MPC866/859.

Table 6. DC Electrical Specifications

Characteristic Symbol Min Max Unit
Operating voltage VDDL (core) 1.7 1.9 V
VDDH (I/O) 3.135 3.465 V
1
1.7 1.9 V
100 mV
Input high voltage (all inputs except EXTAL and EXTCLK)
2
MPC866/MPC859 Hardware Specifications, Rev. 2
VDDSYN
Difference between VDDL to VDDSYN
VIH 2.0 3.465 V
10 Freescale Semiconductor
DC Characteristics
Table 6. DC Electrical Specifications (continued)
Characteristic Symbol Min Max Unit
Input low voltage VIL GND 0.8 V
EXTAL, EXTCLK input high voltage VIHC 0.7*(VDDH) VDDH V
Input leakage current, Vin = 5.5V (except TMS, TRST DSCK and DSDI pins) for 5 Volts Tolerant Pins
Input leakage current, Vin = VDDH (except TMS, TRST
,
I
2
in
,
I
In
100 µA
—10µA
DSCK, and DSDI)
Input leakage current, Vin = 0 V (except TMS, TRST
I
In
—10µA
,
DSCK and DSDI pins)
Input capacitance
3
Output high voltage, IOH = – 2.0 mA,
C
in
—20pF
VOH 2.4 V
except XTAL, and Open drain pins
Output low voltage
• IOL = 2.0 mA (CLKOUT)
• IOL = 3.2 mA
• IOL = 5.3 mA
4
5
VOL 0. 5 V
• IOL = 7.0 mA (TXD1/PA14, TXD2/PA12)
• IOL = 8.9 mA (TS
1
The difference between VDDL and VDDSYN can not be more than 100 m V.
2
The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, MII_MDIO are 5 V
, TA, TEA, BI, BB, HRESET, SRESET)
tolerant.
3
Input capacitance is periodically sampled.
4
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2,
IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1 TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2 BRGCLK2/L1RCLKB/TOUT3 REJCT1
/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27,
/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0,
/CLK4/PA4, TIN3/BRGO3/CLK5/PA3,
BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1 SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1 L1ST3/L1RQB L1ST2/RTS2 CTS2
/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1TSYNCB/PC7, CD3/L1RSYNCB/PC6,
CTS4
/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB,
/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15,
/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10,
PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4
/CLK2/PA6,
/SDACK1/PB23, SMSYN2/SDACK2/PB22,
/PB19, L1ST2/RTS2/PB18,
, PD7/RTS3,
PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].
5
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,
WE1
/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,
GPL_A
(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A,
ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS
, OP3/MODCK2/DSDO, BADDR(28:30).
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 11
Thermal Calculation and Measurement

7 Thermal Calculation and Measurement

For the fol lowing disc uss ions, PD = (VDDL x IDDL) + P I/O, where PI/ O is the po wer di ssipati on of the I /O driv ers. The VDDSYN power dissipation is negligi ble.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction te mperature, TJ, in °C can be obtained from the equation:
= TA +(R
T
J
θJA
x PD)
where:
= ambient tem perat u re (ºC)
T
A
= package junction-to-a mbient thermal resistance (ºC/W)
R
θJA
= power dissipation in package
P
D
The junction-to- ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity T
) are possible.
J-TA

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resi stance has f requently bee n expressed as the sum of a junction-to -case the rmal resist ance and a case-to-ambient thermal resistance:
= R
R
θJA
where:
R
θJA
R
θJC
R
θCA
is device related and cannot be influenced by the user. The user adjusts the thermal environment to affec t the
R
θJC
case-to-am bient thermal resi s tan ce, R heat sink, change the mounting arra ngement on the printed-circuit board, or change the thermal dissipation on the printed-circ uit board surrounding the devic e. This thermal model is most useful fo r ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.
+ R
θJC
θCA
= junctio n - t o-am b ient th ermal res i s tanc e ( º C/W )
= junction-to-case thermal resistance (ºC/W)
= case-to-am bient ther mal resistance (ºC/W)
. For instance, the user can change the airflow around the device, add a
θCA

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-res istor model consisting of a junction-t o-board and a junction-to -case thermal r esistance. Th e junction-to- case covers t he situ ation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circ uit board. It has been observed that the thermal perfor mance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see Figure 3.
MPC866/MPC859 Hardware Specifications, Rev. 2
12 Freescale Semiconductor
Thermal Calculation and Measurement

Figure 3. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equatio n:
= TB +(R
T
J
θJB
x PD)
where:
= junction-to-board the rmal resistance (ºC/W)
R
θJB
= board temper atu re ºC
T
B
= power dissipation in package
P
D
If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to deter mine the junction-to-board thermal res istance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the boar d temperature is not known, a the rmal sim ulation of t he applic ation is needed. T he simple t wo-resistor model can be use d with the thermal sim ulation of the application [2], or a more accurate and c omplex model of the package can be used in the thermal simulation.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 13
Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characteriz at ion parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:
= TT +(ΨJT x PD)
T
J
where:
= thermal characteriz ation parameter
Ψ
JT
= thermocouple temperature on top of package
T
T
= power dissipation in package
P
D
The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxie d to the top center of the package case. The thermocouple should be positi oned so that the thermocouple junc tion rests on the package. A small amount of epoxy is placed over the thermocoup le junction and over about 1 mm of wir e ext ending fr om the j unction. The thermoc ouple wire is pl aced flat again st the package case to avoid measurement errors caused by cooling effects of the ther mocouple wire.

7.6 References

Semiconductor Equipment and Materials International(415 ) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engine ering Documents)303-397-7956
JED E C Spec ifica t io ns h t t p://www.jedec.o r g
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Model ing,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.
MPC866/MPC859 Hardware Specifications, Rev. 2
14 Freescale Semiconductor
Power Supply and Power Sequencing

8 Power Supply and Power Sequencing

This section provide s design considerations for the MPC866/ 859 power supply . The MPC866/859 has a core voltage (VDDL) and PLL voltage (VDDSYN) that ope rates a t a lower voltage tha n th e I/O volta ge VDDH. The I /O sect ion of the MPC866/859 is supplied with 3.3 V across VDDH and V
Signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TC K, TRST_B, TMS, MII_TXEN, and MII_MDIO are 5-V tolerant. All inputs cannot be more than 2.5 V greater than VDDH. In addition, 5-V tolerant pins cann ot exceed 5.5 V and the remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation.
One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different r ates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which diffe rent voltages are derived. The following restrictions apply:
VDDL must not exceed VDDH during power up and power down.
VDDL must not exceed 1.9 V and VDDH must not exceed 3.465 V.
These cautio ns are necessary for the long term reliability of the part. If they are viol ated, the electrostatic discharge (ESD) protection diodes are forward-biased and excessive current can flow through these diodes. If the system power supply design does not contr ol the voltage sequencing, the circuit shown in Figure 4 can be added to meet these requirement s. The MUR420 Schottky diodes control the maximum potential differen ce between the external bus and core power supplies on powerup and the 1N5820 diodes regulate the maximum potential difference on powerdown.
(GND).
SS
VDDH VDDL
MUR420
1N5820

Figure 4. Example Voltage Sequencing Circuit

9 Layout Practices

Each VDD pin on the MPC866/859 should be provided with a low-impedan ce path to the board’s supply. Furthermore, ea ch GND pi n shou ld be provide d wit h a l ow-impeda nce pat h to gr ound. The p ower supply pins drive distinct groups of logic on chip. The VDD power supply should be bypassed to ground using at least four 0.1 µF bypass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed-circuit traces connecting to chip V At a minimum, a four-layer board employing two inner layers as V
All output pins on the MPC866/859 have fast rise and fall times. Printed-circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times.
and GND should be kept to less than 1/2” per capacito r lead.
DD
and GND planes should be used.
DD
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 15
Bus Signal Timing
This recommendation partic ularly applies to the address and data buses. Maximum PC trace le ngths of 6” are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially crit ic al in systems with higher capacitive loads because these loads create higher transient currents in the V
and GND circuits . Pull up all unused
DD
inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to Section 14.4.3, Clock Synthesizer Power (VDDSYN, VSSSYN, VSSSYN1), in the MPC866 User’s Manual.

10 Bus Signal Timing

The maximum bus speed supported by the MPC866/859 is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example , an MPC866/859 use d at 100 MHz must be configured for a 50-MHz bus).
Table 7 and Table 8 show the frequency ranges for standard part frequencies.

Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Part Freq 50 MHz 66 MHz
Min Max Min Max
Core 40 50 40 66.67
Bus 40 50 40 66.67

Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Par t
Freq
Core 40 50 40 66.67 40 100 40 133.34
Bus 20 25 20 33.33 20 50 20 66.67
50 MHz 66 MHz 100 MHz 133 MHz
Min Max Min Max Min Max Min Max
Table 9 shows the timings for the MPC866/859 at 33, 40, 50, and 66 MHz bus operation. The timing for the
MPC866/859 bus shown in this table assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay.

