Freescale MKL25Z32VFM4, MKL25Z64VFM4, MKL25Z128VFM4, MKL25Z32VFT4, MKL25Z64VFT4 Service Manual

...
Page 1
Freescale Semiconductor, Inc.
Document Number: KL25P80M48SF0
Data Sheet: Technical Data Rev 5 08/2014
Kinetis KL25 Sub-Family
48 MHz Cortex-M0+ Based Microcontroller with USB
Designed with efficiency in mind. Compatible with all other Kinetis L families as well as Kinetis K2x family. General purpose MCU with USB 2.0, featuring market leading ultra low-power to provide developers an appropriate entry-level 32-bit solution.
This product offers:
• Run power consumption down to 47 μA/MHz in very low power run mode
• Static power consumption down to 2 μA with full state retention and 4 μs wakeup
• Ultra-efficient Cortex-M0+ processor running up to 48 MHz with industry leading throughput
• Memory option is up to 128 KB flash and 16 KB RAM
• Energy-saving architecture is optimized for low power with 90 nm TFS technology, clock and power gating techniques, and zero wait state flash memory controller
Performance
• 48 MHz ARM® Cortex®-M0+ core
Memories and memory interfaces
• Up to 128 KB program flash memory
• Up to 16 KB SRAM
System peripherals
• Nine low-power modes to provide power optimization based on application requirements
• COP Software watchdog
• 4-channel DMA controller, supporting up to 63 request sources
• Low-leakage wakeup unit
• SWD debug interface and Micro Trace Buffer
• Bit Manipulation Engine
Clocks
• 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator
• Multi-purpose clock source
• 1 kHz LPO clock
Operating Characteristics
• Voltage range: 1.71 to 3.6 V
Human-machine interface
• Low-power hardware touch sensor interface (TSI)
• Up to 66 general-purpose input/output (GPIO)
Communication interfaces
• USB full-/low-speed On-the-Go controller with on­chip transceiver and 5 V to 3.3 V regulator
• Two 8-bit SPI modules
• One low power UART module
• Two UART modules
• Two I2C module
Analog Modules
• 16-bit SAR ADC
• 12-bit DAC
• Analog comparator (CMP) containing a 6-bit DAC and programmable reference input
Timers
• Six channel Timer/PWM (TPM)
• Two 2-channel Timer/PWM modules
• Periodic interrupt timers
• 16-bit low-power timer (LPTMR)
• Real time clock
MKL25ZxxVFM4
MKL25ZxxVFT4 MKL25ZxxVLH4 MKL25ZxxVLK4
32-pin QFN (FM)
5 x 5 x 1 Pitch 0.5 mm
64-pin LQFP (LH)
10 x 10 x 1.4 Pitch 0.5
mm
48-pin QFN (FT)
7 x 7 x 1 Pitch 0.5 mm
80-pin LQFP (LK)
12 x 12 x 1.4 Pitch 0.5
mm
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012–2014 Freescale Semiconductor, Inc. All rights reserved.
Page 2
• Flash write voltage range: 1.71 to 3.6 V
• Temperature range (ambient): -40 to 105°C
Security and integrity modules
• 80-bit unique identification number per chip
Ordering Information
1
Part Number Memory Maximum number of I\O's
Flash (KB) SRAM (KB)
MKL25Z32VFM4 32 4 23 MKL25Z64VFM4 64 8 23 MKL25Z128VFM4 128 16 23 MKL25Z32VFT4 32 4 36 MKL25Z64VFT4 64 8 36 MKL25Z128VFT4 128 16 36 MKL25Z32VLH4 32 4 50 MKL25Z64VLH4 64 8 50 MKL25Z128VLH4 128 16 50 MKL25Z32VLK4 32 4 66 MKL25Z64VLK4 64 8 66 MKL25Z128VLK4 128 16 66
1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.
Related Resources
Type Description Resource
Selector Guide The Freescale Solution Advisor is a web-based tool that features
Solution Advisor
interactive application wizards and a dynamic product selector.
Product Brief The Product Brief contains concise overview/summary information to
KL2 Family Product Brief
1
enable quick evaluation of a device for design suitability.
Reference Manual
The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.
Data Sheet The Data Sheet includes electrical characteristics and signal
KL25P80M48SF0RM
KL25P80M48SF0
1
1
connections.
Chip Errata The chip mask set Errata provides additional or corrective
KINETIS_L_xN97F
2
information for a particular device mask set.
Package drawing
Package dimensions are provided in package drawings. QFN 32-pin: 98ASA00473D
QFN 48-pin: 98ASA00466D LQFP 64-pin: 98ASS23234W LQFP 80-pin: 98ASS23174W
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.
2. To find the associated resource, go to http://www.freescale.com and perform a search using this term with the “x” replaced by the revision of the device you are using.
Figure 1 shows the functional modules in the chip.
1
1
1
1
2
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 3
Kinetis KL25 Family
®
ARM
Cortex™-M0+
Core
Debug
interfaces
Interrupt
controller
MTB
Security
and Integrity
Internal
watchdog
Analog
16-bit ADC
x1
Analog
comparator
x1
6-bit DAC
12-bit DAC
System
Internal
watchdog
DMA
BME
Timers
Timers
1x6ch+2x2ch
Low
power timer
x1
Periodic interrupt
timers
RTC
Memories and
Memory Interfaces
Program
flash
RAM
Communication
Interfaces
2
I C
x2
Low power
UART
x1
SPI
x2
UART
x2
Clocks
Phase-
locked loop
Frequency-
locked loop
Low/high frequency oscillator
Internal
reference
clocks
Human-Machine
Interface (HMI)
GPIOs
with
interrupt
TSI
LEGEND
Figure 1. Functional block diagram
Kinetis KL25 Sub-Family, Rev5 08/2014.
USB LS/FS
x1
Migration difference from KL15 family
3
Freescale Semiconductor, Inc.
Page 4
Table of Contents
1 Ratings....................................................................................5
1.1 Thermal handling ratings.................................................5
1.2 Moisture handling ratings................................................ 5
1.3 ESD handling ratings.......................................................5
1.4 Voltage and current operating ratings............................. 5
2 General................................................................................... 6
2.1 AC electrical characteristics.............................................6
2.2 Nonswitching electrical specifications..............................7
2.2.1 Voltage and current operating requirements....... 7
2.2.2 LVD and POR operating requirements................7
2.2.3 Voltage and current operating behaviors.............8
2.2.4 Power mode transition operating behaviors........ 9
2.2.5 Power consumption operating behaviors............ 10
2.2.6 EMC radiated emissions operating behaviors.....16
2.2.7 Designing with radiated emissions in mind..........17
2.2.8 Capacitance attributes.........................................17
2.3 Switching specifications...................................................17
2.3.1 Device clock specifications..................................17
2.3.2 General switching specifications......................... 18
2.4 Thermal specifications.....................................................18
2.4.1 Thermal operating requirements......................... 18
2.4.2 Thermal attributes................................................19
3 Peripheral operating requirements and behaviors.................. 19
3.1 Core modules.................................................................. 19
3.1.1 SWD electricals .................................................. 19
3.2 System modules..............................................................21
3.3 Clock modules.................................................................21
3.3.1 MCG specifications..............................................21
3.3.2 Oscillator electrical specifications........................23
3.4 Memories and memory interfaces................................... 25
3.4.1 Flash electrical specifications..............................25
3.5 Security and integrity modules........................................ 27
3.6 Analog............................................................................. 27
3.6.1 ADC electrical specifications............................... 27
3.6.2 CMP and 6-bit DAC electrical specifications....... 32
3.6.3 12-bit DAC electrical characteristics....................33
3.7 Timers..............................................................................36
3.8 Communication interfaces...............................................36
3.8.1 USB electrical specifications............................... 36
3.8.2 USB VREG electrical specifications.................... 37
3.8.3 SPI switching specifications................................ 37
3.8.4 Inter-Integrated Circuit Interface (I2C) timing...... 42
3.8.5 UART...................................................................43
3.9 Human-machine interfaces (HMI)....................................43
3.9.1 TSI electrical specifications................................. 43
4 Dimensions............................................................................. 44
4.1 Obtaining package dimensions....................................... 44
5 Pinout......................................................................................44
5.1 KL25 Signal Multiplexing and Pin Assignments...............44
5.2 KL25 pinouts....................................................................47
6 Ordering parts......................................................................... 51
6.1 Determining valid orderable parts....................................51
7 Part identification.....................................................................51
7.1 Description.......................................................................52
7.2 Format............................................................................. 52
7.3 Fields...............................................................................52
7.4 Example...........................................................................52
8 Terminology and guidelines.................................................... 53
8.1 Definition: Operating requirement....................................53
8.2 Definition: Operating behavior.........................................53
8.3 Definition: Attribute.......................................................... 54
8.4 Definition: Rating............................................................. 54
8.5 Result of exceeding a rating............................................54
8.6 Relationship between ratings and operating
requirements....................................................................55
8.7 Guidelines for ratings and operating requirements..........55
8.8 Definition: Typical value...................................................56
8.9 Typical value conditions.................................................. 57
9 Revision history.......................................................................57
4
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 5

Ratings

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings
Symbol Description Min. Max. Unit Notes
T
STG
T
SDR
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.
Storage temperature –55 150 °C 1 Solder temperature, lead-free 260 °C 2

1.2 Moisture handling ratings

Table 2. Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings
Symbol Description Min. Max. Unit Notes
V
HBM
V
CDM
I
LAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
Electrostatic discharge voltage, human body model –2000 +2000 V 1 Electrostatic discharge voltage, charged-device
model Latch-up current at ambient temperature of 105 °C –100 +100 mA 3
–500 +500 V 2
Kinetis KL25 Sub-Family, Rev5 08/2014.
5
Freescale Semiconductor, Inc.
Page 6
80%
20%
50%
V
IL
Input Signal
V
IH
Fall Time
High
Low
Rise Time
Midpoint1
The midpoint is VIL + (VIH - VIL) / 2

