Freescale MCF5329 User Manual

Freescale Semiconductor
MAPBGA–256 17mm x 17mm
MAPBGA–196 15mm x 15mm
Data Sheet: Technical Data
MCF532x ColdFire® Microprocessor Data Sheet
Features
• Version 3 ColdFire variable-length RISC processor core
• System debug support
• JTAG support for system level board testing
• On-chip memories – 16-Kbyte unified write-back cache – 32-Kbyte dual-ported SRAM on CPU internal bus,
accessible by core and non-core bus masters (e.g., DMA, FEC, LCD controller, and USB host and OTG)
• Power management
• Liquid Crystal Display Controller (LCDC)
• Embedded Voice-over-IP (VoIP) system solution
• SDR/DDR SDRAM Controller
• Universal Serial Bus (USB) Host Controller
• Universal Serial Bus (USB) On-the-Go (OTG) controller
• Synchronous Serial Interface (SSI)
• Fast Ethernet Controller (FEC)
• Cryptography Hardware Accelerators
• FlexCAN Module
• Three Universal Asynchronous Receiver Transmitters (UARTs)
2
•I
C Module
• Queued Serial Peripheral Interface (QSPI)
• Pulse Width Modulation (PWM) module
• Real Time Clock
• Four 32-bit DMA Timers
• Software Watchdog Timer
• Four Periodic Interrupt Timers (PITs)
• Phase Locked Loop (PLL)
• Interrupt Controllers (x2)
• DMA Controller
• FlexBus (External Interface)
• Chip Configuration Module (CCM)
• Reset Controller
• General Purpose I/O interface
Document Number: MCF5329DS
Rev. 4, 04/2008
MCF5329
© Freescale Semiconductor, Inc., 2008. All rights reserved.
Table of Contents
1MCF532x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . . .3
2 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
3 Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 PLL Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3.3 Supply Voltage Sequencing and Separation Cautions . .5
3.3.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .5
3.3.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .6
4 Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .6
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
4.2 Pinout—256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .14
4.3 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .15
5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .17
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . . 18
5.5 Oscillator and PLL Electrical Characteristics . . . . . . . .19
5.6 External Interface Timing Characteristics . . . . . . . . . . .20
5.6.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.7 SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
5.7.1 SDR SDRAM AC Timing Characteristics. . . . . .23
5.7.2 DDR SDRAM AC Timing Characteristics . . . . . 25
5.8 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . 28
5.9 Reset and Configuration Override Timing . . . . . . . . . . 29
5.10 LCD Controller Timing Specifications . . . . . . . . . . . . . 30
5.11 USB On-The-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.12 ULPI Timing Specification . . . . . . . . . . . . . . . . . . . . . . 33
5.13 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 33
2
5.14 I
C Input/Output Timing Specifications . . . . . . . . . . . . 35
5.15 Fast Ethernet AC Timing Specifications . . . . . . . . . . . 37
5.15.1 MII Receive Signal Timing . . . . . . . . . . . . . . . . 37
5.15.2 MII Transmit Signal Timing . . . . . . . . . . . . . . . . 37
5.15.3 MII Async Inputs Signal Timing . . . . . . . . . . . . 38
5.15.4 MII Serial Management Channel Timing . . . . . 38
5.16 32-Bit Timer Module Timing Specifications . . . . . . . . . 39
5.17 QSPI Electrical Specifications . . . . . . . . . . . . . . . . . . . 39
5.18 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 40
5.19 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 42
6 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.1 Package Dimensions—256 MAPBGA . . . . . . . . . . . . . 46
7.2 Package Dimensions—196 MAPBGA . . . . . . . . . . . . . 47
8 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor2
MCF532x Family Comparison
FlexBus
D[31:0] A[23:0]
R/W
CS[5:0] TA
TS
XBS
M2
M1 M0
M5
PWMs, EPORT,
JTAG TAP
TRST TCLK TMS
TDI
TDO
Cache
(1024x32)x4
DMA
UARTs
FlexCAN
I2C
QSPI
DMA Timers
Watchdog, PITs
PADI — Pin Muxing
EXTAL
XTAL
CLKOUT
16 KByte
Chip
External
Selects
(To/From PADI)
CANTX
CANRX
FEC
FEC
DMA Timer
SDRAMC
UART
I
2
C
SDRAMC QSPI
JTAG_EN
RTC
USB Host
M4
LCDC
S4
S7
S1
Reset
PORTS
SDRAMC
SSI
LCDC
USB OTG
RESET
SRAM
(4096x32)x2
32 KByte
PLL
S6
SDRAMC
M6
USB Host
USB OTG
ULPI Interface
INTC0
INTC1
RCON
LCDC
SSI
V3 ColdFire CPU
DIV EMAC
BDM
(To/From PADI)
RNGA
SKHA
MDHA
Cryptography
Modules
Interface
RSTOUT
EXTAL32K
XTAL32K
(To/From SRAM backdoor)
(To/From XBS backdoor)
DREQ
n
DACKn
(To/From PADI)
USB Host
USB OTG
BE/BWE[3:0]
PWM
XCVR XCVR
(To/From PADI)