Table 9. Bus Operation Timings

33 MHz 40 MHz 50 MHz 66 MHz
Num Characteristic
Min Max Min Max Min Max Min Max
B1 Bus Period (CLKOUT) See Ta b le 7 ————————ns
B1a EXTCLK to CLKOUT phase skew – 2 +2 – 2 +2 – 2 +2 – 2 +2 ns
Unit
B1b CLKOUT frequency jitter peak-to-peak 1 1 1 1 ns
B1c Frequency jitter on EXTCLK 0.50 0.50 0.50 0.50 %
MPC866/MPC859 Hardware Specifications, Rev. 2
16 Freescale Semiconductor
Num Characteristic
Bus Signal Timing
Table 9. Bus Operation Timings (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B1d CLKOUT phase jitter peak-to-peak
—4—4—4—4ns
for OSCLK 15 MHz
CLKOUT phase jitter peak-to-peak
—5—5—5—5ns
for OSCLK < 15 MHz
B2 CLKOUT pulse width low (MIN = 0.4 x
12.1 18.2 10.0 15.0 8.0 12.0 6.1 9.1 ns
B1, MAX = 0.6 x B1)
B3 CLKOUT pulse width high (MIN = 0.4 x
12.1 18.2 10.0 15.0 8.0 12.0 6.1 9.1 ns
B1, MAX = 0.6 x B1)
B4 CLKOUT rise time 4.00 4.00 4.00 4.00 ns
B5 CLKOUT fall time
B7 CLKOUT to A(0:31), BADDR(28:30),
RD/WR
, BURST, D(0:31), DP(0:3)
4.00 4.00 4.00 4.00 ns
7.60 6.30 5.00 3.80 ns
output hold (MIN = 0.25 x B1)
B7a CLKOUT to TSIZ(0:1), REG
AT ( 0: 3 ), B DI P
, PTR output hold (MIN =
, RSV,
7.60 6.30 5.00 3.80 ns
0.25 x B1)
B7b CLKOUT to BR
, BG, FRZ, VFLS(0:1),
VF(0:2), IWP(0:2), LWP(0:1), STS
7.60 6.30 5.00 3.80 ns
output hold (MIN = 0.25 x B1)
B8 CLKOUT to A(0:31), BADDR(28:30)
RD/WR
, BURST, D(0:31), DP(0:3),
13.80 12.50 11.30 10.00 ns
valid (MAX = 0.25 x B1 + 6.3)
B8a CLKOUT to TSIZ(0:1), REG
AT(0:3), BDIP
, PTR valid (MAX = 0.25
, RSV,
13.80 12.50 11.30 10.00 ns
x B1 + 6.3)
B8b CLKOUT to BR
, BG, VFLS(0:1),
13.80 12.50 11.30 10.00 ns VF(0:2), IWP(0:2), FRZ, LWP(0:1), STS
valid 4 (MAX = 0.25 x B1 + 6.3)
B9 CLKOUT to A(0:31), BADDR(28:30),
RD/WR TSIZ(0:1), REG
, BURST, D(0:31), DP(0:3),
, RSV, AT(0:3), PTR
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
High-Z (MAX = 0.25 x B1 + 6.3)
B11 CLKOUT to TS
, BB assertion (MAX =
7.60 13.60 6.30 12.30 5.00 11.00 3.80 9.80 ns
0.25 x B1 + 6.0)
B11a CLKOUT to TA
, BI assertion (when
2.50 9.30 2.50 9.30 2.50 9.30 2.50 9.80 ns driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 +
1
9.30
)
B12 CLKOUT to TS
, BB negation (MAX =
7.60 12.30 6.30 11.00 5.00 9.80 3.80 8.50 ns
0.25 x B1 + 4.8)
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 17
Bus Signal Timing
Num Characteristic
Table 9. Bus Operation Timings (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B12a CLKOUT to TA, BI negation (when
driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 +
9.00)
B13 CLKOUT to TS
, BB High-Z (MIN = 0.25
x B1)
B13a CLKOUT to TA
, BI High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5)
B14 CLKOUT to TEA
assertion (MAX =
0.00 x B1 + 9.00)
B15 CLKOUT to TEA
High-Z (MIN = 0.00 x
B1 + 2.50)
B16 TA
, BI valid to CLKOUT (setup time)
(MIN = 0.00 x B1 + 6.00)
B16a TEA
, KR, RETRY, CR valid to CLKOUT
(setup time) (MIN = 0.00 x B1 + 4.5)
B16b BB
B17 CLKOUT to TA
, BG, BR, valid to CLKOUT (setup
2
time)
(4 MIN = 0.00 x B1 + 0.00 )
, TEA, BI, BB, BG, BR
valid (hold time) (MIN = 0.00 x B1 +
3
1.00
)
2.50 9.00 2.50 9.00 2.50 9.00 2.50 9.00 ns
7.60 21.60 6.30 20.30 5.00 19.00 3.80 14.00 ns
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
2.50 9.00 2.50 9.00 2.50 9.00 2.50 9.00 ns
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
6.00 6.00 6.00 6.00 ns
4.50 4.50 4.50 4.50 ns
4.00 4.00 4.00 4.00 ns
1.00 1.00 1.00 2.00 ns
B17a CLKOUT to KR
, RETRY, CR valid (hold
time) (MIN = 0.00 x B1 + 2.00)
B18 D(0:31), DP(0:3) valid to CLKOUT
rising edge (setup time)
4
(MIN = 0.00
x B1 + 6.00)
B19 CLKOUT rising edge to D(0:31),
DP(0:3) valid (hold time) x B1 + 1.00
5
)
B20 D(0:31), DP(0:3) valid to CLKOUT
falling edge (setup time)
4
(MIN = 0.00
6
(MIN = 0.00
x B1 + 4.00)
B21 CLKOUT falling edge to D(0:31),
DP(0:3) valid (hold Time)
6
(MIN = 0.00
x B1 + 2.00)
B22 CLKOUT rising edge to CS
asserted
GPCM ACS = 00 (MAX = 0.25 x B1 +
6.3)
B22a CLKOUT falling edge to CS
asserted
GPCM ACS = 10, TRLX = 0 (MAX =
0.00 x B1 + 8.00)
MPC866/MPC859 Hardware Specifications, Rev. 2
2.00 2.00 2.00 2.00 ns
6.00 6.00 6.00 6.00 ns
1.00 1.00 1.00 2.00 ns
4.00 4.00 4.00 4.00 ns
2.00 2.00 2.00 2.00 ns
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
8.00 8.00 8.00 8.00 ns
18 Freescale Semiconductor
Num Characteristic
Bus Signal Timing
Table 9. Bus Operation Timings (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B22b CLKOUT falling edge to CS asserted
GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)
B22c CLKOUT falling edge to CS
GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)
B23 CLKOUT rising edge to CS
GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)
B24 A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)
B24a A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 0 (MIN = 0.50 x B1 - 2.00)
B25 CLKOUT rising edge to OE
asserted (MAX = 0.00 x B1 + 9.00)
B26 CLKOUT rising edge to OE
(MAX = 0.00 x B1 + 9.00)
B27 A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)
asserted
negated
, WE(0:3)
negated
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
10.90 18.00 10.90 16.00 7.00 14.10 5.20 12.30 ns
2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns
5.60 4.30 3.00 1.80 ns
13.20 10.50 8.00 5.60 ns
9.00 9.00 9.00 9.00 ns
2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00 ns
35.90 29.30 23.00 16.90 ns
B27a A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)
B28 CLKOUT rising edge to WE
negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)
B28a CLKOUT falling edge to WE
negated GPCM write access TRLX = 0,1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)
B28b CLKOUT falling edge to CS
GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)
B28c CLKOUT falling edge to WE
negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6)
(0:3)
(0:3)
negated
(0:3)
MPC866/MPC859 Hardware Specifications, Rev. 2
43.50 35.50 28.00 20.70 ns
9.00 9.00 9.00 9.00 ns
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
14.30 13.00 11.80 10.50 ns
10.90 18.00 10.90 18.00 7.00 14.30 5.20 12.30 ns
Freescale Semiconductor 19
Bus Signal Timing
Num Characteristic
Table 9. Bus Operation Timings (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B28d CLKOUT falling edge to CS negated
GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 x B1 + 6.6)
B29 WE
B29a WE
B29b CS
B29c CS
B29d WE
(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00)
(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 x B1 – 2.00)
negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x B1– 2.00)
negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0 (MIN = 0.50 x B1 – 2.00)
(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 x B1 – 2.00)
18.00 18.00 14.30 12.30 ns
5.60 4.30 3.00 1.80 ns
13.20 10.50 8.00 5.60 ns
5.60 4.30 3.00 1.80 ns
13.20 10.50 8.00 5.60 ns
43.50 35.50 28.00 20.70 ns
B29e CS
B29f WE
B29g CS
B29h WE
B29i CS
negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0 (MIN = 1.50 x B1 – 2.00)
(0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 – 6.30)
negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 – 6.30)
(0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 – 3.30)
negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 – 3.30)
43.50 35.50 28.00 20.70 ns
5.00 3.00 1.10 0.00 ns
5.00 3.00 1.10 0.00 ns
38.40 31.10 24.20 17.50 ns
38.40 31.10 24.20 17.50 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
20 Freescale Semiconductor
Num Characteristic
Bus Signal Timing
Table 9. Bus Operation Timings (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B30 CS, WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write access
B30a WE
7
(MIN = 0.25 x B1 – 2.00)
(0:3) negated to A(0:31), BADDR(28:30) invalid GPCM, write access, TRLX = 0, CSNT = 1, CS negated to A(0:31) invalid GPCM write access TRLX = 0, CSNT =1 ACS = 10, or ACS == 11, EBDF = 0 (MIN = 0.50 x B1 – 2.00)
B30b WE
(0:3) negated to A(0:31) invalid GPCM BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS == 11 EBDF = 0 (MIN =
1.50 x B1 – 2.00)
B30c WE
(0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A(0:31) invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10, ACS == 11, EBDF = 1 (MIN = 0.375 x B1 – 3.00)
5.60 4.30 3.00 1.80 ns
13.20 10.50 8.00 5.60 ns
43.50 35.50 28.00 20.70 ns
8.40 6.40 4.50 2.70 ns
B30d WE
(0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1
B31 CLKOUT falling edge to CS
requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00)
B31a CLKOUT falling edge to CS
requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)
B31b CLKOUT rising edge to CS
requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)
B31c CLKOUT rising edge to CS
requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30)
valid, as
valid, as
valid , as
valid , as
38.67 31.38 24.50 17.83 ns
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 21
Bus Signal Timing
Num Characteristic
Table 9. Bus Operation Timings (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B31d CLKOUT falling edge to CS valid, as
requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)
B32 CLKOUT falling edge to BS
requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)
B32a CLKOUT falling edge to BS
requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)
B32b CLKOUT rising edge to BS
requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)
B32c CLKOUT rising edge to BS
requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)
B32d CLKOUT falling edge to BS
requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)
valid, as
valid, as
valid, as
valid, as
valid- as
13.30 18.00 11.30 16.00 9.40 14.10 7.60 12.30 ns
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
13.30 18.00 11.30 16.00 9.40 14.10 7.60 12.30 ns
B33 CLKOUT falling edge to GPL
requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)
B33a CLKOUT rising edge to GPL
requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)
B34 A(0:31), BADDR(28:30), and D(0:31)
to CS
valid, as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)
B34a A(0:31), BADDR(28:30), and D(0:31)
to CS
valid, as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 – 2.00)
B34b A(0:31), BADDR(28:30), and D(0:31)
to CS
valid, as requested by CST2 in the corresponding word in UPM (MIN =
0.75 x B1 – 2.00)
valid, as
valid, as
MPC866/MPC859 Hardware Specifications, Rev. 2
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns
5.60 4.30 3.00 1.80 ns
13.20 10.50 8.00 5.60 ns
20.70 16.70 13.00 9.40 ns
22 Freescale Semiconductor
Num Characteristic
Bus Signal Timing
Table 9. Bus Operation Timings (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
B35 A(0:31), BADDR(28:30) to CS valid, as
requested by control bit BST4 in the corresponding word in the UPM (MIN =
0.25 x B1 – 2.00)
B35a A(0:31), BADDR(28:30), and D(0:31)
to BS
valid, as Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 – 2.00)
B35b A(0:31), BADDR(28:30), and D(0:31)
to BS
valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 – 2.00)
B36 A(0:31), BADDR(28:30), and D(0:31)
to GPL
valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 – 2.00)
B37 UPWAIT valid to CLKOUT falling
B38 CLKOUT falling edge to UPWAIT
B39 AS
8
edge
(MIN = 0.00 x B1 + 6.00)
8
(MIN = 0.00 x B1 + 1.00)
valid
valid to CLKOUT rising edge 9 (MIN
= 0.00 x B1 + 7.00)
5.60 4.30 3.00 1.80 ns
13.20 10.50 8.00 5.60 ns
20.70 16.70 13.00 9.40 ns
5.60 4.30 3.00 1.80 ns
6.00 6.00 6.00 6.00 ns
1.00 1.00 1.00 1.00 ns
7.00 7.00 7.00 7.00 ns
B40 A(0:31), TSIZ(0:1), RD/WR
, BURST,
7.00 7.00 7.00 7.00 ns
valid to CLKOUT rising edge (MIN =
0.00 x B1 + 7.00)
B41 TS
valid to CLKOUT rising edge (setup
7.00 7.00 7.00 7.00 ns
time) (MIN = 0.00 x B1 + 7.00)
B42 CLKOUT rising edge to TS
valid (hold
2.00 2.00 2.00 2.00 ns
time) (MIN = 0.00 x B1 + 2.00)
B43 AS
negation to memory controller
TBD TBD TBD TBD ns
signals negation (MAX = TBD)
1
For part speeds above 50 MHz, use 9.80 ns for B11a.
2
The timing required for BR input is relevant when the MPC866/859 is selected to work with the internal bus arbiter.
The timing for BG
3
For part speeds above 50 MHz, use 2 ns for B17.
4
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal
input is relevant when the MPC866/859 is selected to work with the external bus arbiter.
is asserted.
5
For part speeds above 50 MHz, use 2 ns for B19.
6
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
7
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 23
Bus Signal Timing
8
The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in
B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.
9
The AS signal is considered asynchronous to CLKOUT. The timing B39 is specified in order to allow the behavior
specified in Figure 23.
Figure 5 shows the control timing diagram.
CLKOUT
Outputs
Outputs
Inputs
Inputs
2.0 V
B
2.0 V
0.8 V
A
B
2.0 V
0.8 V
0.8 V
2.0 V
0.8 V
C
2.0 V
0.8 V
0.8 V
A
D
2.0 V
0.8 V
2.0 V
2.0 V
0.8 V
2.0 V
0.8 V
D
C
2.0 V
0.8 V
A Maximum output delay specification
B Minimum output hold time
C Minimum input setup time specification
D Minimum input hold time specification