General

1.4 Voltage and current operating ratings
Table 4. Voltage and current operating ratings
Symbol Description Min. Max. Unit
V
I
DD
V
I
V
DDA
V
USB_DP
V
USB_DM
V
REGIN
DD
IO
D
Digital supply voltage –0.3 3.8 V Digital supply current 120 mA IO pin input voltage –0.3 VDD + 0.3 V Instantaneous maximum current single pin limit (applies to
all port pins) Analog supply voltage VDD – 0.3 VDD + 0.3 V USB_DP input voltage –0.3 3.63 V USB_DM input voltage –0.3 3.63 V USB regulator input –0.3 6.0 V
–25 25 mA
2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.
All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.
6
Freescale Semiconductor, Inc.
Figure 2. Input signal measurement reference
• CL=30 pF loads
• Slew rate disabled
• Normal drive strength
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 7

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
V
DD
V
DDA
VDD – V
VSS – V
V
IH
Supply voltage 1.71 3.6 V Analog supply voltage 1.71 3.6 V
DDAVDD
SSAVSS
-to-V
-to-V
Input high voltage
• 2.7 V ≤ VDD ≤ 3.6 V
• 1.7 V ≤ VDD ≤ 2.7 V
differential voltage –0.1 0.1 V
DDA
differential voltage –0.1 0.1 V
SSA
0.7 × V
0.75 × V
DD
DD
— —
V V
General
V
V
HYS
I
ICIO
I
ICcont
Input low voltage
IL
• 2.7 V ≤ VDD ≤ 3.6 V
• 1.7 V ≤ VDD ≤ 2.7 V
Input hysteresis 0.06 × V IO pin negative DC injection current—single pin
• VIN < VSS–0.3V
Contiguous pin DC injection current —regional limit,
— —
DD
0.35 × V
0.3 × V
DD
DD
V V
V
–3 mA
1
— includes sum of negative injection currents of 16 contiguous pins
–25 mA
DD
V
DD
V 2
V
V
ODPU
RAM
• Negative current injection
Open drain pullup voltage level V VDD voltage required to retain RAM 1.2 V
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If V greater than V
(= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If
IO_MIN
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V
IO_MIN
- VIN)/|I
ICIO
|.
2. Open drain outputs must be pulled to VDD.
IN

2.2.2 LVD and POR operating requirements

Table 6. VDD supply LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
V
POR
Kinetis KL25 Sub-Family, Rev5 08/2014.
Falling VDD POR detect voltage 0.8 1.1 1.5 V
Table continues on the next page...
Freescale Semiconductor, Inc.
7
Page 8
General
Table 6. VDD supply LVD and POR operating requirements (continued)
Symbol Description Min. Typ. Max. Unit Notes
V
V
LVW1H
V
LVW2H
V
LVW3H
V
LVW4H
V
V
V
LVW1L
V
LVW2L
V
LVW3L
V
LVW4L
V
V
t
LVDH
HYSH
LVDL
HYSL
LPO
Falling low-voltage detect threshold — high
2.48 2.56 2.64 V
range (LVDV = 01) Low-voltage warning thresholds — high range
• Level 1 falling (LVWV = 00)
• Level 2 falling (LVWV = 01)
• Level 3 falling (LVWV = 10)
• Level 4 falling (LVWV = 11)
Low-voltage inhibit reset/recover hysteresis —
2.62
2.72
2.82
2.92
2.70
2.80
2.90
3.00
2.78
2.88
2.98
3.08
±60 mV
high range Falling low-voltage detect threshold — low
1.54 1.60 1.66 V
range (LVDV=00) Low-voltage warning thresholds — low range
• Level 1 falling (LVWV = 00)
• Level 2 falling (LVWV = 01)
• Level 3 falling (LVWV = 10)
• Level 4 falling (LVWV = 11)
Low-voltage inhibit reset/recover hysteresis —
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
±40 mV
low range Bandgap voltage reference 0.97 1.00 1.03 V
BG
Internal low power oscillator period — factory
900 1000 1100 μs
trimmed
V V V V
V V V V
1
1
1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 7. Voltage and current operating behaviors
Symbol Description Min. Max. Unit Notes
V
OH
V
OH
I
OHT
8
Freescale Semiconductor, Inc.
Output high voltage — Normal drive pad (except RESET)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1.5 mA
Output high voltage — High drive pad (except
VDD – 0.5 VDD – 0.5
— —
V V
RESET)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –18 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –6 mA
VDD – 0.5 VDD – 0.5
— —
V V
Output high current total for all ports 100 mA
Table continues on the next page...
Kinetis KL25 Sub-Family, Rev5 08/2014.
1, 2
1, 2
Page 9
General
Table 7. Voltage and current operating behaviors (continued)
Symbol Description Min. Max. Unit Notes
V
V
I
OLT
I R R
I
I I
OL
OL
IN
IN
IN
OZ
PU
PD
Output low voltage — Normal drive pad
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA
Output low voltage — High drive pad
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA
Output low current total for all ports 100 mA — Input leakage current (per pin) for full temperature
range Input leakage current (per pin) at 25 °C 0.025 μA 3 Input leakage current (total all pins) for full
temperature range Hi-Z (off-state) leakage current (per pin) 1 μA — Internal pullup resistors 20 50 4 Internal pulldown resistors 20 50 5
— —
— —
1 μA 3
65 μA 3
0.5
0.5
0.5
0.5
V V
V V
1
1
1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.
3. Measured at VDD = 3.6 V
4. Measured at VDD supply voltage = VDD min and Vinput = V
5. Measured at VDD supply voltage = VDD min and Vinput = VDD
SS