1 MCF532x Family Comparison

The following table compares the various device derivatives available within the MCF532x family.
Freescale Semiconductor 3
ColdFire Version 3 Core with EMAC (Enhanced Multiply-Accumulate Unit)
Core (System) Clock up to 240 MHz
Peripheral and External Bus Clock (Core clock ÷ 3)
Performance (Dhrystone/2.1 MIPS) up to 211
Unified Cache 16 Kbytes
Static RAM (SRAM) 32 Kbytes
Figure 1. MCF5329 Block Diagram
Table 1. MCF532x Family Configurations
Module MCF5327 MCF5328 MCF53281 MCF5329
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
••••
up to 80 MHz
Ordering Information
LCD Controller
SDR/DDR SDRAM Controller
USB 2.0 Host
USB 2.0 On-the-Go
UTMI+ Low Pin Interface (ULPI)
Synchronous Serial Interface (SSI)
Fast Ethernet Controller (FEC)
Cryptography Hardware Accelerators
Embedded Voice-over-IP System Solution
FlexCAN 2.0B communication module
UARTs 3333
2
C ••••
I
QSPI
PWM Module
Real Time Clock
32-bit DMA Timers 4444
Table 1. MCF53 2 x Family Configurations (continued)
Module MCF5327 MCF5328 MCF53281 MCF5329
Watchdog Timer (WDT)
Periodic Interrupt Timers (PIT) 4444
Edge Port Module (EPORT)
Interrupt Controllers (INTC) 2222
16-channel Direct Memory Access (DMA)
FlexBus External Interface
General Purpose I/O Module (GPIO)
®
JTAG - IEEE
Package 196
1149.1 Test Access Port
MAPBGA
256
MAPBGA
256
MAPBGA

2 Ordering Information

Table 2. Orderable Part Numbers
Freescale Part
Number
MCF5327CVM240 MCF5327 RISC Microprocessor 196 MAPBGA 240 MHz –40
MCF5328CVM240 MCF5328 RISC Microprocessor 256 MAPBGA 240 MHz –40
MCF53281CVM240 MCF53281 RISC Microprocessor 256 MAPBGA 240 MHz –40
MCF5329CVM240 MCF5329 RISC Microprocessor 256 MAPBGA 240 MHz –40
Description Package Speed Temperature
256
MAPBGA
° to +85° C
° to +85° C
° to +85° C
° to +85° C
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor4
Hardware Design Considerations
Board IV
DD
10 Ω
0.1 µF
PLL V
DD
Pin
10 µF
GND
Board EV
DD
0 Ω
0.1 µF
USB V
DD
Pin
10 µF
GND

3 Hardware Design Considerations

3.1 PLL Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in
Figure 2 should be connected between the board V
close to the dedicated PLLV
pin as possible.
DD
and the PLLVDD pins. The resistor and capacitors should be placed as
DD
Figure 2. System PLL V
Power Filter
DD

3.2 USB Power Filtering

To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be connected between the board EV close to the dedicated USBV
or IV
DD
pin as possible.
DD
and each of the USBVDD pins. The resistor and capacitors should be placed as
DD
Figure 3. USB V
Power Filter
DD
NOTE
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.

3.3 Supply Voltage Sequencing and Separation Cautions

The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. SDVDD (2.5V or
3.3V) and EV
are specified relative to IVDD.
DD

3.3.1 Power Up Sequence

If EVDD/SDVDD are powered up with IVDD at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV must powered up. IV
Freescale Semiconductor 5
/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD
DD
should not lead the EVDD, SDVDD, or PLLVDD by more than 0.4 V during power ramp-up or there is
DD
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Pin Assignments and Reset States
high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid turning on the internal ESD protection clamp diodes.

3.3.2 Power Down Sequence

If IVDD/PLLVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV not lag EV
, SDVDD, or PLLVDD going low by more than 0.4 V during power down or there is undesired high current in the
DD
and PLLVDD power down before EVDD or SDVDD must power down. IVDD should
DD
ESD protection diodes. There are no requirements for the fall times of the power supplies.
The recommended power down sequence is as follows:
1. Drop IV
2. Drop EV
/PLLVDD to 0 V.
DD
/SDVDD supplies.
DD