Figure 5. Control Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
24 Freescale Semiconductor
Figure 6 shows the timing for the external clock.
CLKOUT
Bus Signal Timing
B1
B1
B4
B5

Figure 6. External Clock Timing

Figure 7 shows the timing for the synchronous output signals.
CLKOUT
B8
B7 B9
Output
Signals
B8a
Output
Signals
B8b
B3
B2
B9B7a
Output
Signals
B7b

Figure 7. Synchronous Output Signals Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 25
Bus Signal Timing
Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals.
CLKOUT
B13
B12B11
TS
, BB
B13a
B11a B12a
TA , BI
B14
B15
TEA

Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing

Figure 9 shows the timing for the synchronous input signals.
CLKOUT
B16
, BI
TA
B16a
TEA, KR,
RETRY
, CR
B16b
BB, BG, BR
B17
B17a
B17

Figure 9. Synchronous Input Signals Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
26 Freescale Semiconductor
Bus Signal Timing
Figure 10 shows normal case timing for input data. It also applies to normal read accesses under the control of the
UPM in the memory controller.
CLKOUT
B16
B17
TA
B18
B19
D[0:31],
DP[0:3]

Figure 10. Input Data Timing in Normal Case

Figure 11 shows the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM
RAM words. (This is only the case where data is latched on the fal ling edge of CLKOUT. )
CLKOUT
TA
B20
B21
D[0:31],
DP[0:3]

Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 27
Bus Signal Timing
Figure 12 through Figure 15 show the timing for the external bus read controlled by various GPCM factors.
CLKOUT
B11 B12
TS
B8
A[0:31]
CSx
OE
WE[0:3]
D[0:31],
DP[0:3]
B22
B25
B28
B23
B26
B19
B18
Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)
MPC866/MPC859 Hardware Specifications, Rev. 2
28 Freescale Semiconductor
CLKOUT
TS
A[0:31]
Bus Signal Timing
B11 B12
B8
B22a
CSx
B25B24
OE
D[0:31],
DP[0:3]
B23
B26
B19B18
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10)
CLKOUT
B11 B12
TS
B22bB8
A[0:31]
B22c B23
CSx
B24a B25 B26
OE
B19B18
D[0:31],
DP[0:3]
Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 11)
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 29
Bus Signal Timing
CLKOUT
A[0:31]
B11 B12
TS
B8
B23
B26
CSx
OE
D[0:31],
DP[0:3]
B22a
B27
B27a
B22b B22c B19B18
Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)
MPC866/MPC859 Hardware Specifications, Rev. 2
30 Freescale Semiconductor
Bus Signal Timing
Figure 16 through Figure 18 show the timing for the external bus write controlle d by various GPCM factors.
CLKOUT
TS
A[0:31]
CSx
WE[0:3]
OE
D[0:31],
DP[0:3]
B11
B8
B22 B23
B26
B12
B8 B9
B30
B28B25
B29b
B29
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 31
Bus Signal Timing
CLKOUT
TS
A[0:31]
CSx
WE[0:3]
OE
D[0:31],
DP[0:3]
B11
B8
B22
B26
B8
B12
B28b B28d
B25
B28aB9B28c
B30a B30c
B23
B29c B29g
B29a B29f
Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)
MPC866/MPC859 Hardware Specifications, Rev. 2
32 Freescale Semiconductor
CLKOUT
TS
Bus Signal Timing
B12B11
B8
A[0:31]
B28b B28d
CSx
B25 B29e B29i
WE[0:3]
B26 B29d B29h
OE
B28a B28c B9B8
D[0:31],
DP[0:3]
B30dB30b
B29b
Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)
B23B22
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 33
Bus Signal Timing
Figure 19 shows the timing for the external bus controlle d by the UPM.
CLKOUT
B8
A[0:31]
B31a
B31d
B31
CSx
B34
B34a
B34b
B32a B32d
B32
B31c
B31b
B32c
B32b
BS_A
[0:3],
[0:3]
BS_B
GPL_A[0:5],
GPL_B
[0:5]
B36
B35
B35a
B35b
B33
B33a

Figure 19. External Bus Timing (UPM Controlled Signals)

MPC866/MPC859 Hardware Specifications, Rev. 2
34 Freescale Semiconductor
Figure 20 shows the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.
CLKOUT
B37
UPWAIT
B38
CSx
BS_A[0:3],
BS_B
[0:3]
GPL_A
[0:5],
GPL_B
[0:5]

Figure 20. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Bus Signal Timing
Figure 21 shows the timing for the asynchronous negated UPWAIT signal controlle d by the UPM.
CLKOUT
B37
UPWAIT
B38
CSx
BS_A[0:3],
[0:3]
BS_B
GPL_A
[0:5],
GPL_B
[0:5]

Figure 21. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 35
Bus Signal Timing
Figure 22 shows the timing for the synchronous external maste r access controlled by the GPCM.
CLKOUT
B41 B42
TS
B40
A[0:31],
TSIZ[0:1],
R/W
, BURST
B22
CSx

Figure 22. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

MPC866/MPC859 Hardware Specifications, Rev. 2
36 Freescale Semiconductor
Bus Signal Timing
Figure 23 shows the timing for the asynchronous externa l master memory access controlled by the GPCM.
CLKOUT
B39
AS
B40
A[0:31],
TSIZ[0:1],
R/W
B22
CSx
Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)
Figure 24 shows the timing for the asynchronous externa l master control signals negation.
AS
B43
CSx, WE[0:3],
OE
, GPLx,
BS
[0:3]
Figure 24. Asynchronous External Master—Control Signals Negation Timing
Table 10 shows the interrupt timing for the MPC866/859.

Table 10. Interrupt Timing

Num Characteristic
I39 IRQ
I40 IRQ
I41 IRQ
I42 IRQ
I43 IRQ
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ to the CLKOUT. The timings I41, I42, and I43 are specified to allow the correct function of the IRQ no direct relation with the total system interrupt latency that the MPC866/859 is able to support.
x valid to CLKOUT rising edge (setup time) 6.00 ns
x hold time after CLKOUT 2.00 ns
x pulse width low 3.00 ns
x pulse width high 3.00 ns
x edge-to-edge time 4xT
lines are synchronized internally and do not have to be asserted or negated with reference
1
All Frequencies
Unit
Min Max
CLOCKOUT
lines detection circuitry, and has
——
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 37
Bus Signal Timing
Figure 25 shows the interrupt detection timing for the external level-sensitive lines.
CLKOUT
I39
I40
IRQ
x

Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 shows the interrupt detection timing for the external edge-sensitive lines.
CLKOUT
I41 I42
x
IRQ
I43

Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines

Table 11 shows the PCMCIA timing for the MPC866/859.

Table 11. PCMCIA Timing

33 MHz 40 MHz 50 MHz 66 MHz
Num Characteristic
Min Max Min Max Min Max Min Max
A(0:31), REG Strobe asserted
P44
– 2.00)
A(0:31), REG
P45
negation
CLKOUT to REG
P46
x B1 + 8.00)
CLKOUT to REG
P47
0.25 x B1 + 1.00)
CLKOUT to CE1
P48
(MAX = 0.25 x B1 + 8.00)
1
(MIN = 1.00 x B1 – 2.00)
valid to PCMCIA
1
(MIN = 0.75 x B1
valid to ALE
valid (MAX = 0.25
invalid (MIN =
, CE2 asserted
20.70 16.70 13.00 9.40 ns
28.30 23.00 18.00 13.20 ns
7.60 15.60 6.30 14.30 5.00 13.00 3.80 11.80 ns
8.60 7.30 6.00 4.80 ns
7.60 15.60 6.30 14.30 5.00 13.00 3.80 11.80 ns
I43
Unit
CLKOUT to CE1
P49
(MAX = 0.25 x B1 + 8.00)
38 Freescale Semiconductor
, CE2 negated
MPC866/MPC859 Hardware Specifications, Rev. 2
7.60 15.60 6.30 14.30 5.00 13.00 3.80 11.80 ns
Num Characteristic
Bus Signal Timing
Table 11. PCMCIA Timing (continued)
33 MHz 40 MHz 50 MHz 66 MHz
Unit
Min Max Min Max Min Max Min Max
CLKOUT to PCOE IOWR
P50
, IORD, PCWE,
assert time (MAX = 0.00 x
11.00 11.00 11.00 11.00 ns
B1 + 11.00)
CLKOUT to PCOE IOWR
P51
, IORD, PCWE,
negate time (MAX = 0.00 x
2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 ns
B1 + 11.00)
CLKOUT to ALE assert time (MAX
P52
= 0.25 x B1 + 6.30)
CLKOUT to ALE negate time (MAX
P53
= 0.25 x B1 + 8.00)
, IOWR negated to D(0:31)
PCWE
P54
P55
1
invalid
WAITA
(MIN = 0.25 x B1 – 2.00)
and WAITB valid to
CLKOUT rising edge
1
(MIN = 0.00
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns
15.60 14.30 13.00 11.80 ns
5.60 4.30 3.00 1.80 ns
8.00 8.00 8.00 8.00 ns
x B1 + 8.00)
2.00 2.00 2.00 2.00 ns
CLKOUT rising edge to WAITA WAITB
P56
invalid1 (MIN = 0.00 x B1 +
and
2.00)
1
PSST = 1. Otherwise, add PSST times cycle time. PSHT = 0. Otherwise, add PSHT times cycle time. These synchronous timings define when the WAITx current cycle. The WAITx PCMCIA Interface in the
assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See
MPC866 PowerQUICC User’s Manual
signals are detected in order to freeze (or relieve) the PCMCIA
.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 39
Bus Signal Timing
Figure 27 shows the PCM CI A access cy cle tim ing fo r the ext ern a l bus rea d .
CLKOUT
TS
P44
A[0:31]
REG
CE1/CE2
PCOE, IORD
ALE
D[0:31]
P46 P45
P48 P49
P53P52 P52
P47
P51P50