2.2.4 Power mode transition operating behaviors

All specifications except t table assume this clock configuration:
• CPU and system clocks = 48 MHz
• Bus and flash clock = 24 MHz
• FEI clock mode
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.
Table 8. Power mode transition operating behaviors
and VLLSxRUN recovery times in the following
POR
Symbol Description Min. Typ. Max. Unit
t
POR
Kinetis KL25 Sub-Family, Rev5 08/2014.
After a POR event, amount of time from the point VDD reaches 1.8 V to execution of the first
Table continues on the next page...
300 μs 1
Freescale Semiconductor, Inc.
9
Page 10
General
Table 8. Power mode transition operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit
instruction across the operating temperature range of the chip.
• VLLS0 RUN
• VLLS1 RUN
• VLLS3 RUN
• LLS RUN
• VLPS RUN
• STOP RUN
95
93
42
4
4
4
115
115
53
4.6
4.4
4.4
μs
μs
μs
μs
μs
μs
1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).
Table 9. Power consumption operating behaviors
Symbol Description Temp. Typ. Max Unit Note
I
DDA
I
DD_RUNCO_ CM
I
DD_RUNCO
I
DD_RUN
Analog supply current See note mA 1 Run mode current in compute operation
- 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V
Run mode current in compute operation
- 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V
Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at
3.0 V
6.4 mA 2
3.9 4.8 mA 3
5 5.9 mA 3
10
Freescale Semiconductor, Inc.
Table continues on the next page...
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 11
Table 9. Power consumption operating behaviors (continued)
Symbol Description Temp. Typ. Max Unit Note
I
DD_RUN
I
DD_WAIT
I
DD_WAIT
I
DD_PSTOP2
I
DD_VLPRCO _CM
I
DD_VLPRCO
I
DD_VLPR
I
DD_VLPR
I
DD_VLPW
I
DD_STOP
I
DD_VLPS
Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at
at 25 °C 6.2 6.5 mA 3, 4
at 125 °C 6.8 7.1 mA
3.0 V Wait mode current - core disabled / 48
3.1 3.8 mA 3 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V
Wait mode current - core disabled / 24
2.4 3.2 mA 3 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V
Stop mode current with partial stop 2
1.6 2 mA 3 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V
Very-low-power run mode current in
777 µA 5 compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V
Very low power run mode current in
171 420 µA 6 compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V
Very low power run mode current - 4
204 449 µA 6 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V
Very low power run mode current - 4
262 509 µA 4, 6 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V
Very low power wait mode current -
123 366 µA 6 core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V
Stop mode current at 3.0 V at 25 °C 319 343 µA
at 50 °C 333 365 µA at 70 °C 353 400 µA at 85 °C 380 450 µA
at 105 °C 444 572 µA
Very-low-power stop mode current at
3.0 V
at 25 °C 3.75 8.46 µA — at 50 °C 6.66 13.41 µA at 70 °C 12.9 25.71 µA
General
Kinetis KL25 Sub-Family, Rev5 08/2014.
Table continues on the next page...
11
Freescale Semiconductor, Inc.
Page 12
General
Table 9. Power consumption operating behaviors (continued)
Symbol Description Temp. Typ. Max Unit Note
at 85 °C 22.7 44.06 µA
at 105 °C 48.4 90.1 µA
I
DD_LLS
I
DD_VLLS3
I
DD_VLLS1
I
DD_VLLS0
I
DD_VLLS0
Low leakage stop mode current at 3.0 V
Very low-leakage stop mode 3 current at 3.0 V
Very low-leakage stop mode 1 current at 3.0 V
Very low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) at 3.0 V
Very low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1) at 3.0 V
at 25 °C 1.68 2.09 µA — at 50 °C 3.05 4.04 µA at 70 °C 5.71 7.75 µA at 85 °C 10 13.54 µA
at 105 °C 22.4 30.41 µA
at 25 °C 1.22 1.6 µA — at 50 °C 2.25 2.31 µA at 70 °C 4.21 5.44 µA at 85 °C 7.37 9.44 µA
at 105 °C 16.6 21.76 µA
at 25 °C 0.58 0.94 µA — at 50 °C 1.26 1.31 µA at 70 °C 2.53 3.33 µA at 85 °C 4.74 6.1 µA
at 105 °C 11.4 15.27 µA
at 25 °C 0.31 0.65 µA — at 50 °C 0.99 1.43 µA at 70 °C 2.25 3.01 µA at 85 °C 4.46 5.83 µA
at 105 °C 11.13 14.99 µA
at 25 °C 0.12 0.47 µA 7 at 50 °C 0.8 1.24 µA at 70 °C 2.06 2.81 µA at 85 °C 4.27 5.62 µA
at 105 °C 10.93 14.78 µA
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
2. MCG configured for PEE mode. CoreMark benchmark compiled using Keil 4.54 with optimization level 3, optimized for time.
3. MCG configured for FEI mode.
4. Incremental current consumption from peripheral activity is not included.
5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
6. MCG configured for BLPI mode.
7. No brownout.
12
Kinetis KL25 Sub-Family, Rev5 08/2014.
Freescale Semiconductor, Inc.
Page 13
Table 10. Low power mode peripheral adders — typical value
Symbol Description Temperature (°C) Unit
-40 25 50 70 85 105
I
IREFSTEN4MHz
I
IREFSTEN32KHz
I
EREFSTEN4MHz
I
EREFSTEN32KHz
I
CMP
I
RTC
I
UART
I
TPM
4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.
32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.
External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.
External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.
VLLS1 440 490 540 560 570 580 nA VLLS3 440 490 540 560 570 580
LLS 490 490 540 560 570 680
VLPS 510 560 560 560 610 680
STOP 510 560 560 560 610 680
CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.
RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.
UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.
MCGIRCLK
(4 MHz internal
reference
clock)
OSCERCLK
(4 MHz
external
crystal)
TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and
MCGIRCLK
(4 MHz internal
reference
clock)
OSCERCLK
(4 MHz
external
crystal)
I/O switching currents.
56 56 56 56 56 56 µA
52 52 52 52 52 52 µA
206 228 237 245 251 258 µA
22 22 22 22 22 22 µA
432 357 388 475 532 810 nA
66 66 66 66 66 66 µA
214 237 246 254 260 268
86 86 86 86 86 86 µA
235 256 265 274 280 287
General
Kinetis KL25 Sub-Family, Rev5 08/2014.
Table continues on the next page...
13
Freescale Semiconductor, Inc.
Page 14
General
Table 10. Low power mode peripheral adders — typical value (continued)
Symbol Description Temperature (°C) Unit
-40 25 50 70 85 105
I
I
ADC
BG
Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.
ADC peripheral adder combining the measured values at VDD and V placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.
DDA
by
45 45 45 45 45 45 µA
366 366 366 366 366 366 µA
2.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
• MCG in FBE for run mode, and BLPE for VLPR mode
• USB regulator disabled
• No GPIOs toggled
• Code execution from flash with cache enabled
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA
14
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 15
All Off
Temperature = 25, V = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE
DD
All Peripheral CLK Gates
All On
CLK Ratio Flash-Core Core Freq (MHz)
Current Consumption on V
DD(A)
Run Mode Current Vs Core Frequency
8.00E-03
7.00E-03
6.00E-03
5.00E-03
4.00E-03
3.00E-03
2.00E-03
1.00E-03
000.00E+00
'1-1
1 2
3
4
6
12 24
48
'1-1 '1-1 '1-1 '1-1 '1-1 '1-1 '1-2
General
Figure 3. Run mode supply current vs. core frequency
Kinetis KL25 Sub-Family, Rev5 08/2014.
15
Freescale Semiconductor, Inc.
Page 16
VLPR Mode Current Vs Core Frequency
Temperature = 25, V = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE
DD
All Peripheral CLK Gates
'1-1'1-2'1-2'1-
4
All Off
All On
CLK Ratio Flash-Core Core Freq (MHz)
Current Consumption on VDD (A)
400.00E-06
350.00E-06
300.00E-06
250.00E-06
200.00E-06
150.00E-06
100.00E-06
50.00E-06
000.00E+00
1 2
4
General
Figure 4. VLPR mode current vs. core frequency
2.2.6

EMC radiated emissions operating behaviors

Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP
package
Symbol Description Frequency
band
(MHz)
V V V V
V
RE_IEC
RE1
RE2
RE3
RE4
Radiated emissions voltage, band 1 0.15–50 13 dBμV 1, 2 Radiated emissions voltage, band 2 50–150 15 dBμV Radiated emissions voltage, band 3 150–500 12 dBμV Radiated emissions voltage, band 4 500–1000 7 dBμV IEC level 0.15–1000 M 2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and
16
Freescale Semiconductor, Inc.
Typ. Unit Notes
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 17
General
Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, f
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method
= 8 MHz (crystal), f
OSC
= 48 MHz, f
SYS
= 48 MHz
BUS

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”

2.2.8 Capacitance attributes

Table 12. Capacitance attributes
Symbol Description Min. Max. Unit
C
IN
Input capacitance 7 pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications
Symbol Description Min. Max. Unit
Normal run mode
f
SYS
f
BUS
f
FLASH
f
SYS_USB
f
LPTMR
f
SYS
f
BUS
f
FLASH
f
LPTMR
System and core clock 48 MHz Bus clock 24 MHz Flash clock 24 MHz System and core clock when Full Speed USB in operation 20 MHz LPTMR clock 24 MHz
VLPR and VLPS modes System and core clock 4 MHz Bus clock 1 MHz Flash clock 1 MHz LPTMR clock
2
Table continues on the next page...
1
24 MHz
Kinetis KL25 Sub-Family, Rev5 08/2014.
17
Freescale Semiconductor, Inc.
Page 18
General
Table 13. Device clock specifications (continued)
Symbol Description Min. Max. Unit
f
ERCLK
f
LPTMR_ERCLK
f
osc_hi_2
f
TPM
f
UART0
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.
External reference clock 16 MHz LPTMR external reference clock 16 MHz Oscillator crystal or resonator frequency — high frequency
mode (high range) (MCG_C2[RANGE]=1x) TPM asynchronous clock 8 MHz UART0 asynchronous clock 8 MHz
16 MHz

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.
Table 14. General switching specifications
Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path
External RESET and NMI pin interrupt pulse width — Asynchronous path
GPIO pin interrupt pulse width — Asynchronous path 16 ns 2 Port rise and fall time 36 ns 3
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75 pF load
1.5 Bus clock cycles
100 ns 2

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements
1
Symbol Description Min. Max. Unit
T
J
T
A
18
Freescale Semiconductor, Inc.
Die junction temperature –40 125 °C Ambient temperature –40 105 °C
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 19

2.4.2 Thermal attributes

Table 16. Thermal attributes

Peripheral operating requirements and behaviors

Board type Symbol Description 80
Single-layer (1S) R
Four-layer (2s2p) R
Single-layer (1S) R
Four-layer (2s2p) R
R
R
Ψ
Thermal resistance, junction
θJA
to ambient (natural convection)
Thermal resistance, junction
θJA
to ambient (natural convection)
Thermal resistance, junction
θJMA
to ambient (200 ft./min. air speed)
Thermal resistance, junction
θJMA
to ambient (200 ft./min. air speed)
Thermal resistance, junction
θJB
to board Thermal resistance, junction
θJC
to case Thermal characterization
JT
parameter, junction to package top outside center (natural convection)
48 QFN 32 QFN Unit Notes
LQFP64LQFP
70 71 84 92 °C/W 1
53 52 28 33 °C/W
59 69 75 °C/W
46 22 27 °C/W
34 34 10 12 °C/W 2
15 20 2.0 1.8 °C/W 3
0.6 5 5.0 8 °C/W 4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors

3.1 Core modules

Kinetis KL25 Sub-Family, Rev5 08/2014.
Freescale Semiconductor, Inc.
19
Page 20
J2
J3 J3
J4 J4
SWD_CLK (input)
Peripheral operating requirements and behaviors
3.1.1 SWD electricals
Table 17. SWD full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
J1 SWD_CLK frequency of operation
• Serial wire debug
J2 SWD_CLK cycle period 1/J1 ns J3 SWD_CLK clock pulse width
• Serial wire debug
J4 SWD_CLK rise and fall times 3 ns
J9 SWD_DIO input data setup time to SWD_CLK rise 10 ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 ns J11 SWD_CLK high to SWD_DIO data valid 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 ns
20
0
25
MHz
ns
20
Freescale Semiconductor, Inc.
Figure 5. Serial wire clock input timing
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 21
J11
J12
J11
J9
J10
Input data valid
Output data valid
Output data valid
SWD_CLK
SWD_DIO
SWD_DIO
SWD_DIO
SWD_DIO
Peripheral operating requirements and behaviors
Figure 6. Serial wire data timing
3.2