4 Pin Assignments and Reset States

4.1 Signal Multiplexing

The following table lists all the MCF532x pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 7, “Package Information,” for package diagrams. For a more detailed discussion of the MCF532x signals, consult the MCF5329 Reference Manual (MCF5329RM).
NOTE
In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., A23), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO default to their GPIO functionality.
Table 3. MCF5327/8/9 Signal Information and Muxing
Signal Name GPIO Alternate 1 Alternate 2
Reset
RESET
RSTOUT O
EXTAL32K I
XTAL32K O
FB_CLK O
2
EXTAL I
2
XTAL
I
Clock
O
1
Dir.
Voltage
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
SDVDD
MCF5327
196
MAPBGA
Domain
J11 N15 N15
P14 P14 P14
L14 P16 P16
K14 N16 N16
M11 P13 P13
N11 R13 R13
L1 T2 T2
MCF5328
256
MAPBGA
MCF53281
MCF5329
256
MAPBGA
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor6
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Mode Selection
2
RCON
I
DRAMSEL I
FlexBus
A[23:22] FB_CS
[5:4] O
A[21:16] O
A[15:14] SD_BA[1:0]
A[13:11] SD_A[13:11]
3
3
—O
—O
A10 O
A[9:0] SD_A[9:0]
D[31:16] SD_D[31:16]
D[15:1] FB_D[31:17]
2
D0
BE/BWE
OE
TA
R/W
[3:0] PBE[3:0] SD_DQM[3:0]
2
FB_D[16]
PBUSCTL3 O
PBUSCTL2 I
PBUSCTL1 O
3
4
4
4
3
—O
I/O
I/O
I/O
O
TS PBUSCTL0 DACK0 —O
1
Dir.
Volta ge
EVDD
EVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
MCF5327
MAPBGA
Domain
196
MCF5328
256
MAPBGA
MCF53281
MCF5329
MAPBGA
M7 M8 M8
G11 H12 H12
B11,C11 C13, D13 C13, D13
B12, A12, D11, C12,
B13, A13
E13, A14, B14, C14,
A15, B15
E13, A14, B14, C14,
A15, B15
A14, B14 D14, B16 D14, B16
C13, C14,
D12
C15, C16,
D15
C15, C16,
D13 D16 D16
D14,
E11–14,
F11–F14,
E14–E16, F13–F16,
G16– G14
E14–E16, F13–F16,
G16– G14
G14
H3–H1,
J4–J1, K1, L4, M2, M3, N1, N2, P1,
P2, N3
F4–F1, G5–G2, L5, N4, P4, M5,
N5, P5, L6
M1–M4, N1–N4, T3, P4, R4, T4, N5, P5, R5,
T5
J3–J1,
K4–K1, L2, R6, N7, P7, R7, T7, P8,
M1–M4, N1–N4, T3, P4, R4, T4, N5, P5, R5,
J3–J1,
K4–K1, L2, R6, N7, P7, R7, T7, P8,
R8
M6 T8 T8
H4, P3, G1, M4L4, P6, L3, N6L4, P6, L3,
P6 R9 R9
G13 G13 G13
N6 N8 N8
D2 H4 H4
256
D15
T5
R8
N6
Chip Selects
FB_CS
[5:4] PCS[5:4] O
[3:1] PCS[3:1] O
FB_CS
FB_CS0
———O
SDVDD
SDVDD
SDVDD
B13, A13 B13, A13
A11, D10,
C10
A12, B12,
C12
A12, B12,
B10 D12 D12
C12
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 7
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
SDRAM Controller
SD_A10 O
SD_CKE O
SD_CLK O
SD_CLK
SD_CS1
SD_CS0
———O
———O
———O
SD_DQS3 O
SD_DQS2 O
SD_SCAS
SD_SRAS
———O
———O
SD_SDR_DQS O
SD_WE
———O
External Interrupts Port
IRQ7
IRQ6
2
2
PIRQ7
PIRQ6
2
2
I
USBHOST_
I
VBUS_EN
IRQ5
2
PIRQ5
2
USBHOST_
I
VBUS_OC
IRQ4
IRQ3
IRQ2
IRQ1
2
2
2
2
PIRQ4
PIRQ3
PIRQ2
PIRQ1
2
2
2
2
SSI_MCLK I
I
USB_CLKIN I
DREQ1
2
SSI_CLKIN I
1
Dir.
Volta ge
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
SDVDD
5
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
MCF5327
MAPBGA
Domain
196
MCF5328
256
MAPBGA
L2 P2 P2
E1 H2 H2
K3 R1 R1
K2 R2 R2
J4 J4
E2 H1 H1
H5 L1 L1
K6 T6 T6
L3 P3 P3
M1 R3 R3
K4 P1 P1
D1 H3 H3
J13 J13 J13
J14 J14
J15 J15
L13 J16 J16
M14 K14 K14
M13 K15 K15
N13 K16 K16
MCF53281
MCF5329
256
MAPBGA
FEC
FEC_MDC PFECI2C3 I2C_SCL
FEC_MDIO PFECI2C2 I2C_SDA
2
2
O
I/O
FEC_TXCLK PFECH7 I
FEC_TXEN PFECH6 O
FEC_TXD0 PFECH5 ULPI_DATA0 O
FEC_COL PFECH4 ULPI_CLK I
FEC_RXCLK PFECH3 ULPI_NXT I
FEC_RXDV PFECH2 ULPI_STP I
FEC_RXD0 PFECH1 ULPI_DATA4 I
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
C1 C1
C2 C2
A2 A2
B2 B2
E4 E4
A8 A8
C8 C8
D8 D8
C6 C6
Freescale Semiconductor8
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
FEC_CRS PFECH0 ULPI_DIR I
FEC_TXD[3:1] PFECL[7:5] ULPI_DATA[3:1] O
FEC_TXER PFECL4 O
FEC_RXD[3:1] PFECL[3:1] ULPI_DATA[7:5] I
FEC_RXER PFECL0 I
LCD Controller
LCD_D17 PLCDDH1 CANTX O
LCD_D16 PLCDDH0 CANRX O
LCD_D17 PLCDDH1 O
LCD_D16 PLCDDH0 O
LCD_D15 PLCDDM7 O
LCD_D14 PLCDDM6 O
LCD_D13 PLCDDM5 O
LCD_D12 PLCDDM4 O
LCD_D[11:8] PLCDDM[3:0] O
LCD_D7 PLCDDL7 O
LCD_D6 PLCDDL6 O
LCD_D5 PLCDDL5 O
LCD_D4 PLCDDL4 O
LCD_D[3:0] PLCDDL[3:0] O
LCD_ACD/
PLCDCTLH0 O
LCD_OE
LCD_CLS PLCDCTLL7 O
LCD_CONTRAST PLCDCTLL6 O
LCD_FLM/
PLCDCTLL5 O
LCD_VSYNC
LCD_LP/
PLCDCTLL4 O
LCD_HSYNC
LCD_LSCLK PLCDCTLL3 O
LCD_PS PLCDCTLL2 O
LCD_REV PLCDCTLL1 O
LCD_SPL_SPR PLCDCTLL0 O
1
Dir.