Figure 27. PCMCIA Access Cycles Timing External Bus Read

B19B18
MPC866/MPC859 Hardware Specifications, Rev. 2
40 Freescale Semiconductor
Figure 28 shows the PCM CI A access cy cle tim ing fo r the ext ern a l bus wri te .
CLKOUT
TS
P44
A[0:31]
Bus Signal Timing
P46 P45
REG
P48 P49
CE1/CE2
PCWE, IOWR
ALE
D[0:31]

Figure 28. PCMCIA Access Cycles Timing External Bus Write

Figure 29 shows the PCMCIA WAIT signals detection timing.
P47
P51P50
P53P52 P52
B9B8
P54
CLKOUT
P55
P56
x
WAIT

Figure 29. PCMCIA WAIT Signals Detection Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 41
Bus Signal Timing
Table 12 shows the PCMCIA port timing for the MPC866/859.

Table 12. PCMCIA Port Timing

33 MHz 40 MHz 50 MHz 66 MHz
Num Characteristic
Min Max Min Max Min Max Min Max
Unit
CLKOUT to OPx, valid (MAX = 0.00 x B1
P57
+ 19.00)
HRESET
P58
0.75 x B1 + 3.00)
IP_Xx valid to CLKOUT rising edge (MIN
P59
= 0.00 x B1 + 5.00)
CLKOUT rising edge to IP_Xx invalid
P60
(MIN = 0.00 x B1 + 1.00)
1
OP2 and OP3 only.
negated to OPx drive 1(MIN =
19.00 19.00 19.00 19.00 ns
25.70 21.70 18.00 14.40 ns
5.00 5.00 5.00 5.00 ns
1.00 1.00 1.00 1.00 ns
Figure 30 shows the PCMCIA output port timing for the MPC866/859.
CLKOUT
P57
Output
Signals
HRESET
P58
OP2, OP3

Figure 30. PCMCIA Output Port Timing

Figure 31 shows the PCMCIA output port timing for the MPC866/859.
CLKOUT
P59
P60
Input
Signals

Figure 31. PCMCIA Input Port Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
42 Freescale Semiconductor
Table 13 shows the debug port timing for the MPC866/859.

Table 13. Debug Port Timing

Num Characteristic
Bus Signal Timing
All Frequencies
Unit
Min Max
D61 DSCK cycle time 3xT
D62 DSCK clock pulse width 1.25xT
D63 DSCK rise and fall times 0.00 3.00 ns
D64 DSDI input data setup time 8.00 ns
D65 DSDI data hold time 5.00 ns
D66 DSCK low to DSDO data valid 0.00 15.00 ns
D67 DSCK low to DSDO invalid 0.00 2.00 ns
CLOCKOUT
CLOCKOUT
Figure 32 shows the input timing for the debug port clock.
DSCK
D61
D61
D63
D62
D62
D63

Figure 32. Debug Port Clock Input Timing

Figure 33 shows the timing for the debug port.
DSCK
D64
D65
DSDI
D66
D67
DSDO

Figure 33. Debug Port Timings

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 43
Bus Signal Timing
Table 14 shows the reset timing for the MPC866/859.

Table 14. Reset Timing

33 MHz 40 MHz 50 MHz 66 MHz
Num Characteristic
Min Max Min Max Min Max Min Max
Unit
CLKOUT to HRESET
R69
(MAX = 0.00 x B1 + 20.00)
CLKOUT to SRESET
R70
(MAX = 0.00 x B1 + 20.00)
RSTCONF
R71
B1)
R72 —————————
Configuration data to HRESET rising
R73
edge setup time (MIN = 15.00 x B1 +
50.00)
Configuration data to RSTCONF edge setup time (MIN = 0.00 x B1 +
R74
350.00)
Configuration data hold time after
R75
RSTCONF
0.00)
Configuration data hold time after
R76
HRESET
0.00)
HRESET data out drive (MAX = 0.00 x B1 +
R77
25.00)
pulse width (MIN = 17.00 x
negation (MIN = 0.00 x B1 +
negation (MIN = 0.00 x B1 +
and RSTCONF asserted to
high impedance
high impedance
rising
20.00 — 20.00 — 20.00 — 20.00 ns
20.00 — 20.00 — 20.00 — 20.00 ns
515.20 — 425.00 — 340.00 — 257.60 — ns
504.50 — 425.00 — 350.00 — 277.30 — ns
350.00 — 350.00 — 350.00 — 350.00 — ns
0.00 0.00 0.00 0.00 ns
0.00 0.00 0.00 0.00 ns
25.00 — 25.00 — 25.00 — 25.00 ns
RSTCONF
R78
impedance (MAX = 0.00 x B1 + 25.00)
CLKOUT of last rising edge before chip
R79
three-states HRESET impedance (MAX = 0.00 x B1 + 25.00)
R80 DSDI, DSCK setup (MIN = 3.00 x B1) 90.90 75.00 60.00 45.50 ns
DSDI, DSCK hold time (MIN = 0.00 x B1
R81
+ 0.00)
SRESET
R82
edge for DSDI and DSCK sample (MIN = 8.00 x B1)
44 Freescale Semiconductor
negated to data out high
to data out high
negated to CLKOUT rising
MPC866/MPC859 Hardware Specifications, Rev. 2
25.00 — 25.00 — 25.00 — 25.00 ns
25.00 — 25.00 — 25.00 — 25.00 ns
0.00 0.00 0.00 0.00 ns
242.40 — 200.00 — 160.00 — 121.20 — ns
Figure 34 shows the reset timing for the data bus configura tion.
HRESET
R71
R76
RSTCONF
R73
R74
D[0:31] (IN)
R75
Figure 34. Reset Timing—Configuration from Data Bus
Figure 35 shows the reset timing for the data bus weak drive during configuration.
Bus Signal Timing
CLKOUT
HRESET
RSTCONF
D[0:31] (OUT)
(Weak)
R69
R79
R77 R78
Figure 35. Reset Timing—Data Bus Weak Drive During Configuration
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 45
IEEE 1149.1 Electrical Specifications
Figure 36 shows the reset timing for the debug port configura tion.
CLKOUT
R70
R82
SRESET
R80R80
R81
DSCK, DSDI
R81
Figure 36. Reset Timing—Debug Port Configuration

11 IEEE 1149.1 Electrical Specifications

Table 15 shows the JTAG timings for the MPC866/859 shown in Figure 37 through Figure 40.

Table 15. JTAG Timing

All Frequencies
Num Characteristic
Min Max
J82 TCK cycle time 100.00 ns
J83 TCK clock pulse width measured at 1.5 V 40.00 ns
J84 TCK rise and fall times 0.00 10.00 ns
J85 TMS, TDI data setup time 5.00 ns
J86 TMS, TDI data hold time 25.00 ns
J87 TCK low to TDO data valid 27.00 ns
J88 TCK low to TDO data invalid 0.00 ns
J89 TCK low to TDO high impedance 20.00 ns
J90 TRST
J91 TRST
J92 TCK falling edge to output valid 50.00 ns
J93 TCK falling edge to output valid out of high impedance 50.00 ns
J94 TCK falling edge to output high impedance 50.00 ns
J95 Boundary scan input valid to TCK rising edge 50.00 ns
assert time 100.00 ns
setup time to TCK low 40.00 ns
Unit
J96 TCK rising edge to boundary scan input invalid 50.00 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
46 Freescale Semiconductor
TCK
TCK
TMS, TDI
IEEE 1149.1 Electrical Specifications
J82 J83
J82 J83
J84 J84

Figure 37. JTAG Test Clock Input Timing

J85
J86
J87
J88 J89
TDO
TCK
TRST

Figure 38. JTAG Test Access Port Timing Diagram

J91
J90
Figure 39. JTAG TRST
Timing Diagram
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 47
CPM Electrical Characteristics
TCK
J92 J94
Output
Signals
J93
Output
Signals
J95 J96
Output
Signals

Figure 40. Boundary Scan (JTAG) Timing Diagram

12 CPM Electrical Characteristics

This section provides the AC and DC electr ical specifications for the communicati ons processor module (CPM) of the MPC866/859.

12.1 PIP/PIO AC Electrical Specifications

Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45.

Table 16. PIP/PIO Timing

All Frequencies
Num Characteristic
Min Max
21 Data-in setup time to STBI low 0 ns
22 Data-In hold time to STBI high 2.5 – t3
23 STBI pulse width 1.5 clk
24 STBO pulse width 1 clk – 5ns ns
25 Data-out setup time to STBO low 2 clk
26 Data-out hold time from STBO high 5 clk
27 STBI low to STBO low (Rx interlock) 2 clk
28 STBI low to STBO high (Tx interlock) 2 clk
29 Data-in setup time to clock high 15 ns
30 Data-in hold time from clock high 7.5 ns
31 Clock low to data-out valid (CPU writes data, control, or direction) 25 ns
1
t3 = Specification 23
1
—clk
Unit
MPC866/MPC859 Hardware Specifications, Rev. 2
48 Freescale Semiconductor
DATA-IN
CPM Electrical Characteristics
STBI
STBO
DATA-OUT
STBO
(Output)
21
23
27
24
22

Figure 41. PIP Rx (Interlock Mode) Timing Diagram

25
24
28
23
26
STBI
(Input)
DATA-IN
STBI
(Input)
STBO
(Output)

Figure 42. PIP Tx (Interlock Mode) Timing Diagram

2221
23
24

Figure 43. PIP Rx (Pulse Mode) Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 49
CPM Electrical Characteristics
DATA-OUT
STBO
(Output)
STBI
(Input)
CLKO
2625
24
23

Figure 44. PIP TX (Pulse Mode) Timing Diagram

29
30
DATA-IN
31
DATA-OUT

Figure 45. Parallel I/O Data-In/Data-Out Timing Diagram

12.2 Port C Interrupt AC Electrical Specifications

Table 17 shows timings for port C interrupts.