System modules

There are no specifications necessary for the device's system modules.
3.3

Clock modules

3.3.1 MCG specifications

Table 18. MCG specifications
Symbol Description Min. Typ. Max. Unit Notes
f
ints_ft
f
ints_t
Δ
fdco_res_t
Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C
Internal reference frequency (slow clock) — user trimmed
Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using C3[SCTRIM] and C4[SCFTRIM]
Table continues on the next page...
32.768 kHz
31.25 39.0625 kHz
± 0.3 ± 0.6 %f
dco
1
Kinetis KL25 Sub-Family, Rev5 08/2014.
21
Freescale Semiconductor, Inc.
Page 22
Peripheral operating requirements and behaviors
Table 18. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
Δf
dco_t
Δf
dco_t
f
intf_ft
Δf
intf_ft
f
intf_t
f
loc_low
f
loc_high
f
fll_ref
f
dco
f
dco_t_DMX3
J
cyc_fll
t
fll_acquire
f
vco
I
I
f
pll_ref
J
cyc_pll
Total deviation of trimmed average DCO output
+0.5/-0.7 ± 3 %f
frequency over voltage and temperature Total deviation of trimmed average DCO output
± 0.4 ± 1.5 %f frequency over fixed voltage and temperature range of 0–70 °C
Internal reference frequency (fast clock) —
4 MHz factory trimmed at nominal VDD and 25 °C
Frequency deviation of internal reference clock
+1/-2 ± 3 %f (fast clock) over temperature and voltage — factory trimmed at nominal VDD and 25 °C
Internal reference frequency (fast clock) —
3 5 MHz
user trimmed at nominal VDD and 25 °C Loss of external clock minimum frequency —
RANGE = 00 Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(3/5) x
f
ints_t
(16/5) x
f
ints_t
kHz
kHz
FLL FLL reference frequency range 31.25 39.0625 kHz DCO output
frequency range
DCO output frequency
2
FLL period jitter
• f
= 48 MHz
VCO
Low range (DRS = 00)
640 × f
fll_ref
Mid range (DRS = 01)
1280 × f
fll_ref
Low range (DRS = 00)
732 × f
fll_ref
Mid range (DRS = 01)
1464 × f
fll_ref
20 20.97 25 MHz 3, 4
40 41.94 48 MHz
23.99 MHz 5, 6
47.97 MHz
180 ps 7
FLL target frequency acquisition time 1 ms 8
PLL VCO operating frequency 48.0 100 MHz PLL operating current
pll
• PLL at 96 MHz (f
osc_hi_1
= 8 MHz, f
pll_ref
=
1060 µA
2 MHz, VDIV multiplier = 48)
PLL operating current
pll
• PLL at 48 MHz (f
osc_hi_1
= 8 MHz, f
pll_ref
=
600 µA
2 MHz, VDIV multiplier = 24) PLL reference frequency range 2.0 4.0 MHz PLL period jitter (RMS)
• f
= 48 MHz
vco
• f
= 100 MHz
vco
— —
120
50
— —
dco
dco
intf_ft
ps ps
1, 2
1, 2
2
9
9
10
22
Freescale Semiconductor, Inc.
Table continues on the next page...
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 23
Peripheral operating requirements and behaviors
Table 18. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
J
acc_pll
PLL accumulated jitter over 1µs (RMS)
• f
= 48 MHz
vco
• f
= 100 MHz
vco
— —
1350
600
— —
10
ps ps
D
D
t
pll_lock
Lock entry frequency tolerance ± 1.49 ± 2.98 %
lock
Lock exit frequency tolerance ± 4.47 ± 5.97 %
unl
Lock detector detection time 150 × 10
-6
s 11
+ 1075(1/
f
)
pll_ref
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, f
ints_ft
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf
) over voltage and temperature must be considered.
dco_t
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification is based on standard deviation (RMS) of period or frequency.
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise
characteristics of each PCB and results will vary.
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications
Table 19. Oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
V
I
DDOSC
Kinetis KL25 Sub-Family, Rev5 08/2014.
Supply voltage 1.71 3.6 V
DD
Supply current — low-power mode (HGO=0)
• 32 kHz
• 4 MHz
• 8 MHz (RANGE=01)
• 16 MHz
— — — — —
500 200 300 950
1.2
Table continues on the next page...
— — — — —
nA μA μA μA
mA
Freescale Semiconductor, Inc.
1
23
Page 24
Peripheral operating requirements and behaviors
Table 19. Oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
• 24 MHz
• 32 MHz
1.5 mA
I
DDOSC
C C R
R
V
pp
Supply current — high gain mode (HGO=1)
• 32 kHz
• 4 MHz
• 8 MHz (RANGE=01)
• 16 MHz
• 24 MHz
• 32 MHz
EXTAL load capacitance 2, 3
x
XTAL load capacitance 2, 3
y
Feedback resistor — low-frequency, low-power
F
— — — — — —
25 400 500
2.5 3 4
— — — — — —
μA μA
μA mA mA mA
2, 4
mode (HGO=0) Feedback resistor — low-frequency, high-gain
10
mode (HGO=1) Feedback resistor — high-frequency, low-
power mode (HGO=0) Feedback resistor — high-frequency, high-gain
1
mode (HGO=1) Series resistor — low-frequency, low-power
S
mode (HGO=0) Series resistor — low-frequency, high-gain
200
mode (HGO=1) Series resistor — high-frequency, low-power
mode (HGO=0) Series resistor — high-frequency, high-gain
mode (HGO=1)
5
Peak-to-peak amplitude of oscillation (oscillator
0
0.6 V mode) — low-frequency, low-power mode (HGO=0)
Peak-to-peak amplitude of oscillation (oscillator
V
DD
V mode) — low-frequency, high-gain mode (HGO=1)
Peak-to-peak amplitude of oscillation (oscillator
0.6 V mode) — high-frequency, low-power mode (HGO=0)
Peak-to-peak amplitude of oscillation (oscillator
V
DD
V mode) — high-frequency, high-gain mode (HGO=1)
1
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
24
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 25
Peripheral operating requirements and behaviors
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.
3.3.2.2 Oscillator frequency specifications
Table 20. Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
f
osc_lo
f
osc_hi_1
f
osc_hi_2
f
ec_extal
t
dc_extal
t
cst
Oscillator crystal or resonator frequency — low­frequency mode (MCG_C2[RANGE]=00)
Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)
Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)
Input clock frequency (external clock mode) 48 MHz 1, 2 Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0) Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1) Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode (HGO=0)
Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)
32 40 kHz
3 8 MHz
8 32 MHz
750 ms 3, 4
250 ms
0.6 ms
1 ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Freescale Semiconductor, Inc.
25
Page 26
Peripheral operating requirements and behaviors
3.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.
Table 21. NVM program/erase timing specifications
Symbol Description Min. Typ. Max. Unit Notes
t
hvpgm4
t
hversscr
t
hversall
1. Maximum time based on expectations at cycling end-of-life.
Longword Program high-voltage time 7.5 18 μs — Sector Erase high-voltage time 13 113 ms 1 Erase All high-voltage time 52 452 ms 1
3.4.1.2 Flash timing specifications — commands
Table 22. Flash command timing specifications
Symbol Description Min. Typ. Max. Unit Notes
t
rd1sec1k
t
pgmchk
t
rdrsrc
t
pgm4
t
ersscr
t
rd1all
t
rdonce
t
pgmonce
t
ersall
t
vfykey
Read 1s Section execution time (flash sector) 60 μs 1 Program Check execution time 45 μs 1 Read Resource execution time 30 μs 1 Program Longword execution time 65 145 μs — Erase Flash Sector execution time 14 114 ms 2 Read 1s All Blocks execution time 1.8 ms — Read Once execution time 25 μs 1 Program Once execution time 65 μs — Erase All Blocks execution time 88 650 ms 2 Verify Backdoor Access Key execution time 30 μs 1
1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3 Flash high voltage current behaviors
Table 23. Flash high voltage current behaviors
Symbol Description Min. Typ. Max. Unit
I
DD_PGM
I
DD_ERS
26
Freescale Semiconductor, Inc.
Average current adder during high voltage flash programming operation
Average current adder during high voltage flash erase operation
2.5 6.0 mA
1.5 4.0 mA
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 27
Peripheral operating requirements and behaviors
3.4.1.4 Reliability specifications
Table 24. NVM reliability specifications
Symbol Description Min. Typ.
Program Flash
t
nvmretp10k
t
nvmretp1k
n
nvmcycp
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.
Data retention after up to 10 K cycles 5 50 years — Data retention after up to 1 K cycles 20 100 years — Cycling endurance 10 K 50 K cycles 2
1
Max. Unit Notes