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
MCF5327
196
MAPBGA
Volta ge
Domain
B8 B8
D3–D1 D3–D1
B1 B1
E7, A6, B6 E7, A6, B6
D4 D4
C9
D9
A6 C9
B6 D9
C6 A7 A7
D6 B7 B7
A5 C7 C7
B5 D7 D7
C5, D5, A4, B4D6, E6, A5, B5D6, E6, A5,
MCF5328
256
MAPBGA
MCF53281
MCF5329
256
MAPBGA
B5
EVDD
EVDD
EVDD
EVDD
EVDD
C4 C5 C5
B3 D5 D5
A3 A4 A4
A2 A3 A3
D4, C3, D3, B2B4, C4, B3, C3B4, C4, B3,
C3
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
D7 B9 B9
C7 A9 A9
B7 D10 D10
A7 C10 C10
A8 B10 B10
B8 A10 A10
C8 A11 A11
D8 B11 B11
B9 C11 C11
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 9
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
1
USB Host & USB On-the-Go
USBOTG_M I/O
USBOTG_P I/O
USBHOST_M I/O
USBHOST_P I/O
FlexCAN (MCF53281 & MCF5329 only)
CANRX and CANTX do not have dedicated bond pads. Please refer to the following pins for muxing:
I2C_SDA, SSI_RXD, or LCD_D16 for CANRX and I2C_SCL, SSI_TXD, or LCD_D17 for CANTX.
PWM
PWM7 PPWM7 I/O
PWM5 PPWM5 I/O
PWM3 PPWM3 DT3OUT DT3IN I/O
PWM1 PPWM1 DT2OUT DT2IN I/O
MCF5327
Dir.
Volta ge
Domain
USB VDD
USB VDD
USB VDD
USB VDD
EVDD
EVDD
EVDD
EVDD
196
MAPBGA
G12 L15 L15
H13 L16 L16
K13 M15 M15
J12 M16 M16
H13 H13
H14 H14
H14 H15 H15
J14 H16 H16
MCF5328
256
MAPBGA
MCF53281
MCF5329
256
MAPBGA
SSI
SSI_MCLK PSSI4 I/O
SSI_BCLK PSSI3 U2CTS PWM7 I/O
SSI_FS PSSI2 U2RTS PWM5 I/O
SSI_RXD
SSI_TXD
SSI_RXD
SSI_TXD
2
2
2
2
PSSI1 U2RXD CANRX I
PSSI0 U2TXD CANTX O
PSSI1 U2RXD I
PSSI0 U2TXD O
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
G4 G4
F4 F4
G3 G3
G2
G1
G2
G1
I2C
I2C_SCL
I2C_SDA
I2C_SCL
I2C_SDA
2
2
2
2
PFECI2C1 CANTX U2TXD I/O
PFECI2C0 CANRX U2RXD I/O
PFECI2C1 U2TXD I/O
PFECI2C0 U2RXD I/O
EVDD
EVDD
EVDD
EVDD
F3
F2
E3 F3
E4 F2
DMA
DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing:
TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor10
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Volta ge
Domain
MCF5327
MAPBGA
Signal Name GPIO Alternate 1 Alternate 2
1
Dir.
QSPI
QSPI_CS2 PQSPI5 U2RTS O
QSPI_CS1 PQSPI4 PWM7 USBOTG_
EVDD
EVDD
O
PU_EN
QSPI_CS0 PQSPI3 PWM5 O
QSPI_CLK PQSPI2 I2C_SCL
2
O
QSPI_DIN PQSPI1 U2CTS I
QSPI_DOUT PQSPI0 I2C_SDA O
EVDD
EVDD
EVDD
EVDD
UARTs
U1CTS PUARTL7 SSI_BCLK I
U1RTS PUARTL6 SSI_FS O
U1TXD PUARTL5 SSI_TXD
U1RXD PUARTL4 SSI_RXD
2
2
O
I
U0CTS PUARTL3 I
U0RTS PUARTL2 O
U0TXD PUARTL1 O
U0RXD PUARTL0 I
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
Note: The UART2 signals are multiplexed on the QSPI, SSI, DMA Timers, and I2C pins.
MCF53281
MCF5329
256
MAPBGA
196
MCF5328
256
MAPBGA
P10 T12 T12
L11 T13 T13
P11 P11
N10 R12 R12
L10 N12 N12
M10 P12 P12
C9 D11 D11
D9 E10 E10
A9 E11 E11
A10 E12 E12
P13 R15 R15
N12 T15 T15
P12 T14 T14
P11 R14 R14
DMA Timers
DT3IN PTIMER3 DT3OUT U2RXD I
DT2IN PTIMER2 DT2OUT U2TXD I
DT1IN PTIMER1 DT1OUT DACK1 I
DT0IN PTIMER0 DT0OUT DREQ0
2
BDM/JTAG
JTAG_EN
DSCLK TRST
PSTCLK TCLK
7
I
BKPT TMS
DSI TDI
2
2
2
2
I
O
I
I
DSO TDO O
DDATA[3:0] O
EVDD
EVDD
EVDD
EVDD
I
6
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
C1 F1 F1
B1 E1 E1
A1 E2 E2
C2 E3 E3
L12 M13 M13
N14 P15 P15
L7 T9 T9
M12 R16 R16
K12 N14 N14
N9 N11 N11
N7, P7, L8, M8N9, P9, N10,
P10
N9, P9, N10,
P10
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 11
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
MCF53281
MCF5329
MAPBGA
R10, T10,
R11, T11
Signal Name GPIO Alternate 1 Alternate 2
PST[3:0] O
1
Dir.
EVDD
MCF5327
196
MAPBGA
Volta ge
Domain
N8, P8, L9, M9R10, T10,
MCF5328
256
MAPBGA
R11, T11
Test
7
TEST
PLL_TEST
I
8
I
EVDD
EVDD
E10 A16 A16
N13 N13
Power Supplies
EVDD E6, E7,
F5–F7, H9,
J8, J9, K8,
K9, K11
E8, F5–F8,
G5, G6, H5,
H6, J11,
K11, K12,
L9–L11, M9,
E8, F5–F8,
G5, G6, H5,
H6, J11,
K11, K12,
L9–L11, M9,
M10
IVDD E5, K5, K10,
J10
E5, G12, M5,
M11, M12
E5, G12, M5,
M11, M12
PLL_VDD H10 J12 J12
SD_VDD E8, E9,
F8–F10,
J5–J7, K7
E9, F9–F11,
G11, H11, J5, J6, K5,
K6, L5–L8,
M6, M7
E9, F9–F11,
G11, H11, J5, J6, K5,
K6, L5–L8,
M6, M7
USB_VDD G10 L14 L14
256
M10
VSS G6–G9,
H6–H8, P9
G7–G10, H7–H10,
J7–10, K7–K10, L12, L13
G7–G10,
H7–H10,
J7–10, K7–K10, L12, L13
PLL_VSS H11 K13 K13
USB_VSS H12 M14 M14
1
Refers to pin’s primary function.
2
Pull-up enabled internally on this signal for this mode.
3
