Freescale MMG3003NT1 User Manual

O
CO
O
S
G
Freescale Semiconductor
Technical Data
Heterojunction Bipolar Transistor Technology (InGaP HBT)
Broadband High Linearity Amplifier
N
The MMG3003NT1 is a General Purpose Amplifier that is internally input matched and internally output prematched. It is designed for a broad range of Class A, small- signal, high linearity, general purpose applica-
tions. It is suitable for applications with frequencies from 40 to 3600 MHz such as Cellular, PCS, BWA, WLL, PHS, CATV, VHF, UHF, UMTS and general small - signal RF.
Features
Frequency: 40-3600 MHz
P1dB: 24 dBm @ 900 MHz
Small-Signal Gain: 20 dB @ 900 MHz
Third Order Output Intercept Point: 40.5 dBm @ 900 MHz
Single Voltage Supply
Internally Matched to 50 Ohms
Low Cost SOT-89 Surface Mount Package
RoHS Compliant
In Tape and Reel. T1 Suffix = 1000 Units per 12 mm, 7 inch Reel.
R NEW DE
Document Number: MMG3003NT1
Rev. 7, 3/2008
MMG3003NT1
40-3600 MHz, 20 dB
24 dBm
InGaP HBT
1
2
3
CASE 1514-02, STYLE 1
SOT-89
PLASTIC
Table 1. Typical Performance
Characteristic Symbol 900
Small -Signal Gain
(S21)
Input Return Loss
(S11)
MMENDED F
Output Return Loss
(S22)
Power Output @1dB
Compression
Third Order Output
Intercept Point
1. V
= 6.2 Vdc, TC = 25°C, 50 ohm system
CC
ORL -9.3 −14.5 - 10.2 dB
P1db 24 23.3 20.5 dBm
(1)
2140
3500
MHz
MHz
G
IRL -15 -14.1 -11.2 dB
IP3 40.5 40 37 dBm
20 16.9 12 dB
p
Unit
MHz
Table 2. Maximum Ratings
Rating Symbol Value Unit
Supply Voltage V
Supply Current I
RF Input Power P
Storage Temperature Range T
Junction Temperature
2. For reliable operation, the junction temperature should not exceed 150°C.
(2)
T RE
Table 3. Thermal Characteristics (V
Thermal Resistance, Junction to Case R
N
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.
= 6.2 Vdc, ICC = 180 mA, TC = 25°C)
CC
Characteristic Symbol Value
θ
JC
CC
CC
in
stg
T
J
31.6 °C/W
7 V
400 mA
15 dBm
-65 to +150 °C
150 °C
(3)
Unit
NOT RECOMMENDED FOR NEW DESIGN
Freescale Semiconductor, Inc., 2004- 2008. All rights reserved.
RF Device Data Freescale Semiconductor
MMG3003NT1
1
O
CO
O
S
G
Table 4. Electrical Characteristics (V
Small -Signal Gain (S21) G
Input Return Loss (S11) IRL -15 dB
Output Return Loss (S22) ORL -9.3 dB
Power Output @ 1dB Compression P1dB 24 dBm
N
Third Order Output Intercept Point IP3 40.5 dBm
Noise Figure NF 4 dB
Supply Current
Supply Voltage
1. For reliable operation, the junction temperature should not exceed 150°C.
(1)
(1)
R NEW DE
= 6.2 Vdc, 900 MHz, TC = 25°C, 50 ohm system, in Freescale Application Circuit)
CC
Characteristic Symbol Min Typ Max Unit
p
I
CC
V
CC
19.3 20 dB
160 180 205 mA
6.2 V
MMENDED F
T RE N
MMG3003NT1
2
NOT RECOMMENDED FOR NEW DESIGN
RF Device Data
Freescale Semiconductor
O
CO
O
S
G
N
Table 5. Functional Pin Description
Pin
Number
1 RF
2 Ground
3 RF
Pin Function
in
/DC Supply
out
2
1
32
Table 6. ESD Protection Characteristics
Test Conditions/Test Methodology Class
Human Body Model (per JESD 22-A114) 1B (Minimum)
Machine Model (per EIA/JESD 22-A115) A (Minimum)
Charge Device Model (per JESD 22-C101) IV (Minimum)
Table 7. Moisture Sensitivity Level
Test Methodology Rating Package Peak Temperature Unit
Per JESD 22-A113, IPC/JEDEC J - STD-020 1 260 °C
R NEW DE
Figure 1. Functional Diagram
MMENDED F
T RE N
RF Device Data Freescale Semiconductor
NOT RECOMMENDED FOR NEW DESIGN
MMG3003NT1
3
O
CO
O
S
G
50 OHM TYPICAL CHARACTERISTICS
25
TC = 85°C
25°C
−40°C
20
N
15
, SMALL−SIGNAL GAIN (dB)
p
G
VCC = 6.2 Vdc
10
0
Figure 2. Small-Signal Gain (S21) versus
1234
23
21
R NEW DE
19
17
15
13
, SMALL−SIGNAL GAIN (dB)
p
G
11
9
5
Figure 4. Small-Signal Gain versus Output
3500 MHz, C5 = 0.5 pF
10 15 20
P
out
f, FREQUENCY (GHz)
Frequency
900 MHz, C5 = 2.7 pF
1960 MHz, C5, C6 = 1.3 pF
2140 MHz, C5, C6 = 1.3 pF