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.
3.6

Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.
3.6.1.1
Symbol Description Conditions Min. Typ.
V
DDA
ΔV
DDA
ΔV
SSA
V
REFH
V
REFL
16-bit ADC operating conditions
Table 25. 16-bit ADC operating conditions
1
Supply voltage Absolute 1.71 3.6 V — Supply voltage Delta to VDD (VDD – V Ground voltage Delta to VSS (V ADC reference
voltage high ADC reference
voltage low
SS
) -100 0 +100 mV 2
DDA
– V
) -100 0 +100 mV 2
SSA
1.13 V
V
SSA
V
DDA
SSA
Max. Unit Notes
V
V
DDA
SSA
V 3
V 3
Kinetis KL25 Sub-Family, Rev5 08/2014.
Table continues on the next page...
27
Freescale Semiconductor, Inc.
Page 28
Peripheral operating requirements and behaviors
Table 25. 16-bit ADC operating conditions (continued)
Symbol Description Conditions Min. Typ.
V
C
ADIN
ADIN
Input voltage • 16-bit differential mode
• All other modes
Input capacitance
• 16-bit mode
• 8-bit / 10-bit / 12-bit modes
VREFL
VREFL
— —
1
Max. Unit Notes
31/32 *
V
VREFH
VREFH 8 4
10
pF
5
R
ADIN
Input series
2 5
resistance
R
f
ADCK
Analog source
AS
resistance (external)
ADC conversion
13-bit / 12-bit modes f
< 4 MHz
ADCK
5
≤ 13-bit mode 1.0 18.0 MHz 5
4
clock frequency
f
ADCK
ADC conversion
16-bit mode 2.0 12.0 MHz 5
clock frequency
C
rate
ADC conversion rate
≤ 13-bit modes No ADC hardware averaging
20.000
818.330
Ksps
6
Continuous conversions enabled, subsequent conversion time
C
rate
ADC conversion rate
16-bit mode No ADC hardware averaging
37.037
461.467
Ksps
6
Continuous conversions enabled, subsequent conversion time
1. Typical values assume V
= 3.0 V, Temp = 25 °C, f
DDA
= 1.0 MHz, unless otherwise stated. Typical values are for
ADCK
reference only, and are not tested in production.
2. DC potential difference.
3. For packages without dedicated VREFH and VREFL pins, V V
.
SSA
is internally tied to V
REFH
DDA
, and V
is internally tied to
REFL
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns.
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
28
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 29
RAS
VAS
CAS
ZAS
VADIN
ZADIN
RADIN
RADIN
RADIN
RADIN
CADIN
Pad leakage due to input protection
INPUT PIN
INPUT PIN
INPUT PIN
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
ADC SAR
ENGINE
Peripheral operating requirements and behaviors
Figure 7. ADC input impedance equivalency diagram
3.6.1.2
16-bit ADC electrical characteristics
Table 26. 16-bit ADC characteristics (V
Symbol Description Conditions
I
DDA_ADC
f
ADACK
TUE Total unadjusted
Supply current 0.215 1.7 mA 3 ADC
asynchronous clock source
Sample Time See Reference Manual chapter for sample times
error
1
• ADLPC = 1, ADHSC = 0
• ADLPC = 1, ADHSC = 1
• ADLPC = 0, ADHSC = 0
• ADLPC = 0, ADHSC = 1
• 12-bit modes
• <12-bit modes
= V
REFH
Min. Typ.
1.2
2.4
3.0
4.4
— —
DDA
2.4
4.0
5.2
6.2
±4
±1.4
, V
2
REFL
= V
SSA
)
Max. Unit Notes
3.9
6.1
7.3
9.5
±6.8
MHz MHz MHz MHz
LSB
t 1/f
4
±2.1
ADACK
ADACK
5
=
DNL Differential non-
• 12-bit modes
linearity
• <12-bit modes
Kinetis KL25 Sub-Family, Rev5 08/2014.
Table continues on the next page...
±0.7
±0.2
–1.1 to
LSB
4
+1.9
–0.3 to 0.5
Freescale Semiconductor, Inc.
5
29
Page 30
Peripheral operating requirements and behaviors
Table 26. 16-bit ADC characteristics (V
Symbol Description Conditions
INL Integral non-
• 12-bit modes
linearity
• <12-bit modes
E
Full-scale error • 12-bit modes
FS
• <12-bit modes
E
ENOB Effective number
Q
Quantization error
of bits
• 16-bit modes
• ≤13-bit modes
16-bit differential mode
• Avg = 32
• Avg = 4
16-bit single-ended mode
• Avg = 32
• Avg = 4
SINAD
Signal-to-noise plus distortion
THD Total harmonic
distortion
See ENOB
16-bit differential mode
• Avg = 32
16-bit single-ended mode
• Avg = 32
1
= V
REFH
Min. Typ.
— — — —
12.8
11.9
12.2
11.4
DDA
, V
±1.0
REFL
2
= V
) (continued)
SSA
Max. Unit Notes
–2.7 to
LSB
+1.9
±0.5
–0.7 to
+0.5
–4
–1.4
–1 to 0
14.5
13.8
13.9
13.1
–5.4 –1.8
±0.5
— —
— —
LSB
LSB
bits bits
bits bits
6.02 × ENOB + 1.76 dB
-94
-85
dB
dB
4
4
4
V
ADIN
V
5
DDA
=
5
6
7
SFDR Spurious free
dynamic range
E
IL
Input leakage error
Temp sensor slope
V
TEMP25
Temp sensor voltage
30
Freescale Semiconductor, Inc.
16-bit differential mode
82
95
dB
• Avg = 32 78
90
dB
16-bit single-ended mode
• Avg = 32
IIn × R
AS
mV IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
Across the full temperature
1.55 1.62 1.69 mV/°C 8
range of the device 25 °C 706 716 726 mV 8
Kinetis KL25 Sub-Family, Rev5 08/2014.
7
Page 31
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
15.00
14.70
14.40
14.10
13.80
13.50
13.20
12.90
12.60
12.30
12.00 1 2 3 4 5 6 7 8 9 10 1211
Hardware Averaging Disabled Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
14.00
13.75
13.25
13.00
12.75
12.50
12.00
11.75
11.50
11.25
11.00 1 2 3 4 5 6 7 8 9 10 1211
Averaging of 4 samples Averaging of 32 samples
13.50
12.25
Peripheral operating requirements and behaviors
1. All accuracy numbers assume the ADC is calibrated with V
2. Typical values assume V
= 3.0 V, Temp = 25 °C, f
DDA
ADCK
= V
REFH
DDA
= 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
4. 1 LSB = (V
REFH
- V
REFL
)/2
N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Kinetis KL25 Sub-Family, Rev5 08/2014.
Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
31
Freescale Semiconductor, Inc.
Page 32
Peripheral operating requirements and behaviors

3.6.2 CMP and 6-bit DAC electrical specifications

Table 27. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
V
DD
I
DDHS
I
DDLS
V
AIN
V
AIO
V
Supply voltage 1.71 3.6 V Supply current, high-speed mode (EN = 1, PMODE =
200 μA
1) Supply current, low-speed mode (EN = 1, PMODE =
20 μA
0) Analog input voltage V
SS
V Analog input offset voltage 20 mV Analog comparator hysteresis
H
• CR0[HYSTCTR] = 00
• CR0[HYSTCTR] = 01
• CR0[HYSTCTR] = 10
• CR0[HYSTCTR] = 11
1
— — — —
5 10 20 30
DD
— — — —
V
mV mV mV mV
V
CMPOh
V
CMPOl
t
DHS
Output high VDD – 0.5 V Output low 0.5 V Propagation delay, high-speed mode (EN = 1,
20 50 200 ns
PMODE = 1)
t
DLS
Propagation delay, low-speed mode (EN = 1, PMODE
80 250 600 ns
= 0)
2
40 μs
I
DAC6b
Analog comparator initialization delay 6-bit DAC current adder (enabled) 7 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB
DNL 6-bit DAC differential non-linearity –0.3 0.3 LSB
1. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD – 0.7 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = V
reference
/64
3
32
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 33
CMP Hysteresis vs Vinn
0
1
2
HYSTCTR Setting
000.00E+00
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1
Vinn (V)
3
30.00E-03
20.00E-03
10.00E-03
40.00E-03
50.00E-03
60.00E-03
70.00E-03
80.00E-03
90.00E-03
CMP Hysteresis (V)
180.00E-03
CMP Hysteresis vs Vinn
0 1 2
HYSTCTR Setting
60.00E-03
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1
CMP Hysteresis (V)
Vinn (V)
3
-20.00E-03
000.00E+00
20.00E-03
40.00E-03
80.00E-03
100.00E-03
120.00E-03
140.00E-03
160.00E-03
Peripheral operating requirements and behaviors
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.6.3
Kinetis KL25 Sub-Family, Rev5 08/2014.

12-bit DAC electrical characteristics

33
Freescale Semiconductor, Inc.
Page 34
Peripheral operating requirements and behaviors
3.6.3.1 12-bit DAC operating requirements
Table 28. 12-bit DAC operating requirements
Symbol Desciption Min. Max. Unit Notes
V
V
DDA
DACR
C
I
L
Supply voltage 1.71 3.6 V Reference voltage 1.13 3.6 V 1 Output load capacitance 100 pF 2
L
Output load current 1 mA
1. The DAC reference can be selected to be V
DDA
or V
REFH
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
3.6.3.2 12-bit DAC operating behaviors
Table 29. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
I
DDA_DACL
I
DDA_DACH
t
DACLP
t
DACHP
t
CCDACLP
V
dacoutl
V
dacouth
INL Integral non-linearity error — high speed
DNL Differential non-linearity error — V
DNL Differential non-linearity error — V
V
OFFSET
E
PSRR Power supply rejection ratio, V
T T
Rop Output resistance (load = 3 kΩ) 250 Ω
SR Slew rate -80hF7Fh80h
Supply current — low-power mode 250 μA
P
Supply current — high-speed mode 900 μA
P
Full-scale settling time (0x080 to 0xF7F) —
100 200 μs 1
low-power mode Full-scale settling time (0x080 to 0xF7F) —
15 30 μs 1
high-power mode Code-to-code settling time (0xBF8 to
0.7 1 μs 1 0xC08) — low-power mode and high-speed mode
DAC output voltage range low — high-
100 mV speed mode, no load, DAC set to 0x000
DAC output voltage range high — high­speed mode, no load, DAC set to 0xFFF
V
DACR
−100
V
DACR
mV
±8 LSB 2 mode
DACR
> 2
±1 LSB 3 V
DACR
=
±1 LSB 4 VREF_OUT
Offset error ±0.4 ±0.8 %FSR 5 Gain error ±0.1 ±0.6 %FSR 5
G
≥ 2.4 V 60 90 dB
DDA
Temperature coefficient offset voltage 3.7 μV/C 6
CO
Temperature coefficient gain error 0.000421 %FSR/C
GE
1.2
1.7
V/μs
Table continues on the next page...
34
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 35
Digital Code
DAC12 INL (LSB)
0
500 1000 1500 2000 2500 3000 3500 4000
2
4
6
8
-2
-4
-6
-8
0
Peripheral operating requirements and behaviors
Table 29. 12-bit DAC operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
• High power (SPHP)
• Low power (SPLP)
0.05 0.12
BW 3dB bandwidth
• High power (SPHP)
• Low power (SPLP)
550
40
1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to V
3. The DNL is measured for 0 + 100 mV to V
4. The DNL is measured for 0 + 100 mV to V
5. Calculated by a best fit curve from VSS + 100 mV to V
6. V
= 3.0 V, reference select set for V
DDA
−100 mV
DACR
−100 mV
DACR
−100 mV with V
DACR
(DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC
DDA
DACR
− 100 mV
set to 0x800, temperature range is across the full range of the device
DDA
— —
> 2.4 V
— —
kHz
Figure 12. Typical INL error vs. digital code
Kinetis KL25 Sub-Family, Rev5 08/2014.
35
Freescale Semiconductor, Inc.
Page 36
Temperature °C
DAC12 Mid Level Code Voltage
25
55
85
105 125
1.499
-40
1.4985
1.498
1.4975
1.497
1.4965
1.496
Peripheral operating requirements and behaviors
3.7

Timers

Figure 13. Offset at half scale vs. temperature
See General switching specifications.
3.8

Communication interfaces

3.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org.
36
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 37
Peripheral operating requirements and behaviors
NOTE
The MCGPLLCLK meets the USB jitter specifications for certification with the use of an external clock/crystal for both Device and Host modes.
The MCGFLLCLK does not meet the USB jitter specifications for certification.