Table 17. Port C Interrupt Timing

Num Characteristic
35 Port C interrupt pulse width low (edge-triggered mode) 55 ns
36 Port C interrupt minimum time between active edges 55 ns
Figure 46 shows the port C interrupt detection timing.
33.34 MHz Unit
Min Max
MPC866/MPC859 Hardware Specifications, Rev. 2
50 Freescale Semiconductor
36
Port C
(Input)
35

Figure 46. Port C Interrupt Detection Timing

12.3 IDMA Controller AC Electrical Specifications

Table 18 shows the IDMA controller timings as shown in Figure 47 through Figure 50.

Table 18. IDMA Controller Timing

Num Characteristic
CPM Electrical Characteristics
All Frequencies
Unit
Min Max
40 DREQ
41 DREQ
42 SDACK
43 SDACK
44 SDACK
45 SDACK
46 TA
assertion to falling edge of the clock setup time (applies to external TA)7 —ns
CLKO
(Output)
DREQ (Input)
setup time to clock high 7 ns
hold time from clock high 3 ns
assertion delay from clock high 12 ns
negation delay from clock low 12 ns
negation delay from TA low 20 ns
negation delay from clock high 15 ns
41
40

Figure 47. IDMA External Requests Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 51
CPM Electrical Characteristics
CLKO
(Output)
TS
(Output)
R/W
(Output)
42
DATA
TA
(Input)
SDACK
43
46
Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA
CLKO
(Output)
TS
(Output)
R/W
(Output)
42 44
DATA
TA
(Output)
SDACK
Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA
MPC866/MPC859 Hardware Specifications, Rev. 2
52 Freescale Semiconductor
CLKO
(Output)
TS
(Output)
R/W
(Output)
DATA
TA
(Output)
SDACK
CPM Electrical Characteristics
42 45
Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

12.4 Baud Rate Generator AC Electrical Specifications

Table 19 shows the baud rate generator timings as shown in Figure 51.

Table 19. Baud Rate Generator Timing

All Frequencies
Num Characteristic
Min Max
50 BRGO rise and fall time 10 ns
51 BRGO duty cycle 40 60 %
52 BRGO cycle 40 ns
50
BRGOX
51
52
50
51
Unit

Figure 51. Baud Rate Generator Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 53
CPM Electrical Characteristics

12.5 Timer AC Electrical Specifications

Table 20 shows the general-purpose timer timings as shown in Figure 52.
Num Characteristic

Table 20. Timer Timing

All Frequencies
Unit
Min Max
61 TIN/TGATE
62 TIN/TGATE
63 TIN/TGATE
64 TIN/TGATE
65 CLKO low to TOUT
CLKO
TIN/TGATE
(Input)
TOU T
(Output)
rise and fall time 10 ns
low time 1 clk
high time 2 clk cycle time 3 clk
valid 3 25 ns
60
626361
61
65
64

Figure 52. CPM General-Purpose Timers Timing Diagram

12.6 Serial Interface AC Electrical Specifications

Table 21 shows the serial interface timings as shown in Figure53 through Figure 57.
Num Characteristic
70 L1RCLK, L1TCLK frequency (DSC = 0)
71 L1RCLK, L1TCLK width low (DSC = 0)
71a L1RCLK, L1TCLK width high (DSC = 0)
72 L1TXD, L1ST(1–4), L1RQ
73 L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC
setup time)
54 Freescale Semiconductor
, L1CLKO rise/fall time 15.00 ns
MPC866/MPC859 Hardware Specifications, Rev. 2

Table 21. SI Timing

All Frequencies
Min Max
1, 2
SYNCCLK/2.5 MHz
2
3
P + 10 ns
P + 10 ns
20.00 ns
Unit
Table 21. SI Timing (continued)
Num Characteristic
CPM Electrical Characteristics
All Frequencies
Unit
Min Max
74 L1CLK edge to L1RSYNC, L1TSYNC, invalid
35.00 ns
(SYNC hold time)
75 L1RSYNC, L1TSYNC rise/fall time 15.00 ns
76 L1RXD valid to L1CLK edge (L1RXD setup time) 17.00 ns
77 L1CLK edge to L1RXD invalid (L1RXD hold time) 13.00 ns
78 L1CLK edge to L1ST(1–4) valid
4
10.00 45.00 ns
78A L1SYNC valid to L1ST(1–4) valid 10.00 45.00 ns
79 L1CLK edge to L1ST(1–4) invalid 10.00 45.00 ns
80 L1CLK edge to L1TXD valid 10.00 55.00 ns
80A L1TSYNC valid to L1TXD valid
4
10.00 55.00 ns
81 L1CLK edge to L1TXD high impedance 0.00 42.00 ns
82 L1RCLK, L1TCLK frequency (DSC =1) 16.00 or SYNCCLK/2 MHz
83 L1RCLK, L1TCLK width low (DSC =1) P + 10 ns
83a L1RCLK, L1TCLK width high (DSC = 1)
3
P + 10 ns
84 L1CLK edge to L1CLKO valid (DSC = 1) 30.00 ns
85 L1RQ
valid before falling edge of L1TSYNC
86 L1GR setup time
2
4
1.00 L1TCLK
42.00 ns
87 L1GR hold time 42.00 ns
88 L1CLK edge to L1SYNC valid (FSD = 00) CNT =
—0.00ns
0000, BYT = 0, DSC = 0)
1
The ratio SyncCLK/L1RCLK must be greater than 2.5/1.
2
These specs are valid for IDL mode only.
3
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.
4
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 55
CPM Electrical Characteristics
L1RCLK
(FE=0, CE=0)
(Input)
71
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
73
70 71a
72
RFSD=1
75
74 77
L1RXD
(Input)
L1ST(4-1)
(Output)
BIT0
76
78
79

Figure 53. SI Receive Timing Diagram with Normal Clocking (DSC = 0)

MPC866/MPC859 Hardware Specifications, Rev. 2
56 Freescale Semiconductor
L1RCLK
(FE=1, CE=1)
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RSYNC
(Input)
82
72
RFSD=1
75
73
74 77
CPM Electrical Characteristics
83a
L1RXD
(Input)
L1ST(4-1)
(Output)
L1CLKO
(Output)
BIT0
76
78
84
79

Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1)

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 57
CPM Electrical Characteristics
L1TCLK
(FE=0, CE=0)
(Input)
71 70
L1TCLK
(FE=1, CE=1)
(Input)
73
L1TSYNC
(Input)
80a
72
TFSD=0
75
74
81
L1TXD
(Output)
L1ST(4-1)
(Output)
BIT0
80
78

Figure 55. SI Transmit Timing Diagram (DSC = 0)

79
MPC866/MPC859 Hardware Specifications, Rev. 2
58 Freescale Semiconductor
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
73
75
74
72
82
TFSD=0
CPM Electrical Characteristics
83a
81
L1TXD
(Output)
L1ST(4-1)
(Output)
L1CLKO
(Output)
BIT0
80
78a
78
84
79

Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 59
CPM Electrical Characteristics
81
12345678910 11 12 13 14 15 16 17 18 19 20
(Input)
L1RCLK
73
71
L1RSYNC
78
87
72
71
74
76
B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
B17 B16 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 MB15
85
86
77
80
(Input)
L1TXD
(Output)
(Input)
L1RXD
L1ST(4-1)
(Output)
L1RQ
(Output)
L1GR
(Input)

Figure 57. IDL Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
60 Freescale Semiconductor

12.7 SCC in NMSI Mode Electrical Specifications

Table 22 show s the NMSI external cl ock timi ng s .

Table 22. NMSI External Clock Timings

All Frequencies
Num Characteristic
Min Max
100 RCLK1 and TCLK1 width high
101 RCLK1 and TCLK1 width low 1/SYNCCLK +5 ns
102 RCLK1 and TCLK1 rise/fall time 15.00 ns
103 TXD1 active delay (from TCLK1 falling edge) 0.00 50.00 ns
1
1/SYNCCLK ns
CPM Electrical Characteristics
Unit
104 RTS1
105 CTS1
active/inactive delay (from TCLK1 falling edge) 0.00 50.00 ns
setup time to TCLK1 rising edge 5.00 ns
106 RXD1 setup time to RCLK1 rising edge 5.00 ns
107 RXD1 hold time from RCLK1 rising edge
108 CD1
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.
2
Also applies to CD and CTS hold time when they are used as an external sync signal.
setup time to RCLK1 rising edge 5.00 ns
2
5.00 ns
Table 23 shows the NMSI internal clock timings.

Table 23. NMSI Internal Clock Timings

All Frequencies
Num Characteristic
Min Max
100 RCLK1 and TCLK1 frequency
102 RCLK1 and TCLK1 rise/fall time ns
103 TXD1 active delay (from TCLK1 falling edge) 0.00 30.00 ns
104 RTS1
105 CTS1
active/inactive delay (from TCLK1 falling edge) 0.00 30.00 ns
setup time to TCLK1 rising edge 40.00 ns
1
0.00 SYNCCLK/3 MHz
Unit
106 RXD1 setup time to RCLK1 rising edge 40.00 ns
107 RXD1 hold time from RCLK1 rising edge
108 CD1
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.
2
Also applies to CD and CTS hold time when they are used as an external sync signals.
setup time to RCLK1 rising edge 40.00 ns
2
0.00 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 61
CPM Electrical Characteristics
Figure 58 through Figure 60 show the NMSI timings.
RCLK1
RxD1
(Input)
CD1
(Input)
CD1
(SYNC Input)
TCLK1
106
102
102
102 101
100
107

Figure 58. SCC NMSI Receive Timing Diagram

102 101
100
108
107
TxD1
(Output)
RTS1
(Output)
CTS1
(Input)
CTS1
(SYNC Input)
103
105
104

Figure 59. SCC NMSI Transmit Timing Diagram

104
107
MPC866/MPC859 Hardware Specifications, Rev. 2
62 Freescale Semiconductor
TCLK1
CPM Electrical Characteristics
102
TxD1
(Output)
RTS1
(Output)
CTS1
(Echo Input)
102 101
100
103
104
105

Figure 60. HDLC Bus Timing Diagram

12.8 Ethernet Electrical Specifications

Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65.