The SDRAM functions of these signals are not programmable by the user. They are dynamically switched by the processor when accessing SDRAM memory space and are included here for completeness.
4
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.
5
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions.
6
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.
7
Pull-down enabled internally on this signal for this mode.
8
Must be left floating for proper operation of the PLL.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor12
Pin Assignments and Reset States
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 13
Pin Assignments and Reset States
NOTE
4.2 Pinout—256 MAPBGA
Figure 4 shows a pinout of the MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 devices.
NOTE
The pin at location N13 (PLL_TEST) must be left floating or improper operation of the PLL module occurs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A
FEC_
B
TXER
FEC_
C
MDC
FEC_
D
TXD1
EDT2IN DT1IN DT0IN
FDT3IN
SSI_
G
TXD
SD_
H
CS0
J
D13 D14
K
SD_
L
DQS3
FEC_
NC
TXCLK
FEC_
TXEN
FEC_
MDIO
FEC_
TXD2
I2C_
SDA
SSI_
RXD
SD_CKE
D9 D10 D11 D12 SD_VDD SD_VDD VSS VSS VSS VSS EVDD EVDD
D8
LCD_D4LCD_D5LCD_D9FEC_
RXD2
LCD_D1LCD_D3LCD_D8FEC_
RXD1
LCD_D0LCD_D2LCD_D7FEC_
RXD0
FEC_
TXD3
I2C_
SCL
SSI_FS
SD_WE
D15 SD_CS1
BE/
BWE1
FEC_
RXER
FEC_
TXD0
SSI_
BCLK
SSI_
MCLK
BWE3
LCD_D6LCD_
IVDD
EVDD EVDD EVDD EVDD SD_VDD SD_VDD SD_VDD NC A6 A5 A4 A3 F
EVDD EVDD VSS VSS VSS VSS SD_VDD IVDD
TS
EVDD EVDD VSS VSS VSS VSS SD_VDD
SD_VDD SD_VDD VSS VSS VSS VSS EVDD
BE/
SD_VDD SD_VDD SD_VDD SD_VDD EVDD EVDD EVDD VSS
LCD_
D11
D10
LCD_
D15
LCD_
D14
LCD_
D13
LCD_
D12
FEC_
RXD3
FEC_
COL
FEC_
CRS
FEC_
RXCLK
FEC_
RXDV
EVDD SD_VDD
LCD_
CLS
LCD_
ACD/OE
LCD_
D17
LCD_
D16
LCD_
LSCLK
LCD_LP/
HSYNC
LCD_FLM/
VSYNC
LCD_CON
TRAST
U1RTS
LCD_
PS
LCD_
REV
LCD_
SPL_SPR
U1CTS
U1TXD U1RXD A21 A9 A8 A7 E
FB_CS3
FB_CS2
FB_CS1
FB_CS0
DRAM
SEL
PLL_
VDD
FB_CS4
FB_CS5
A23 A18 A13 A12 C
A22 A15 A11 A10 D
TA
PWM7 PWM5 PWM3 PWM1 H
IRQ7
PLL_
VSS
USB_
VSS
A20 A17 TEST A
A19 A16 A14 B
A0 A1 A2 G
IRQ6 IRQ5 IRQ4
IRQ3
USBOTG
_VDD
IRQ2 IRQ1
USB
OTG_M
OTG_P
USB
J
K
L
JTAG_
D31 D30 D29 D28 IVDD SD_VDD SD_VDD
M
D27 D26 D25 D24 D19
N
SD_DR
P
R SD_CLK
T NC FB_CLK D23 D20 D16
SD_A10 SD_CAS
_DQS
SD_CLK
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SD_RAS
D22 D18
D21 D17 D7 D4 D1
BE/
BWE0
BE/
BWE2
SD_
DQS2
RCON
D6
D5 D2 DDATA2 DDATA0
D3 D0
EVDD EVDD IVDD IVDD
R/W
DDATA3 DDATA1
OE
TCLK/
PSTCLK
PST3
PST2 PST0
TDO/
DSO
QSPI_
CS0
PST1
QSPI_
DIN
QSPI_
DOUT
QSPI_
CLK
QSPI_
CS2
EN
PLL_
TEST
EXTAL
32K
XTAL
32K
QSPI_
CS1
USBHOST
_VSS
TDI/DSI RESET
RSTOUT
U0RXD
U0TXD
Figure 4. MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 Pinout Top View (256 MAPBGA)
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor14
USB
HOST_M
TRST/
DSCLK
U0CTS
U0RTS
USB
HOST_P
XTAL N
EXTAL P
TMS/
BKPT
NC T
M
R
Electrical Characteristics
4.3 Pinout—196 MAPBGA
The pinout for the MCF5327CVM240 package is shown below.
12 3 4 56 7 8 9 101112 1314
A
DT1IN
B
D2TIN
C
DT3IN DT0IN
D
SD_WE
E
SD_CKE SD_CS0
F
D12 D13 D14 D15 EVDD EVDD EVDD SD_VDD SD_VDD SD_VDD A4 A3 A2 A1
G
BE/
BWE1
H
D29 D30 D31
J
D25 D26 D27 D28 SD_VDD SD_VDD SD_VDD EVDD EVDD IVDD RESET
K
D24 SD_CLK SD_CLK
L
FB_CLK SD_A10 SD_CAS
LCD_D4LCD_D5LCD_D9LCD_
LCD_D0LCD_D6LCD_D8LCD_
LCD_D2LCD_D7LCD_
TS
D8 D9 D10 D11 VSS VSS VSS VSS
LCD_D1LCD_D3LCD_
I2C_SCL I2C_SDA IVDD EVDD EVDD SD_VDD SD_VDD TEST A8 A7 A6 A5
BE/
BWE3
SD_DR_
DQS
D23 D7 D1
SD_
DQS3
IVDD
D13
D12
D11
D10
LCD_
LCD_FLM/
D17
VSYNC
LCD_
LCD_CON
D16
LCD_
D15
LCD_
D14
VSS VSS VSS EVDD
SD_
DQS2
TRAST
ACD/OE
SD_VDD EVDD EVDD IVDD EVDD TDI/DSI
TCLK/
PSTCLK
LCD_
CLS
LCD_
LCD_LP/
HSYNC
LCD_
LSCLK
LCD_
LCD_
REV
DDATA1 PST1
U1TXD U1RXD FB_CS3
LCD_
SPL_SPR
U1CTS
PS
U1RTS
A20 A16 A15
FB_CS0
FB_CS1 A22 A18 A13 A12
FB_CS2 A19 A11 A10 A9
USB
OTG_VDD
PLL_
VDD
QSPI_
DIN
A23 A21 A17 A14
DRAM
SEL
PLL_
VSS
QSPI_
CS1
USB
OTG_ M
USBHOST
_VSS
USB
HOST_P
JTAG_
EN
USB
OTG_ P
IRQ7
USB
HOST_M
IRQ4 EXTAL
TA A0
PWM3
PWM1
XTAL
A
B
C
D
E
F
G
H
J
K
L
M
SD_RAS
N
D20 D19 D16 D6 D3 R/W DDATA3 PST3
P
D18 D17
D22 D21
BE/
BWE2
12 3 4 56 7 8 9 101112 1314
BE/
BWE0
D5 D2 OE DDATA2 PST2 VSS
D4 D0 RCON DDATA0 PST0
TDO/
DSO
QSPI_ DOUT
QSPI_
CLK
QSPI_
CS2
EXTAL
32K
XTAL
32K
U0RXD U0TXD U0CTS
TMS/
BKPT
U0RTS IRQ1
IRQ2 IRQ3
TRST/
DSCLK
RSTOUT
Figure 5. MCF5327CVM240 Pinout Top View (196 MAPBGA)