3.8.2 USB VREG electrical specifications

Table 30. USB VREG electrical specifications
650
1
Max. Unit Notes
4
Symbol Description Min. Typ.
VREGIN Input supply voltage 2.7 5.5 V
I
DDon
I
DDstby
I
DDoff
Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V
Quiescent current — Standby mode, load current equal zero
Quiescent current — Shutdown mode
• VREGIN = 5.0 V and temperature=25 °C
• Across operating voltage and temperature
125 186 μA
1.1 10 μA
— —
nA μA
I
LOADrun
I
LOADstby
V
Reg33out
V
Reg33out
C
OUT
ESR External output capacitor equivalent series
I
LIM
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I
Maximum load current — Run mode 120 mA Maximum load current — Standby mode 1 mA Regulator output voltage — Input supply
(VREGIN) > 3.6 V
• Run mode
• Standby mode
Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode
External output capacitor 1.76 2.2 8.16 μF
resistance Short circuit current 290 mA
3
2.1
2.1 3.6 V 2
1 100
3.3
2.8
3.6
3.6
V V
Load
.
Kinetis KL25 Sub-Family, Rev5 08/2014.
37
Freescale Semiconductor, Inc.
Page 38
Peripheral operating requirements and behaviors
3.8.3 SPI switching specifications
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.
Table 31. SPI master mode timing on slew rate disabled pads
Num. Symbol Description Min. Max. Unit Note
1 f 2 t
SPSCK
3 t 4 t 5 t
WSPSCK
6 t 7 t 8 t 9 t
10 t
11 t
Lead
Lag
SU
HO
t
RO
t
FO
Frequency of operation f
op
SPSCK period 2 x t
periph
/2048 f
periph
/2 Hz 1
periph
2048 x
t
periph
Enable lead time 1/2 t Enable lag time 1/2 t Clock (SPSCK) high or low time t
– 30 1024 x
periph
t
periph
Data setup time (inputs) 16 ns — Data hold time (inputs) 0 ns
HI
Data valid (after SPSCK edge) 10 ns
v
Data hold time (outputs) 0 ns — Rise time input t
RI
Fall time input
FI
– 25 ns
periph
Rise time output 25 ns — Fall time output
ns 2
SPSCK
SPSCK
ns
— —
1. For SPI0, f
2. t
periph
= 1/f
is the bus clock (f
periph
periph
). For SPI1 f
BUS
is the system clock (f
periph
SYS
).
Table 32. SPI master mode timing on slew rate enabled pads
Num. Symbol Description Min. Max. Unit Note
1 f 2 t
3 t 4 t 5 t
6 t
SPSCK
Lead
Lag
WSPSCK
SU
38
Freescale Semiconductor, Inc.
Frequency of operation f
op
SPSCK period 2 x t
periph
/2048 f
periph
/2 Hz 1
periph
2048 x
t
periph
Enable lead time 1/2 t Enable lag time 1/2 t Clock (SPSCK) high or low time t
– 30 1024 x
periph
t
periph
Data setup time (inputs) 96 ns
Table continues on the next page...
Kinetis KL25 Sub-Family, Rev5 08/2014.
ns 2
SPSCK
SPSCK
ns
— —
Page 39
(OUTPUT)
2
8
6 7
MSB IN2
LSB IN
MSB OUT2
LSB OUT
9
5
5
3
(CPOL=0)
4
11
11
10
10
SPSCK
SPSCK
(CPOL=1)
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
1. If configured as an output.
SS
1
(OUTPUT)
(OUTPUT)
MOSI
(OUTPUT)
MISO
(INPUT)
BIT 6 . . . 1
BIT 6 . . . 1
Peripheral operating requirements and behaviors
Table 32. SPI master mode timing on slew rate enabled pads (continued)
Num. Symbol Description Min. Max. Unit Note
7 t 8 t 9 t
10 t
11 t
HO
t
RO
t
FO
Data hold time (inputs) 0 ns
HI
Data valid (after SPSCK edge) 52 ns
v
Data hold time (outputs) 0 ns — Rise time input t
RI
Fall time input
FI
– 25 ns
periph
Rise time output 36 ns — Fall time output
1. For SPI0, f
2. t
periph
= 1/f
is the bus clock (f
periph
periph
). For SPI1 f
BUS
is the system clock (f
periph
SYS
).
Figure 14. SPI master mode timing (CPHA = 0)
Kinetis KL25 Sub-Family, Rev5 08/2014.
39
Freescale Semiconductor, Inc.
Page 40
2
6 7
MSB IN2
BIT 6 . . . 1
MASTER MSB OUT2
MASTER LSB OUT
5
5
8
10 11
PORT DATA
PORT DATA
3
10 11 4
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
9
(OUTPUT)
(CPOL=0)
SPSCK
SPSCK
(CPOL=1)
SS
1
(OUTPUT)
(OUTPUT)
MOSI
(OUTPUT)
MISO
(INPUT)
LSB IN
BIT 6 . . . 1
Peripheral operating requirements and behaviors
Figure 15. SPI master mode timing (CPHA = 1)
Table 33. SPI slave mode timing on slew rate disabled pads
Num. Symbol Description Min. Max. Unit Note
1 f 2 t 3 t 4 t 5 t 6 t
SPSCK
Lead
Lag
WSPSCK
SU
7 t 8 t 9 t
dis
10 t 11 t
HO
12 t
t
13 t
1. For SPI0, f
2. t
periph
= 1/f
periph
periph
RO
t
FO
3. Time to data active from high-impedance state
4. Hold time to high-impedance state
Frequency of operation 0 f
op
SPSCK period 4 x t
periph
/4 Hz 1
periph
ns 2 Enable lead time 1 t Enable lag time 1 t Clock (SPSCK) high or low time t
– 30 ns
periph
Data setup time (inputs) 2 ns — Data hold time (inputs) 7 ns
HI
Slave access time t
a
Slave MISO disable time t Data valid (after SPSCK edge) 22 ns
v
periph
periph
Data hold time (outputs) 0 ns — Rise time input t
RI
Fall time input
FI
– 25 ns
periph
Rise time output 25 ns — Fall time output
is the bus clock (f
). For SPI1 f
BUS
is the system clock (f
periph
SYS
).
periph
periph
— —
ns 3 ns 4
40
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 41
2
10
6 7
MSB IN
BIT 6 . . . 1
SLAVE MSB
SLAVE LSB OUT
11
5
5
3
8
4
13
NOTE: Not defined
12
12
11
SEE NOTE
13
9
see note
(INPUT)
(CPOL=0)
SPSCK
SPSCK
(CPOL=1)
SS
(INPUT)
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
LSB IN
BIT 6 . . . 1
Peripheral operating requirements and behaviors
Table 34. SPI slave mode timing on slew rate enabled pads
Num. Symbol Description Min. Max. Unit Note
1 f 2 t
SPSCK
3 t 4 t 5 t
WSPSCK
6 t 7 t 8 t
9 t 10 t 11 t 12 t
13 t
Lead
Lag
SU
HO
t
RO
t
FO
Frequency of operation 0 f
op
SPSCK period 4 x t
periph
/4 Hz 1
periph
ns 2 Enable lead time 1 t Enable lag time 1 t Clock (SPSCK) high or low time t
– 30 ns
periph
Data setup time (inputs) 2 ns — Data hold time (inputs) 7 ns
HI
Slave access time t
a
Slave MISO disable time t
dis
Data valid (after SPSCK edge) 122 ns
v
periph
periph
Data hold time (outputs) 0 ns — Rise time input t
RI
Fall time input
FI
– 25 ns
periph
Rise time output 36 ns — Fall time output
periph
periph
ns 3 ns 4
— —
1. For SPI0, f
2. t
periph
= 1/f
is the bus clock (f
periph
periph
3. Time to data active from high-impedance state
4. Hold time to high-impedance state
Figure 16. SPI slave mode timing (CPHA = 0)
Kinetis KL25 Sub-Family, Rev5 08/2014.
). For SPI1 f
BUS
is the system clock (f
periph
).
SYS
41
Freescale Semiconductor, Inc.
Page 42
2
6 7
MSB IN
BIT 6 . . . 1
MSB OUT SLAVE LSB OUT
5
5
10
12 13
3
12 13
4
SLAVE
8
9
see note
(INPUT)
(CPOL=0)
SPSCK
SPSCK
(CPOL=1)
SS
(INPUT)
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
NOTE: Not defined
11
LSB IN
BIT 6 . . . 1
Peripheral operating requirements and behaviors
Figure 17. SPI slave mode timing (CPHA = 1)