Table 24. Ethernet Timing

104107
All Frequencies
Num Characteristic
Min Max
120 CLSN width high 40 ns
121 RCLK1 rise/fall time 15 ns
122 RCLK1 width low 40 ns
123 RCLK1 clock period
124 RXD1 setup time 20 ns
125 RXD1 hold time 5 ns
126 RENA active delay (from RCLK1 rising edge of the last data bit) 10 ns
127 RENA width low 100 ns
128 TCLK1 rise/fall time 15 ns
129 TCLK1 width low 40 ns
130 TCLK1 clock period
131 TXD1 active delay (from TCLK1 rising edge) 50 ns
132 TXD1 inactive delay (from TCLK1 rising edge) 6.5 50 ns
133 TENA active delay (from TCLK1 rising edge) 10 50 ns
1
1
80 120 ns
99 101 ns
Unit
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 63
CPM Electrical Characteristics
Table 24. Ethernet Timing (continued)
All Frequencies
Num Characteristic
Min Max
134 TENA inactive delay (from TCLK1 rising edge) 10 50 ns
Unit
135 RSTRT
136 RSTRT
137 REJECT
138 CLKO1 low to SDACK
139 CLKO1 low to SDACK
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.
2
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
active delay (from TCLK1 falling edge) 10 50 ns
inactive delay (from TCLK1 falling edge) 10 50 ns
width low 1 CLK
asserted
negated
2
2
CLSN(CTS1)
(Input)
120

Figure 61. Ethernet Collision Timing Diagram

RCLK1
121
124 123
121
—20ns
—20ns
RxD1
(Input)
RENA(CD1)
(Input)
125
126

Figure 62. Ethernet Receive Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Last Bit
127
64 Freescale Semiconductor
TCLK1
CPM Electrical Characteristics
(Output)
TENA(RTS1)
(Input)
RENA(CD1)
Notes:
RCLK1
128
131 121
TxD1
133 134
(Input)
Transmit clock invert (TCI) bit in GSMR is set.
1. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the
2. CSL bit is set in the buffer descriptor at the end of the frame transmission.
128
129
132

Figure 63. Ethernet Transmit Timing Diagram

RxD1
(Input)
RSTRT
(Output)
0
Start Frame Delimiter
1 1 BIT1 BIT2
136
125

Figure 64. CAM Interface Receive Start Timing Diagram

REJECT
137
Figure 65. CAM Interface REJECT
Timing Diagram

12.9 SMC Transparent AC Electrical Specifications

Table 25 shows the SMC transparent timings as shown in Figure 66.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 65
CPM Electrical Characteristics
Num Characteristic
150 SMCLK clock period
151 SMCLK width low 50 ns
151A SMCLK width high 50 ns
152 SMCLK rise/fall time 15 ns
153 SMTXD active delay (from SMCLK falling edge) 10 50 ns
154 SMRXD/SMSYNC setup time 20 ns
155 RXD1/SMSYNC hold time 5 ns
1
Sync CLK must be at least twice as fast as SMCLK.
SMCLK

Table 25. SMC Transparent Timing

1
All Frequencies
Unit
Min Max
100 ns
SMTXD
(Output)
SMSYNC
SMRXD
(Input)
NOTE:
152
This delay is equal to an integer number of character-length clocks.1.
152 151
151A
150
NOTE 1
154 153
155
154
155

Figure 66. SMC Transparent Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
66 Freescale Semiconductor

12.10SPI Master AC Electrical Specifications

Table 26 shows the SPI master timings as shown in Figure 67 and Figure 68.

Table 26. SPI Master Timing

Num Characteristic
CPM Electrical Characteristics
All Frequencies
Unit
Min Max
160 MASTER cycle time 4 1024 t
161 MASTER clock (SCK) high or low time 2 512 t
162 MASTER data setup time (inputs) 15 ns
163 Master data hold time (inputs) 0 ns
164 Master data valid (after SCK edge) 10 ns
165 Master data hold time (outputs) 0 ns
166 Rise time output 15 ns
167 Fall time output 15 ns
SPICLK
(CI=0)
(Output)
166167161
161 160
SPICLK
(CI=1)
(Output)
163
162
166
167
cyc
cyc
SPIMISO
(Input)
SPIMOSI
(Output)
msb Data lsb msb
165 164
167 166
msb lsb msb
Data

Figure 67. SPI Master (CP = 0) Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 67
CPM Electrical Characteristics
SPICLK
(CI=0)
(Output)
161 160
SPICLK
(CI=1)
(Output)
163
162
166167161
167
166
SPIMISO
(Input)
SPIMOSI
(Output)
msb Data lsb msb
165 164
167 166
msb lsb msb
Data

Figure 68. SPI Master (CP = 1) Timing Diagram

12.11SPI Slave AC Electrical Specifications

Table 27 shows the SPI slave timings as shown in Figure 69 and Figure 70.

Table 27. SPI Slave Timing

Num Characteristic
170 Slave cycle time 2 t
171 Slave enable lead time 15 ns
172 Slave enable lag time 15 ns
All Frequencies
Unit
Min Max
cyc
173 Slave clock (SPICLK) high or low time 1 t
174 Slave sequential transfer delay (does not require deselect) 1 t
175 Slave data setup time (inputs) 20 ns
176 Slave data hold time (inputs) 20 ns
177 Slave access time 50 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
68 Freescale Semiconductor
cyc
cyc
SPISEL
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
181182173
173 170
177 182
181
180
CPM Electrical Characteristics
171172
174
178
SPIMISO
(Output)
SPIMOSI
(Input)
Datamsb lsb msbUndef
175 179
176 182
msb lsb msb
Data
181

Figure 69. SPI Slave (CP = 0) Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 69
CPM Electrical Characteristics
SPISEL
(Input)
171 170
SPICLK
(CI=0) (Input)
173
SPICLK
(CI=1) (Input)
177 182
173
180
172
174
181182
181
178
SPIMISO
(Output)
175 179
SPIMOSI
(Input)
msb
176 182
msb lsb
Data
181
Data

Figure 70. SPI Slave (CP = 1) Timing Diagram

12.12I2C AC Electrical Specifications

lsbUndef
msb
msb
MPC866/MPC859 Hardware Specifications, Rev. 2
70 Freescale Semiconductor
Table 28 shows the I2C (SCL < 100 kHz) timings.

Table 28. I2C Timing (SCL < 100 kHz)

CPM Electrical Characteristics
Num Characteristic
200 SCL clock frequency (slave) 0 100 kHz
200 SCL clock frequency (master)
202 Bus free time between transmissions 4.7 μs
203 Low period of SCL 4.7 μs
204 High period of SCL 4.0 μs
205 Start condition setup time 4.7 μs
206 Start condition hold time 4.0 μs
207 Data hold time 0 μs
208 Data setup time 250 ns
209 SDL/SCL rise time 1 μs
210 SDL/SCL fall time 300 ns
211 Stop condition setup time 4.7 μs
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2).
The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.
2
Table 29 shows the I
C (SCL > 100 kHz) timings.
1
All Frequencies
Min Max
1.5 100 kHz

Table 29. I2C Timing (SCL > 100 kHz)

Unit
All Frequencies
Num Characteristic Expression
Min Max
200 SCL clock frequency (slave) fSCL 0 BRGCLK/48 Hz
200 SCL clock frequency (master)
202 Bus free time between transmissions 1/(2.2 * fSCL) s
203 Low period of SCL 1/(2.2 * fSCL) s
204 High period of SCL 1/(2.2 * fSCL) s
205 Start condition setup time 1/(2.2 * fSCL) s
206 Start condition hold time 1/(2.2 * fSCL) s
207 Data hold time 0 s
208 Data setup time 1/(40 * fSCL) s
209 SDL/SCL rise time 1/(10 * fSCL) s
210 SDL/SCL fall time 1/(33 * fSCL) s
211 Stop condition setup time 1/2(2.2 * fSCL) s
1
SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2).
The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.
1
fSCL BRGCLK/16512 BRGCLK/48 Hz
Unit
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 71
UTOPIA AC Electrical Specifications
Figure 71 shows the I2C bus timing.
SDA
202
205
SCL
206 209 211210
203
207
204
208

Figure 71. I2C Bus Timing Diagram

13 UTOPIA AC Electrical Specifications

Table 30 through Table 32 show the AC el ect rical specificati on s for the UTOP IA interf ace.

Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications

Num Signal Characteristic Direction Min Max Unit
U1 UtpClk rise/fall time (Internal clock option) Output 4 ns
Duty cycle 50 50 %
Frequency 33 MHz
U2 UTPB, SOC, RxEnb
delay (and PHREQ and PHSEL active delay in MPHY mode)
U3 UTPB, SOC, Rxclav and Txclav setup time Input 4 ns
, TxEnb, RxAddr, and TxAddr-active
Output 2 16 ns
U4 UTPB, SOC, Rxclav and Txclav hold time Input 1 ns

Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications

Num Signal Characteristic Direction Min Max Unit
U1 UtpClk rise/fall time (Internal clock option) Output 4 ns
Duty cycle 50 50 %
Frequency 33 MHz
U2 UTPB, SOC, RxEnb
delay (PHREQ and PHSEL active delay in MPHY mode)
U3 UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time Input 4 ns
U4 UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time Input 1 ns
, TxEnb, RxAddr and TxAddr active
MPC866/MPC859 Hardware Specifications, Rev. 2
Output 2 16 ns
72 Freescale Semiconductor
UTOPIA AC Electrical Specifications

Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications

Num Signal Characteristic Direction Min Max Unit
U1 UtpClk rise/fall time (external clock option) Input 4 ns
Duty cycle 40 60 %
Frequency 33 MHz
U2 UTPB, SOC, Rxclav and Txclav active delay Output 2 16 ns
U3 UTPB_AUX, SOC_Aux, RxEnb
setup time
U4 UTPB_AUX, SOC_Aux, RxEnb
hold time
, TxEnb, RxAddr, and TxAddr
, TxEnb, RxAddr, and TxAddr
Figure 72 shows signal timings during UTOPI A receive operations.
U1
UtpClk
U2
PHREQn
U3 U4
3
RxClav
RxEnb
UTPB SOC
HighZ at MPHY
U2
2
Input 4 ns
Input 1 ns
U1
4
HighZ at MPHY
U3
3
U4
4

Figure 72. UTOPIA Receive Timing

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 73
FEC Electrical Characteristics
Figure 73 shows signal timings during UTOPI A transmi t operations.
U1
UtpClk
PHSELn
TxClav
TxEnb
UTPB SOC
U1
1
U2
5
U3 U4
3
HighZ at MPHY High-Z at MPHY
U2
2
U2
5

Figure 73. UTOPIA Transmit Timing

4

14 FEC Electrical Characteristics

This section provides the AC electric al specifications for the fast Ethe rnet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels co mpatible with devices operating at either 5.0 or 3.3 V.