5 Electrical Characteristics

This document contains electrical specification tables and reference timing diagrams for the MCF5329 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5329.
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
M
N
P
Freescale Semiconductor 15
Electrical Characteristics
The parameters specified in this MCU document supersede any values found in the module specifications.

5.1 Maximum Ratings

Table 4. Absolute Maximum Ratings
Rating Symbol Value Unit
NOTE
1, 2
Core Supply Voltage IV
CMOS Pad Supply Voltage EV
DDR/Memory Pad Supply Voltage SDV
PLL Supply Voltage PLLV
Digital Input Voltage
Instantaneous Maximum Current Single pin limit (applies to all pins)
3
3, 4, 5
Operating Temperature Range (Packaged) T
DD
DD
DD
DD
V
IN
I
D
A
(TL - TH)
Storage Temperature Range T
1
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”
stg
– 0.5 to +2.0 V
– 0.3 to +4.0 V
– 0.3 to +4.0 V
– 0.3 to +2.0 V
– 0.3 to +3.6 V
25 mA
– 40 to +85 °C
– 55 to +150 °C
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.
2
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V
SS
EVDD).
3
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.
4
All functional non-supply pins are internally clamped to VSS and EVDD.
5
Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions. If positive injection current (V
, the injection current may flow out of EV
I
DD
and could result in external power supply going
DD
> EVDD) is greater than
in
out of regulation. Ensure external EVDD load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EV
range during instantaneous and
DD
operating maximum current conditions.
or
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor16