3.8.4 Inter-Integrated Circuit Interface (I2C) timing

Table 35. I2C timing
Characteristic Symbol Standard Mode Fast Mode Unit
Minimum Maximum Minimum Maximum
0.9
1
2
kHz
µs
ns 300 ns 300 ns
SCL Clock Frequency f
Hold time (repeated) START condition.
SCL
tHD; STA 4 0.6 µs
0 100 0 400
After this period, the first clock pulse is
generated.
LOW period of the SCL clock t
HIGH period of the SCL clock t
Set-up time for a repeated START
LOW
HIGH
tSU; STA 4.7 0.6 µs
4.7 1.3 µs 4 0.6 µs
condition
Data hold time for I2C bus devices tHD; DAT 0
Data set-up time tSU; DAT 250
Rise time of SDA and SCL signals t
Fall time of SDA and SCL signals t
r
f
2
5
1000 20 +0.1C — 300 20 +0.1C
3
3.45 — 1003,
4
0
6
7
b
6
b
Set-up time for STOP condition tSU; STO 4 0.6 µs
Bus free time between STOP and
START condition
Pulse width of spikes that must be
t
BUF
t
SP
4.7 1.3 µs
N/A N/A 0 50 ns
suppressed by the input filter
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V
42
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 43
SDA
HD; STA
t
HD; DAT
t
LOW
t
SU; DAT
t
HIGH
t
SU; STA
SR
P
S
S
t
HD; STA
t
SP
t
SU; STO
t
BUF
t
f
t
r
t
f
t
r
SCL
Peripheral operating requirements and behaviors
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
4. Input signal Slew = 10 ns and Output Load = 50 pF
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement t
SU; DAT
≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t + t
= 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is
SU; DAT
released.
7. Cb = total capacitance of the one bus line in pF.
rmax
Figure 18. Timing definition for fast and standard mode devices on the I2C bus
3.8.5

UART

See General switching specifications.
3.9

Human-machine interfaces (HMI)

3.9.1 TSI electrical specifications

Table 36. TSI electrical specifications
Symbol Description Min. Typ. Max. Unit
TSI_RUNF Fixed power consumption in run mode 100 µA TSI_RUNV Variable power consumption in run mode
(depends on oscillator's current selection)
TSI_EN Power consumption in enable mode 100 µA
TSI_DIS Power consumption in disable mode 1.2 µA
TSI_TEN TSI analog enable time 66 µs
TSI_CREF TSI reference capacitor 1.0 pF
TSI_DVOLT Voltage variation of VP & VM around nominal
values
Kinetis KL25 Sub-Family, Rev5 08/2014.
1.0 128 µA
0.19 1.03 V
Freescale Semiconductor, Inc.
43
Page 44

Dimensions

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package Then use this document number
32-pin QFN 98ASA00473D 48-pin QFN 98ASA00466D 64-pin LQFP 98ASS23234W 80-pin LQFP 98ASS23174W

5 Pinout

5.1 KL25 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.
80
LQFP64LQFP48QFN32QFN
1 1 1 PTE0 DISABLED PTE0 UART1_TX RTC_
2 2 PTE1 DISABLED PTE1 SPI1_MOSI UART1_RX SPI1_MISO I2C1_SCL 3 PTE2 DISABLED PTE2 SPI1_SCK 4 PTE3 DISABLED PTE3 SPI1_MISO SPI1_MOSI 5 PTE4 DISABLED PTE4 SPI1_PCS0 6 PTE5 DISABLED PTE5 7 3 1 VDD VDD VDD 8 4 2 2 VSS VSS VSS 9 5 3 3 USB0_DP USB0_DP USB0_DP
10 6 4 4 USB0_DM USB0_DM USB0_DM
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7
CMP0_OUT I2C1_SDA
CLKOUT
44
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 45
Pinout
80
LQFP64LQFP48QFN32QFN
11 7 5 5 VOUT33 VOUT33 VOUT33 12 8 6 6 VREGIN VREGIN VREGIN 13 9 7 PTE20 ADC0_DP0/
14 10 8 PTE21 ADC0_DM0/
15 11 PTE22 ADC0_DP3/
16 12 PTE23 ADC0_DM3/
17 13 9 7 VDDA VDDA VDDA 18 14 10 VREFH VREFH VREFH 19 15 11 VREFL VREFL VREFL 20 16 12 8 VSSA VSSA VSSA 21 17 13 PTE29 CMP0_IN5/
22 18 14 9 PTE30 DAC0_OUT/
23 19 PTE31 DISABLED PTE31 TPM0_CH4 24 20 15 PTE24 DISABLED PTE24 TPM0_CH0 I2C0_SCL 25 21 16 PTE25 DISABLED PTE25 TPM0_CH1 I2C0_SDA 26 22 17 10 PTA0 SWD_CLK TSI0_CH1 PTA0 TPM0_CH5 SWD_CLK 27 23 18 11 PTA1 DISABLED TSI0_CH2 PTA1 UART0_RX TPM2_CH0 28 24 19 12 PTA2 DISABLED TSI0_CH3 PTA2 UART0_TX TPM2_CH1 29 25 20 13 PTA3 SWD_DIO TSI0_CH4 PTA3 I2C1_SCL TPM0_CH0 SWD_DIO 30 26 21 14 PTA4 NMI_b TSI0_CH5 PTA4 I2C1_SDA TPM0_CH1 NMI_b 31 27 PTA5 DISABLED PTA5 USB_CLKIN TPM0_CH2 32 28 PTA12 DISABLED PTA12 TPM1_CH0 33 29 PTA13 DISABLED PTA13 TPM1_CH1 34 PTA14 DISABLED PTA14 SPI0_PCS0 UART0_TX 35 PTA15 DISABLED PTA15 SPI0_SCK UART0_RX 36 PTA16 DISABLED PTA16 SPI0_MOSI SPI0_MISO 37 PTA17 DISABLED PTA17 SPI0_MISO SPI0_MOSI 38 30 22 15 VDD VDD VDD 39 31 23 16 VSS VSS VSS 40 32 24 17 PTA18 EXTAL0 EXTAL0 PTA18 UART1_RX TPM_
41 33 25 18 PTA19 XTAL0 XTAL0 PTA19 UART1_TX TPM_
42 34 26 19 PTA20 RESET_b PTA20 RESET_b 43 35 27 20 PTB0/
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7
LLWU_P5
ADC0_DP0/
ADC0_SE0
ADC0_SE4a
ADC0_SE3
ADC0_SE7a
ADC0_SE4b
ADC0_SE23/ CMP0_IN4
ADC0_SE8/ TSI0_CH0
ADC0_SE0 ADC0_DM0/
ADC0_SE4a ADC0_DP3/
ADC0_SE3 ADC0_DM3/
ADC0_SE7a
CMP0_IN5/ ADC0_SE4b
DAC0_OUT/ ADC0_SE23/ CMP0_IN4
ADC0_SE8/ TSI0_CH0
PTE20 TPM1_CH0 UART0_TX
PTE21 TPM1_CH1 UART0_RX
PTE22 TPM2_CH0 UART2_TX
PTE23 TPM2_CH1 UART2_RX
PTE29 TPM0_CH2 TPM_
CLKIN0
PTE30 TPM0_CH3 TPM_
CLKIN1
CLKIN0
CLKIN1
PTB0/ LLWU_P5
I2C0_SCL TPM1_CH0
LPTMR0_ ALT1
Kinetis KL25 Sub-Family, Rev5 08/2014.
45
Freescale Semiconductor, Inc.
Page 46
Pinout
80
LQFP64LQFP48QFN32QFN
44 36 28 21 PTB1 ADC0_SE9/
45 37 29 PTB2 ADC0_SE12/
46 38 30 PTB3 ADC0_SE13/
47 PTB8 DISABLED PTB8 EXTRG_IN 48 PTB9 DISABLED PTB9 49 PTB10 DISABLED PTB10 SPI1_PCS0 50 PTB11 DISABLED PTB11 SPI1_SCK 51 39 31 PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_MOSI UART0_RX TPM_
52 40 32 PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_MISO UART0_TX TPM_
53 41 PTB18 TSI0_CH11 TSI0_CH11 PTB18 TPM2_CH0 54 42 PTB19 TSI0_CH12 TSI0_CH12 PTB19 TPM2_CH1 55 43 33 PTC0 ADC0_SE14/
56 44 34 22 PTC1/
57 45 35 23 PTC2 ADC0_SE11/
58 46 36 24 PTC3/
59 47 VSS VSS VSS 60 48 VDD VDD VDD 61 49 37 25 PTC4/
62 50 38 26 PTC5/
63 51 39 27 PTC6/
64 52 40 28 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_MISO SPI0_MOSI 65 53 PTC8 CMP0_IN2 CMP0_IN2 PTC8 I2C0_SCL TPM0_CH4 66 54 PTC9 CMP0_IN3 CMP0_IN3 PTC9 I2C0_SDA TPM0_CH5 67 55 PTC10 DISABLED PTC10 I2C1_SCL 68 56 PTC11 DISABLED PTC11 I2C1_SDA 69 PTC12 DISABLED PTC12 TPM_
70 PTC13 DISABLED PTC13 TPM_
71 PTC16 DISABLED PTC16 72 PTC17 DISABLED PTC17
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7
TSI0_CH6
TSI0_CH7
TSI0_CH8
TSI0_CH13
ADC0_SE15/ LLWU_P6/ RTC_CLKIN
LLWU_P7
LLWU_P8
LLWU_P9
LLWU_P10
TSI0_CH14
TSI0_CH15
DISABLED PTC3/
DISABLED PTC4/
DISABLED PTC5/
CMP0_IN0 CMP0_IN0 PTC6/
ADC0_SE9/ TSI0_CH6
ADC0_SE12/ TSI0_CH7
ADC0_SE13/ TSI0_CH8
ADC0_SE14/ TSI0_CH13
ADC0_SE15/ TSI0_CH14
ADC0_SE11/ TSI0_CH15
PTB1 I2C0_SDA TPM1_CH1
PTB2 I2C0_SCL TPM2_CH0
PTB3 I2C0_SDA TPM2_CH1
SPI1_MISO
CLKIN0
SPI1_MOSI
CLKIN1
PTC0 EXTRG_IN CMP0_OUT
PTC1/ LLWU_P6/ RTC_CLKIN
PTC2 I2C1_SDA TPM0_CH1
LLWU_P7
LLWU_P8
LLWU_P9
LLWU_P10
I2C1_SCL TPM0_CH0
UART1_RX TPM0_CH2 CLKOUT
SPI0_PCS0 UART1_TX TPM0_CH3
SPI0_SCK LPTMR0_
ALT2
SPI0_MOSI EXTRG_IN SPI0_MISO
CLKIN0
CLKIN1
CMP0_OUT
46
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 47
Pinout
80
LQFP64LQFP48QFN32QFN
73 57 41 PTD0 DISABLED PTD0 SPI0_PCS0 TPM0_CH0 74 58 42 PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK TPM0_CH1 75 59 43 PTD2 DISABLED PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO 76 60 44 PTD3 DISABLED PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI 77 61 45 29 PTD4/
78 62 46 30 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 79 63 47 31 PTD6/
80 64 48 32 PTD7 DISABLED PTD7 SPI1_MISO UART0_TX SPI1_MOSI
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7
LLWU_P14
LLWU_P15
DISABLED PTD4/
LLWU_P14
ADC0_SE7b ADC0_SE7b PTD6/
LLWU_P15
SPI1_PCS0 UART2_RX TPM0_CH4
SPI1_MOSI UART0_RX SPI1_MISO