14.1 MII Receive Signal Timing (MII_RXD [3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver f unctions corre ctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The re is no minim um frequency requir ement. In addition, the processor clock fre quency must exceed the MII_RX_CLK freque ncy – 1%.
Table 33 shows the timings for MII receive signal.

Table 33. MII Receive Signal Timing

Num Characteristic Min Max Unit
M1 MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup 5 ns
M2 MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold 5 ns
M3 MII_RX_CLK pulse width high 35% 65% MII_RX_CLK period
M4 MII_RX_CLK pulse width low 35% 65% MII_RX_CLK period
Figure 74 shows the timings for MII receive signal.
MPC866/MPC859 Hardware Specifications, Rev. 2
74 Freescale Semiconductor
MII_RX_CLK (input)
MII_RXD[3:0] (inputs) MII_RX_DV MII_RX_ER
FEC Electrical Characteristics
M3
M4
M1
M2

Figure 74. MII Receive Signal Timing Diagram

14.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK)

The transmitter funct ions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency - 1%.
Table 34 shows information on the MII transmit signal timing.

Table 34. MII Transmit Signal Timing

Num Characteristic Min Max Unit
M5 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER
invalid
M6 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER
valid
M7 MII_TX_CLK pulse width high 35% 65% MII_TX_CLK period
M8 MII_TX_CLK pulse width low 35% 65% MII_TX_CLK period
5— ns
—25
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 75
FEC Electrical Characteristics
Figure 75 shows the MII transmit signal timing diagram.
M7
MII_TX_CLK (input)
M5
M8
MII_TXD[3:0] (outputs) MII_TX_EN MII_TX_ER
M6

Figure 75. MII Transmit Signal Timing Diagram

14.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 35 shows the timing for on the MII async inputs signal.

Table 35. MII Async Inputs Signal Timing

Num Characteristic Min Max Unit
M9 MII_CRS, MII_COL minimum pulse width 1.5 MII_TX_CLK period
Figure 76 shows the MII asynchronous inputs signal timing diagram.
MII_CRS, MII_COL
M9

Figure 76. MII Async Inputs Timing Diagram

14.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 36 shows the timing for the MII serial management channel signal. The FEC functions correctly with a
maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Table 36. MII Serial Management Channel Timing

Num Characteristic Min Max Unit
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum
propagation delay)
0— ns
M11 MII_MDC falling edge to MII_MDIO output valid (maximum
propagation delay)
M12 MII_MDIO (input) to MII_MDC rising edge setup 10 ns
MPC866/MPC859 Hardware Specifications, Rev. 2
76 Freescale Semiconductor
—25 ns
FEC Electrical Characteristics
Table 36. MII Serial Management Channel Timing
Num Characteristic Min Max Unit
M13 MII_MDIO (input) to MII_MDC rising edge hold 0 ns
M14 MII_MDC pulse width high 40% 60% MII_MDC period
M15 MII_MDC pulse width low 40% 60% MII_MDC period
Figure 77 shows the MII serial management channel timing diagram.
M14
MM15
MII_MDC (output)
M10
MII_MDIO (output)
MII_MDIO (input)
M11
M12
M13

Figure 77. MII Serial Management Channel Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 77
Mechanical Data and Ordering Information

15 Mechanical Data and Ordering Information

Table 37 shows information on the MPC866/859 derivative devices.

Table 37. MPC866/859 Derivatives

Number
Device
MPC866T 4 10/100 Mbps Yes Yes 4 Kbyte 4 Kbytes
MPC866P 4 10/100 Mbps Yes Yes 16 Kbyte 8 Kbytes
MPC859T 1 (SCC1) 10/100 Mbps Yes Yes 4 Kbyte 4 Kbytes
MPC859DSL 1 (SCC1) 10/100 Mbps No Up to 4 addresses 4 Kbyte 4 Kbytes
1
Serial communications controller (SCC).
of
SCCs
1
Ethernet
Support
Multi-Channel
HDLC Support
ATM Support
Instruction Data
Cache Size
Table 38 identifies the packages and operating frequencies orderable for the MPC866/859 derivative devices.
Package Type Temperature (Tj) Frequency (MHz) Order Number
Plastic ball grid array (ZP suffix) Non lead free

Table 38. MPC866/859 Package/Frequency Orderable

0° to 95°C 50 MPC859DSLZP50A
66 MPC859DSLZP66A
100 MPC859PZP100A
MPC859TZP100A
MPC866PZP100A
MPC866TZP100A
Plastic ball grid array (CZP suffix) Non lead free
133 MPC859PZP133A
MPC859TZP133A
MPC866PZP133A
MPC866TZP133A
–40° to 100°C 50 MPC859DSLCZP50A
66 MPC859DSLCZP66A
100 MPC859PCZP100A
MPC859TCZP100A MPC866PCZP100A MPC866TCZP100A
MPC866/MPC859 Hardware Specifications, Rev. 2
78 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 38. MPC866/859 Package/Frequency Orderable (continued)
Plastic ball grid array (VR suffix) Lead free
Plastic ball grid array (CVR suffix) Lead free
0° to 95°C 50 MPC859DSLVR50A
66 MPC859DSLVR66A
100 MPC859PVR100A
MPC859TVR100A MPC866PVR100A MPC866TVR100A
133 MPC859PVR133A
MPC859TVR133A MPC866PVR133A MPC866TVR133A
–40° to 100°C 50 MPC859DSLCVR50A
66 MPC859DSLCVR66A
100 MPC859PCVR100A
MPC859TCVR100A
MPC866PCVR100A
MPC866TCVR100A
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 79
Mechanical Data and Ordering Information

15.1 Pin Assignments

Figure 78 shows the top view pinout of the PBGA package. For additional infor mation, see the MPC866
PowerQUICC Family User’s Manual.
NOTE: This is the top view of the device.
PD10 PD8
PD14
PD13 PD6 IRQ0
PB14 PD4 IRQ1 D8 D23 D11 D16 D19 D21 D26 D30 IPA5 IPA2 N/CIPA4PD15 PD5 VSSSYNPA 0
P C5 P D1 1 V DD H D1 2 D 17 D9 D 15 D 2 2 D 2 5 D 31 I PA6 I PA0 I PA 7 N / CIPA1PC4 PD7 VDDSYNPA 1
PA 2 P D1 2
PB17 VDDL GND
PA5 PB16
PA 7
PC8 PC7
PC9 PB20 AS
PA9 PB21 GND IPB6 ALEABADDR30PB23 IRQ4PC10
PB24 PB25 IPB1 IPB2IPB5PA 10 ALEBPC11
M_MDIO
TMS PA11 IRQ6
PC12 VDDL
PC13 PB29
PC14 PC15 N/C N/C A15 A19 A25 A18 BSA0
PA15 A3 A12 A16 A20 A24 A26 TSIZ1 BSA1
A1 A6 A13 A17 A21 A23 A22 TSIZ0 BSA3
A2 A7 A14 A27 A29 A30 A28 A31 VDDL BSA2
18 16 14 13 12 11 10 9 8 7 6 5 3 2417 15 119
PD3 IRQ7 D0 D4 D1 D2 D3 D5 VDDL D6 D7 D29 CLKOUT IPA3DP2
D13D27D10D14D18D20D24D28DP1 DP0N/CDP3PD9 M_Tx_EN
PB15
PB18 EXTALPB19
PA 6
TCK IRQ2 IPB0M_COLTDI IPB7VDDL
VDDH
GND GND
VDDH VDDH
GPLA0 N/C CS6 GPLA5 BDIPCS2PA 14 A8 TEAPB28
WE0 GPLA1 GPLA3 CS0 TACS7PB31 A9 GPLA4PB30
M_CRS WE2 GPLA2 CE1 A WRCS5A4 A10 GPLB4A0
VDDH
WE1 WE3 CE2 A CS1CS4A5 A11
WAIT _B
VDDLPA3 G N D XTALPA4
HRESET
MODCK2
WAIT _A
RSTCONF
TEXP
BADDR28
TS
BI
PORESE T
SRESET
EXTCLK
BADDR29
OP1OP0PA8 MODCK1PB22
IPB4BRTDO IPB3TRST
IRQ3VDDLPA 12 BURSTPB26
BGCS3PA 1 3 BBPB27
W
V
VSSSYN1
U
T
R
VDDLPC6
P
N
M
VDDL
L
K
J
H
G
F
E
D
C
B
A

Figure 78. Pinout of the PBGA Package

MPC866/MPC859 Hardware Specifications, Rev. 2
80 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 39 contains a list of the MPC866 input and output signals and shows multiplexing and pin assign ments.