5.2 Thermal Characteristics

TJTAPDΘ
JMA
×()+=
P
D
K
T
J
273° C+()
---------------------------------
=
KPDTA273° C×()Q
JMAPD
2
×+×=
Table 5. Thermal Characteristics
Characteristic Symbol 256MBGA 196MBGA Unit
Junction to ambient, natural convection Four layer board
Junction to ambient (@200 ft/min) Four layer board
Junction to board θ
Junction to case θ
Junction to top of package Ψ
Maximum operating junction temperature T
1
θ
and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.
JMA
Freescale recommends the use of θ device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer’s system using the Ψ
jt
EIA/JESD Standard 51-2.
2
Per JEDEC JESD51-6 with the board horizontal.
3
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
4
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
5
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
and power dissipation specifications in the system design to prevent
JmA
parameter, the device power dissipation, and the method described in
(2s2p)
(2s2p)
θ
θ
JMA
JMA
JB
JC
jt
j
Electrical Characteristics
1,2
37
34
27
16
4
1,2
3
4
1,5
42
38
32
19
5
105 105
1,5
1,2
1,2
°C / W
°C / W
3
°C / W
4
°C / W
°C / W
o
C
The average chip-junction temperature (TJ) in °C can be obtained from:
Eqn. 1
Where:
T
A
Q
JMA
P
D
P
INT
P
I/O
For most applications P
= Ambient Temperature, °C = Package Thermal Resistance, Junction-to-Ambient, °C/W =P
INT
+ P
I/O
=IDD × IVDD, Watts - Chip Internal Power = Power Dissipation on Input and Output Pins — User Determined
< P
I/O
and can be ignored. An approximate relationship between PD and TJ (if P
INT
is neglected) is:
I/O
Eqn. 2
Solving equations 1 and 2 for K gives:
Eqn. 3
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 17
Electrical Characteristics
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium) for a known T for any value of T
. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively
A
.
A

5.3 ESD Protection

Table 6. ESD Protection Characteristics1,
Characteristics Symbol Value Units
ESD Target for Human Body Model HBM 2000 V
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
2

5.4 DC Electrical Specifications

Table 7. DC Electrical Specifications
Characteristic Symbol Min Max Unit
Core Supply Voltage IV
DD
PLL Supply Voltage PLLV
CMOS Pad Supply Voltage EV
SDRAM and FlexBus Supply Voltage
SDV Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)
USB Supply Voltage USBV
CMOS Input High Voltage EV
CMOS Input Low Voltage EV
CMOS Output High Voltage
= –5.0 mA
I
OH
CMOS Output Low Voltage
I
= 5.0 mA
OL
SDRAM and FlexBus Input High Voltage
EV
EV
SDV Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDRAM and FlexBus Input Low Voltage
SDV Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)
DD
IH
IL
OH
OL
DD
DD
IH
IL
1.4 1.6 V
1.4 1.6 V
3.0 3.6 V
1.70
2.25
3.0
DD
3.0 3.6 V
2EV
VSS – 0.3 0.8 V
EV
0.4 V
DD –
—0.4V
1.35
1.7 2
SDVDD+ 0.3 SDV SDV
VSS – 0.3
– 0.3
V
SS
VSS – 0.3
1.95
2.75
3.6
+0.3 V
DD
+ 0.3
DD
+ 0.3
DD
0.45
0.8
0.8
V
V
V
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor18
Electrical Characteristics
Table 7. DC Electrical Specifications (continued)
Characteristic Symbol Min Max Unit
SDRAM and FlexBus Output High Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
SDV
OH
SDVDD–0.35 DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)
= –5.0 mA for all modes
I
OH
SDRAM and FlexBus Output Low Voltage
SDV
OL
Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)
= 5.0 mA for all modes
I
OL
Input Leakage Current
I
in
Vin = VDD or VSS, Input-only pins
Weak Internal Pull-Up Device Current, tested at V
Input Capacitance
2
Max.
IL
I
APU
C
in
1
All input-only pins All input/output (three-state) pins
1
Refer to the signals section for pins having weak internal pull-up devices.
2
This parameter is characterized before qualification rather than 100% tested.

5.5 Oscillator and PLL Electrical Characteristics

Table 8. PLL Electrical Characteristics
V
2.1
2.4
— —
V — — —
0.3
0.3
0.5
1.0 1.0 μA
10 130 μA
pF — —
7 7
Num Characteristic Symbol
PLL Reference Frequency Range
1
2
3 Crystal Start-up Time
4
5
7 PLL Lock Time
8 Duty Cycle of reference
9 XTAL Current I
10 Total on-chip stray capacitance on XTAL C
11 Total on-chip stray capacitance on EXTAL C
Crystal reference External reference
Core frequency CLKOUT Frequency
EXTAL Input High Voltage
Crystal Mode
2
3, 4
5
All other modes (External, Limp)
EXTAL Input Low Voltage
Crystal Mode
5
All other modes (External, Limp)
3, 6
3
f
ref_crystal
f
ref_ext
f
sys
f
sys/3
t
cst
V
IHEXT
V
IHEXT
V
ILEXT
V
ILEXT
t
lpll
t
dc
XTAL
S_XTAL
S_EXTAL
Min.
Val ue
12 12
488 x 10 163 x 10
6
6
Max.
Val ue
1
25
1
40
240
80
Unit
MHz MHz
MHz MHz
—10ms
V
E
XTAL
VDD
+ 0.4
/2 + 0.4
— —
E
V
VDD
XTAL
— —
– 0.4
/2 – 0.4
V V
V V
50000 CLKIN
40 60 %
13mA
1.5 pF
1.5 pF
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 19
Electrical Characteristics
Table 8. PLL Electrical Characteristics (continued)
Num Characteristic Symbol
Crystal capacitive load C
12
Discrete load capacitance for XTAL C
L
L_XTAL
Min.
Val ue
13
Discrete load capacitance for EXTAL C
L_EXTAL
14
vco
3, 4, 7, 8, 9
= (f
ref *
Measured at f
3, 10, 11
SYS
PFD)/4 f
Max
C
jitter
— —
C
mod
vco
0.8 2.2 %f
350 540 MHz
CLKOUT Period Jitte r,
17
Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter
Frequency Modulation Range Limit
18
(f
Max must not be exceeded)
sys
19 VCO Frequency. f
1
The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock
Max.
Val ue
See crystal
spec
2*CL –
C
S_XTAL
C
PCB_XTAL
2*CL–-
C
S_EXTAL
C
PCB_EXTAL
10
TBD
7
7
% f % f
frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.
2
All internal registers retain data at 0 Hz.
3
This parameter is guaranteed by characterization before qualification rather than 100% tested.
4
Proper PC board layout procedures must be followed to achieve specifications.
5
This parameter is guaranteed by design rather than 100% tested.
6
This specification is the PLL lock time only and does not include oscillator start-up time.
7
C
PCB_EXTAL
8
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f
and C
PCB_XTAL
are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
9
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
10
Modulation percentage applies over an interval of 10 μs, or equivalently the modulation rate is 100 KHz.
11
Modulation range determined by hardware design.
Unit
pF
pF
sys/3
sys/3
sys/3
sys
.