2600 MHz, C5 = 1.2 pF
, OUTPUT POWER (dBm)
Power
VCC = 6.2 Vdc ICC = 180 mA
0
S22
−10
S11, S22(dB)
−20
S11
−30
0
Figure 3. Input/Output Return Loss versus
25
24
23
22
21
20
19
18
P1dB, 1 dB COMPRESSION POINT (dBm)
17
25
12 3
f, FREQUENCY (GHz)
Frequency
f, FREQUENCY (GHz)
Figure 5. P1dB versus Frequency
VCC = 6.2 Vdc ICC = 180 mA
4
VCC =6.2 Vdc ICC = 180 mA
3.532.521.510.5
200
MMENDED F
150
100
T RE
50
, COLLECTOR CURRENT (mA)
CC
I
0
N
4
Figure 6. Collector Current versus Collector
MMG3003NT1
4
4.5 5 5.5
VCC, COLLECTOR VOLTAGE (V)
Voltage
45
42
39
36
33
30
6
6.5
0
IP3, THIRD ORDER OUTPUT INTERCEPT POINT (dBm)
Figure 7. Third Order Output Intercept Point
123
f, FREQUENCY (GHz)
versus Frequency
VCC = 6.2 Vdc ICC = 180 mA 100 kHz Tone Spacing
4
RF Device Data
Freescale Semiconductor
NOT RECOMMENDED FOR NEW DESIGN
O
CO
O
S
G
50 OHM TYPICAL CHARACTERISTICS
45
42
39
N
36
33
30
5.8
IP3, THIRD ORDER OUTPUT INTERCEPT POINT (dBm)
Figure 8. Third Order Output Intercept Point
−30
6
VCC, COLLECTOR VOLTAGE (V)
versus Collector Voltage
f = 900 MHz 100 kHz Tone Spacing
6.2 6.4 6.6
R NEW DE
−40
−50
−60
IMD, THIRD ORDER
−70
INTERMODULATION DISTORTION (dBc)
−80
P
, OUTPUT POWER (dBm)
out
Figure 10. Third Order Intermodulation versus
Output Power
MMENDED F
8
6
VCC = 6.2 Vdc ICC = 180 mA f = 900 MHz 100 kHz Tone Spacing
24912151821
42
41
40
39
IP3, THIRD ORDER OUTPUT INTERCEPT POINT (dBm)
Figure 9. Third Order Output Intercept Point
5
10
4
10
MTTF (YEARS)
3
10
120
−20
−30
125 130 135 140 145
NOTE: The MTTF is calculated with VCC = 6.2 Vdc, ICC = 180 mA
Figure 11. MTTF versus Junction Temperature
VCC = 6.2 Vdc, ICC = 180 mA, f = 2140 MHz, C5 = 1.3 pF Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 8.5 dB @ 0.01% Probability (CCDF)
VCC = 6.2 Vdc f = 900 MHz 100 kHz Tone Spacing 8 Vdc Supply with 10 W Dropping Resistor
T, TEMPERATURE (_C)
versus Case Temperature
TJ, JUNCTION TEMPERATURE (°C)
100−40 −20 0 20 40 60 80
150
4
T RE
NF, NOISE FIGURE (dB)
2
N
0
0
0.5 2 3
Figure 12. Noise Figure versus Frequency
RF Device Data Freescale Semiconductor
VCC = 6.2 Vdc ICC = 180 mA
1 1.5 2.5 3.5
f, FREQUENCY (GHz)
−40
−50
−60
NOT RECOMMENDED FOR NEW DESIGN
−70
4
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
9
P
, OUTPUT POWER (dBm)
out
Figure 13. Single-Carrier W-CDMA Adjacent
Channel Power Ratio versus Output Power
17151311
MMG3003NT1
19
5
O
CO
O
S
G
50 OHM APPLICATION CIRCUIT: 40-800 MHz
V
SUPPLY
R1
N I
RF
INPUT
Z1 0.347 x 0.058Microstrip Z2 0.575 x 0.058Microstrip Z3 0.172 x 0.058Microstrip Z4 0.403 x 0.058Microstrip
30
R NEW DE
20
10
0
−10
S21, S11, S22 (dB)
Z1 Z2
C1
S21
S22
C3 C4
L1
DUT
V
CC
Figure 14. 50 Ohm Test Circuit Schematic
Z4Z3
C2
Z5 0.286 x 0.058Microstrip Z6 0.061 x 0.058Microstrip PCB Getek Grade ML200C, 0.031, εr = 4.1
C1
RF
Z5
C5
OUTPUT
Z6
R1
C4 C3
L1
C2
C5
−20
−30 0
200 400 600
Figure 15. S21, S11 and S22 versus Frequency
MMENDED F
Table 8. 50 Ohm Test Circuit Component Designations and Values
Part Description Part Number Manufacturer
C1, C2, C4 0.01 µF Chip Capacitors C0603C103J5RAC Kemet
C3 68 pF Chip Capacitor C0805C680J5RAC Kemet
(1)
C5
L1 470 nH Chip Inductor BK2125HM471-T Taiyo Yuden
R1
1. Tuning capacitor: Capacitor value and location on the transmission line are varied for different frequencies.
S11
f, FREQUENCY (MHz)
2.7 pF Chip Capacitor 12105J2R7BS AVX
7.5 W Chip Resistor
VCC = 6.2 Vdc ICC = 180 mA
800
MMG30XX Rev 2
Figure 16. 50 Ohm Test Circuit Component Layout
RK73B2ATTE7R5J KOA Speer
T RE
Table 9. Supply Voltage versus R1 Values
N
Supply Voltage 7 8 9 10 11 12 V
R1 Value 4.4 10 15.6 21 27 32
Note: To provide VCC = 6.2 Vdc and ICC = 180 mA at the device.
NOT RECOMMENDED FOR NEW DESIGN
MMG3003NT1
6
RF Device Data
Freescale Semiconductor
Loading...
+ 12 hidden pages