Table 39. Pin Assignments

Name Pin Number Type
A[0:31] B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15,
C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, C10, A13, A10, A12, A11, A9
TSIZ0
REG
TSIZ1 C9 Bidirectional
RD/WR
BURST
BDIP GPL_B5
TS
TA
TEA
BI
B2 Bidirectional
B9 Bidirectional
F1 Bidirectional
D2 Output
F3 Bidirectional
C2 Bidirectional
D1 Open-drain
E3 Bidirectional
Bidirectional Three-state
Three-state
Three-state
Three-state
Three-state
Active Pull-up
Active Pull-up
Active Pull-up
IRQ2 RSV
IRQ4 KR RETRY
SPKROUT
CR IRQ3
D[0:31] W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11,
DP0
IRQ3
DP1 IRQ4
DP2 IRQ5
DP3 IRQ6
H3 Bidirectional
K1 Bidirectional
F2 Input
T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, V6, W5, U6, T7
V3 Bidirectional
V5 Bidirectional
W4 Bidirectional
V4 Bidirectional
Three-state
Three-state
Bidirectional Three-state
Three-state
Three-state
Three-state
Three-state
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 81
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
BR G4 Bidirectional
BG
BB
FRZ
IRQ6
IRQ0
IRQ1
M_TX_CLK IRQ7
[0:5] C3, A2, D4, E4, A4, B4 Output
CS
CS6 CE1_B
CS7 CE2_B
WE0 BS_B0 IORD
WE1
BS_B1 IOWR
E2 Bidirectional
E1 Bidirectional
G3 Bidirectional
V14 Input
U14 Input
W15 Input
D5 Output
C4 Output
C7 Output
A6 Output
Active Pull-up
WE2 BS_B2 PCOE
WE3 BS_B3
PCWE
[0:3] D8, C8, A7, B8 Output
BS_A
GPL_A0 GPL_B0
OE GPL_A1 GPL_B1
GPL_A
[2:3] [2:3]
GPL_B
[2–3]
CS
UPWAITA
GPL_A4
B6 Output
A5 Output
D7 Output
C6 Output
B5, C5 Output
C1 Bidirectional
MPC866/MPC859 Hardware Specifications, Rev. 2
82 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
UPWAITB
B1 Bidirectional
GPL_B4
GPL_A5
PORESET
RSTCONF
HRESET
SRESET
D3 Output
R2 Input
P3 Input
N4 Open-drain
P2 Open-drain
XTAL P1 Analog Output
EXTAL N1 Analog Input (3.3V only)
CLKOUT W3 Output
EXTCLK N2 Input (3.3V only)
TEXP N3 Output
ALE_A
K2 Output
MII-TXD1
CE1_A
B3 Output
MII-TXD2
CE2_A
A3 Output
MII-TXD3
WAIT_A
SOC_Split
2
WAIT_B
IP_A0 UTPB_Split0 MII-RXD3
IP_A1 UTPB_Split1 MII-RXD2
IP_A2 IOIS16_A
UTPB_Split2 MII-RXD1
IP_A3 UTPB_Split3 MII-RXD0
IP_A4 UTPB_Split4 MII-RXCLK
R3 Input
R4 Input
T5 Input
2
T4 Input
2
U3 Input
2
W2 Input
2
U4 Input
2
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 83
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
IP_A5 UTPB_Split5 MII-RXERR
IP_A6 UTPB_Split6 MII-TXERR
IP_A7 UTPB_Split7
MII-RXDV
ALE_B DSCK/AT1
IP_B[0:1] IWP[0:1] VFLS[0:1]
IP_B2 IOIS16_B AT 2
IP_B3
IWP2 VF2
2
U5 Input
T6 Input
2
T3 Input
2
J1 Bidirectional
Three-state
H2, J3 Bidirectional
J2 Bidirectional
Three-state
G1 Bidirectional
IP_B4
G2 Bidirectional LWP0 VF0
IP_B5
J4 Bidirectional LWP1
VF1
IP_B6 DSDI
K3 Bidirectional
Three-state
AT 0
IP_B7 PTR
H1 Bidirectional
Three-state
AT 3
OP0
L4 Bidirectional MII-TXD0
UtpClk_Split
2
OP1 L2 Output
OP2
L1 Bidirectional MODCK1 STS
MPC866/MPC859 Hardware Specifications, Rev. 2
84 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
OP3 MODCK2 DSDO
BADDR30 REG
BADDR[28:29] M3, M2 Output
AS
PA 15 RXD1 RXD4
PA 14
TXD1 TXD4
PA 13 RXD2
PA 12 TXD2
PA 11 L1TXDB RXD3
M4 Bidirectional
K4 Output
L3 Input
C18 Bidirectional
D17 Bidirectional
(Optional: Open-drain)
E17 Bidirectional
F17 Bidirectional
(Optional: Open-drain)
G16 Bidirectional
(Optional: Open-drain)
PA 10
L1RXDB TXD3
PA 9 L1TXDA
RXD4
PA 8
L1RXDA TXD4
PA 7 CLK1 L1RCLKA BRGO1 TIN1
PA 6
CLK2 TOUT1
J17 Bidirectional
(Optional: Open-drain)
K18 Bidirectional
(Optional: Open-drain)
L17 Bidirectional
(Optional: Open-drain)
M19 Bidirectional
M17 Bidirectional
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 85
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
PA 5 CLK3 L1TCLKA BRGO2 TIN2
PA 4 CLK4
TOUT2
PA 3 CLK5 BRGO3 TIN3
PA 2 CLK6 TOUT3
L1RCLKB
PA 1 CLK7 BRGO4 TIN4
PA 0 CLK8
TOUT4 L1TCLKB
N18 Bidirectional
P19 Bidirectional
P17 Bidirectional
R18 Bidirectional
T19 Bidirectional
U19 Bidirectional
PB31 SPISEL REJECT1
PB30 SPICLK RSTRT2
PB29
SPIMOSI
PB28 SPIMISO BRGO4
PB27 I2CSDA BRGO1
PB26 I2CSCL
BRGO2
86 Freescale Semiconductor
C17 Bidirectional
(Optional: Open-drain)
C19 Bidirectional
(Optional: Open-drain)
E16 Bidirectional
(Optional: Open-drain)
D19 Bidirectional
(Optional: Open-drain)
E19 Bidirectional
(Optional: Open-drain)
F19 Bidirectional
(Optional: Open-drain)
MPC866/MPC859 Hardware Specifications, Rev. 2
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
PB25 RXADDR3 SMTXD1
PB24 TXADDR3 SMRXD1
PB23 TXADDR2
SDACK1 SMSYN1
PB22 TXADDR4 SDACK2 SMSYN2
PB21 SMTXD2
L1CLKOB PHSEL1
1
TXADDR1
PB20 SMRXD2 L1CLKOA
PHSEL0
1
TXADDR0
2
(Optional: Open-drain)
J18 Bidirectional
J16 Bidirectional
2
(Optional: Open-drain)
K17 Bidirectional
2
(Optional: Open-drain)
L19 Bidirectional
2
(Optional: Open-drain)
K16 Bidirectional
(Optional: Open-drain)
2
L16 Bidirectional
(Optional: Open-drain)
2
PB19 RTS1
N19 Bidirectional
(Optional: Open-drain)
L1ST1
PB18 RXADDR4
2
N17 Bidirectional
(Optional: Open-drain)
RTS2
L1ST2
PB17 L1RQb
P18 Bidirectional
(Optional: Open-drain)
L1ST3 RTS3 PHREQ1 RXADDR1
1
2
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 87
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
PB16 L1RQa L1ST4 RTS4 PHREQ0 RXADDR0
PB15
BRGO3 TxClav RxClav
PB14 RXADDR2 RSTRT1
PC15 DREQ0
RTS1 L1ST1 RxClav TxClav
PC14 DREQ1 RTS2
L1ST2
N16 Bidirectional
(Optional: Open-drain)
1
2
R17 Bidirectional
U18 Bidirectional
2
D16 Bidirectional
D18 Bidirectional
PC13 L1RQb L1ST3 RTS3
PC12 L1RQa
L1ST4 RTS4
PC11 CTS1
PC10 CD1 TGATE1
PC9 CTS2
PC8
CD2 TGATE2
E18 Bidirectional
F18 Bidirectional
J19 Bidirectional
K19 Bidirectional
L18 Bidirectional
M18 Bidirectional
MPC866/MPC859 Hardware Specifications, Rev. 2
88 Freescale Semiconductor
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
PC7 CTS3 L1TSYNCB SDACK2
PC6 CD3 L1RSYNCB
PC5
CTS4 L1TSYNCA SDACK1
PC4 CD4 L1RSYNCA
PD15 L1TSYNCA
MII-RXD3 UTPB0
PD14 L1RSYNCA MII-RXD2 UTPB1
M16 Bidirectional
R19 Bidirectional
T18 Bidirectional
T17 Bidirectional
U17 Bidirectional
V19 Bidirectional
PD13
L1TSYNCB MII-RXD1 UTPB2
PD12 L1RSYNCB MII-MDC UTPB3
PD11
RXD3 MII-TXERR RXENB
PD10 TXD3 MII-RXD0 TXENB
V18 Bidirectional
R16 Bidirectional
T16 Bidirectional
W18 Bidirectional
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 89
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
PD9 RXD4 MII-TXD0 UTPCLK
PD8 TXD4 MII-MDC
MII-RXCLK
PD7 RTS3 MII-RXERR UTPB4
PD6 RTS4 MII-RXDV
UTPB5
PD5 REJECT2 MII-TXD3 UTPB6
PD4 REJECT3
MII-TXD2 UTPB7
V17 Bidirectional
W17 Bidirectional
T15 Bidirectional
V16 Bidirectional
U15 Bidirectional
U16 Bidirectional
PD3 REJECT4 MII-TXD1 SOC
TMS G18 Input
TDI DSDI
TCK
DSCK
TRST
TDO DSDO
MII_CRS B7 Input
MII_MDIO H18 Bidirectional
MII_TXEN V15 Output
90 Freescale Semiconductor
W16 Bidirectional
H17 Input
H16 Input
G19 Input
G17 Output
MPC866/MPC859 Hardware Specifications, Rev. 2
Mechanical Data and Ordering Information
Table 39. Pin Assignments (continued)
Name Pin Number Type
MII_COL H4 Input
VSSSYN1 V1 PLL analog VDD and
GND
VSSSYN U1 Power
VDDSYN T1 Power
GND F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10,
Power G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14
VDDL A8, M1, W8, H19, F4, F16, P4, P16, R1 Power
VDDH E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5,
Power G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14
N/C D6, D13, D14, U2, V2, T2 No-connect
1
Classic SAR mode only
2
ESAR mode only
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 91
Mechanical Data and Ordering Information

15.2 Mechanical Dimensions of the PBGA Package

For more information on the printed-circuit board layout of the PBGA package, including thermal via design and suggested pad layo ut, please refe r to Plastic Ball Grid Array App lication Note (order number: AN123 1/D) availabl e from your local Freescale sales office. Figure 79 shows the mechanical dimensions of the PBGA package.
Note: Solder sphere composition for MPC866XZP, MPC859PZP, MPC859DSLZP, and MPC859TZP
is 62%Sn 36%Pb 2%Ag

Figure 79. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package

MPC866/MPC859 Hardware Specifications, Rev. 2
92 Freescale Semiconductor

16 Document Revision History

Table 40 lists significant changes between revisions of this doc ument.

Table 40. Document Revision History

Document Revision History
Revision
Number
0 5/2002 Initial revision
1 11/2002 Added the 5-V tolerant pins, new package dimensions, and other changes.
1.1 4/2003 Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere
1.2 4/2003 Added the MPC859P.
1.3 5/2003 Changed the SPI Master Timing Specs. 162 and 164.
1.4 7-8/2003 • Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and
1.5 3/14/2005 • Updated document template.
2 2/10/2006 • Updated orderable parts table.
Date Substantive Changes
composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag to Figure 15-79.
B29b to show that TRLX can be 0 or 1.
• Added nontechnical reformatting.
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 93
Document Revision History
THIS PAGE INTENTIONALLY LEFT BLANK
MPC866/MPC859 Hardware Specifications, Rev. 2
94 Freescale Semiconductor
THIS PAGE INTENTIONALLY LEFT BLANK
Document Revision History
MPC866/MPC859 Hardware Specifications, Rev. 2
Freescale Semiconductor 95
How to Reach Us:
Home Page:
www.freescale.com
email:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com
Japan: Freescale Semiconductor Japan Ltd. Technical Information Center
3-20-1, Minami-Azabu, Minato-ku Tokyo 106-0047 Japan 0120 191014 +81 3 3440 3569 support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@
hibbertgroup.com
Information in this document is provided solely to enable system an d software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder t o design or fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor
data sheets and/or sp ecifications can and do vary in different applications and actua l performance
may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. Freescale Semiconductor does not convey
any license under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could create a situation
where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor produ cts for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates,
and distributors har mless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended o r unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of t he part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006.
MPC866EC Rev. 2 2/2006
Loading...