5.2 KL25 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL25 Signal Multiplexing and Pin
Assignments.
Kinetis KL25 Sub-Family, Rev5 08/2014.
47
Freescale Semiconductor, Inc.
Page 48
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
VSSA
VREFL
VREFH
VDDA
PTE23
PTE22
PTE21
PTE20
VREGIN
VOUT33
USB0_DM
USB0_DP
VSS
VDD
PTE5
PTE4
PTE3
PTE2
PTE1
PTE0
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC17
PTC16
PTC13
PTC12
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
VDD
VSS
PTC3/LLWU_P7
PTC2
PTC1/LLWU_P6/RTC_CLKIN
PTC0
PTB19
PTB18
PTB17
PTB16
PTB11
PTB10
PTB9
PTB8
PTB3
PTB2
PTB1
PTB0/LLWU_P5
PTA20
PTA19
PTA18
VSS
VDD
PTA17
PTA16
PTA15
PTA14
PTA13
PTA12
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
PTE25
PTE24
PTE31
PTE30
PTE29
Pinout
Figure 19. KL25 80-pin LQFP pinout diagram
48
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 49
PTE24
PTE31
PTE30
PTE29
VSSA
VREFL
VREFH
VDDA
PTE23
PTE22
PTE21
PTE20
VREGIN
VOUT33
USB0_DM
USB0_DP
VSS
VDD
PTE1
PTE0
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
64
63
62
61
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
VDD
VSS
PTC3/LLWU_P7
PTC2
PTC1/LLWU_P6/RTC_CLKIN
PTC0
PTB19
PTB18
PTB17
PTB16
PTB3
PTB2
PTB1
PTB0/LLWU_P5
PTA20
PTA19
PTA18
VSS
VDD
PTA13
PTA12
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
PTE25
Pinout
Figure 20. KL25 64-pin LQFP pinout diagram
Kinetis KL25 Sub-Family, Rev5 08/2014.
49
Freescale Semiconductor, Inc.
Page 50
VSSA
VREFL
VREFH
VDDA
PTE21
PTE20
VREGIN
VOUT33
USB0_DM
USB0_DP
VSS
VDD
12
11
10
9
8
7
6
5
4
3
2
1
48
47
46
45
44
43
42
41
40
39
38
37
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
36
35
34
33
PTC3/LLWU_P7
PTC2
PTC1/LLWU_P6/RTC_CLKIN
PTC0
32
31
30
29
28
27
26
25
PTB17
PTB16
PTB3
PTB2
PTB1
PTB0/LLWU_P5
PTA20
PTA19
PTA3
PTA2
PTA1
PTA0
24
23
22
21
20
19
18
17
PTE25
PTE24
PTE30
PTE29
16
15
14
13
PTA18
VSS
VDD
PTA4
Pinout
Figure 21. KL25 48-pin QFN pinout diagram
50
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 51
32
31
30
29
28
27
26
25
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
PTA2
PTA1
PTA0
PTE30
12
11
10
9
VSS
VDD
PTA4
PTA3
16
15
14
13
PTB0/LLWU_P5
PTA20
PTA19
PTA18
24
23
22
21
20
19
18
17
PTC3/LLWU_P7
PTC2
PTC1/LLWU_P6/RTC_CLKIN
PTB1
VSSA
VDDA
VREGIN
VOUT33
USB0_DM
USB0_DP
VSS
PTE0
8
7
6
5
4
3
2
1

Ordering parts

Figure 22. KL25 32-pin QFN pinout diagram
6
Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PKL25 and MKL25

Part identification

7
Kinetis KL25 Sub-Family, Rev5 08/2014.
Freescale Semiconductor, Inc.
51
Page 52
Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format: Q KL## A FFF R T PP CC N
7.3

Fields

This table lists the possible values for each field in the part number (not all combinations are valid):
Table 37. Part number fields descriptions
Field Description Values
Q Qualification status • M = Fully qualified, general market flow
• P = Prequalification KL## Kinetis family • KL25 A Key attribute • Z = Cortex-M0+ FFF Program flash memory size • 32 = 32 KB
• 64 = 64 KB
• 128 = 128 KB R Silicon revision • (Blank) = Main
• A = Revision after main T Temperature range (°C) • V = –40 to 105 PP Package identifier • FM = 32 QFN (5 mm x 5 mm)
• FT = 48 QFN (7 mm x 7 mm)
• LH = 64 LQFP (10 mm x 10 mm)
• LK = 80 LQFP (12 mm x 12 mm) CC Maximum CPU frequency (MHz) • 4 = 48 MHz N Packaging type • R = Tape and reel
• (Blank) = Trays
52
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 53

Terminology and guidelines

7.4 Example
This is an example part number: MKL25Z64VLK4
8 Terminology and guidelines

8.1 Definition: Operating requirement

An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.
8.1.1 Example
This is an example of an operating requirement:
Symbol Description Min. Max. Unit
V
DD
1.0 V core supply voltage
0.9 1.1 V

8.2 Definition: Operating behavior

Unless otherwise specified, an operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.
8.2.1
This is an example of an operating behavior:
Example
Symbol Description Min. Max. Unit
I
WP
Kinetis KL25 Sub-Family, Rev5 08/2014.
Digital I/O weak pullup/ pulldown current
10 130 µA
53
Freescale Semiconductor, Inc.
Page 54
Terminology and guidelines

8.3 Definition: Attribute

An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.
8.3.1 Example
This is an example of an attribute:
Symbol Description Min. Max. Unit
CIN_D Input capacitance:
digital pins
7 pF

8.4 Definition: Rating

A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
8.4.1
This is an example of an operating rating:
V
DD
Example
Symbol Description Min. Max. Unit
1.0 V core supply voltage
–0.3 1.2 V
54
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 55
40
30
20
10
0
Measured characteristic
Operating rating
Failures in time (ppm)
The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
- No permanent failure
- Correct operation
Normal operating range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Operating rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating rating (min.)
Operating (power on)
Degraded operating range
Degraded operating range
No permanent failure
Handling range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Handling rating (max.)
Handling rating (min.)
Handling (power off)
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Terminology and guidelines
8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Freescale Semiconductor, Inc.
55
Page 56
Terminology and guidelines

8.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
8.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol Description Min. Typ. Max. Unit
I
WP
Digital I/O weak pullup/pulldown current
10 70 130 µA
8.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and temperature conditions:
56
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 57
0.90
0.95
1.00
1.05
1.10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
150 °C
105 °C
25 °C
–40 °C
VDD(V)
I
(μA)
DD_STOP
T
J

Revision history

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):
Table 38. Typical value conditions
Symbol Description Value Unit
T
A
V
DD
Ambient temperature 25 °C
3.3 V supply voltage 3.3 V
9 Revision history
The following table provides a revision history for this document.
Table 39. Revision history
Rev. No. Date Substantial Changes
2 9/2012 Completed all the TBDs, initial public release. 3 9/2012 Updated Signal Multiplexing and Pin Assignments table to add UART2
signals.
4 3/2014 • Updated the front page and restructured the chapters
Table continues on the next page...
Kinetis KL25 Sub-Family, Rev5 08/2014.
Freescale Semiconductor, Inc.
57
Page 58
Revision history
Rev. No. Date Substantial Changes
5
Table 39. Revision history (continued)
• Added a note to the I
• Updated Voltage and current operating ratings
• Updated Voltage and current operating requirements
• Updated the Voltage and current operating behaviors
• Updated Power mode transition operating behaviors
• Updated Capacitance attributes
• Updated footnote in the Device clock specifications
• Updated t
in the Flash timing specifications — commands
ersall
• Updated VADIN in the 16-bit ADC operating conditions
• Updated Temp sensor slope and voltage and added a note to them in the 16-bit ADC electrical characteristics
• Removed TA in the 12-bit DAC operating requirements
• Added Inter-Integrated Circuit Interface (I2C) timing
08/2014 • Updated related source and added block diagram in the front
page
• Updated Power consumption operating behaviors
• Updated the note in USB electrical specifications
in the ESD handling ratings
LAT
58
Freescale Semiconductor, Inc.
Kinetis KL25 Sub-Family, Rev5 08/2014.
Page 59
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.
Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.
Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
© 2012-2014 Freescale Semiconductor, Inc.
Document Number KL25P80M48SF0
Revision 5 08/2014
Loading...