5.6 External Interface Timing Characteristics

Table 9 lists processor bus input timings.
NOTE
All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.
All other timing relationships can be derived from these values. Timings listed in Table 9 are shown in Figure 7 and Figure 8.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor20
Electrical Characteristics
Invalid Invalid
FB_CLK (80MHz)
TSETUP
THOLD
Input Setup And Hold
1.5V
t
rise
Vh = V
IH
Vl = V
IL
1.5V1.5V Val id
t
fall
Vh = V
IH
Vl = V
IL
Input Rise Time
Input Fall Time
* The timings are also valid for inputs sampled on the negative clock edge.
Inputs
FB_CLK
B4
B5
Figure 6. General Input Timing Requirements

5.6.1 FlexBus

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects (FB_CS Chip-select, FB_CS0 longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.
5.6.1.1 FlexBus AC Timing Characteristics
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.
Num Characteristic Symbol Min Max Unit
Frequency of Operation f
FB1 Clock Period (FB_CLK) t
FB2
FB3
[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces.
can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or
Table 9. FlexBus AC Timing Specifications
Address, Data, and Control Output Valid (A[23:0], D[31:0], FB_CS
[5:0], R/W, TS, BE/BWE[3:0] and OE)
Address, Data, and Control Output Hold (A[23:0], D[31:0],
[5:0], R/W, TS, BE/BWE[3:0], and OE)
FB_CS
1
1, 2
sys/3
FBCK (tcyc)
t
FBCHDCV
t
FBCHDCI
—80Mhz
12.5 ns
—7.0ns
1—ns
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 21
Electrical Characteristics
FB_CLK
FB_R/W
S0 S1 S2 S3
FB_TS
FB_A[23:0]
FB_D[31:X]
FB_CSn, FB_OE,
FB_BE/BWE
n
FB_TA
DATA
ADDR[31:X]
ADDR[23:0]
FB3
FB1
FB2 FB5
FB4
FB7
FB6
Num Characteristic Symbol Min Max Unit
Table 9. FlexBus AC Timing Specifications (continued)
FB4 Data Input Setup t
FB5 Data Input Hold t
FB6 Transfer Acknowledge (TA
FB7 Transfer Acknowledge (TA
1
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, “DDR SDRAM AC
) Input Setup t
) Input Hold t
DVF BCH
DIFBCH
CVFBCH
CIFBCH
3.5 ns
0—ns
4—ns
0—ns
Timing Characteristics” for SD_CS[3:0] timing.
2
The FlexBus supports programming an extension of the address hold. Please consult the Reference Manual for more information.
NOTE
The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.
The address and data busses are muxed between the FlexBus and SDRAM controller. At the end of the read and write bus cycles the address signals are indeterminate.
Figure 7. FlexBus Read Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor22

5.7 SDRAM Bus

FB_CLK
FB_R/W
FB_TS
FB_OE
S0 S2 S3
DATA
S1
ADDR[31:X]
FB_A[23:0]
FB_D[31:X]
ADDR[23:0]
FB_CSn, FB_BE/BWEn
FB_TA
FB3
FB1
FB2
FB7
FB6
Electrical Characteristics
Figure 8. FlexBus Write Timing
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.

5.7.1 SDR SDRAM AC Timing Characteristics

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must remain supplied to the device for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS signal and its usage.
Table 10. SDR Timing Specifications
Symbol Characteristic Symbol Min Max Unit
Frequency of Operation
SD1 Clock Period
2
SD3 Pulse Width High
SD4 Pulse Width Low
SD5
SD6
SD7 SD_SDR_DQS Output Valid
SD8
Address, SD_CKE, SD_CAS SD_CS[1:0] - Output Valid
Address, SD_CKE, SD_CAS SD_CS[1:0] - Output Hold
SD_DQS[3:0] input setup relative to SD_CLK
1
3
4
, SD_RAS, SD_WE, SD_BA,
, SD_RAS, SD_WE, SD_BA,
5
6
TBD 80 MHz
t
SDCK
t
SDCKH
t
SDCKH
t
SDCHACV
t
SDCHACI
t
DQSOV
t
DQVSDCH
12.5 TBD ns
0.45 0.55 SD_CLK
0.45 0.55 SD_CLK
0.5 × SD_CLK +1.0
2.0 ns
Self timed ns
0.25 ×
SD_CLK
0.40 × SD_CLK ns
ns
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 23
Electrical Characteristics
SD_CLK
SDDM
D[31:0]
A[23:0]
SD_BA[1:0]
CMD
ROW
SD1
SD4
COL
SD5
WD1 WD2 WD3 WD4
SD12
SD11
SD_CSn
SD_RAS
SD_WE
SD_CAS
SD2
SD3
Table 10. SDR Timing Specifications (continued)
Symbol Characteristic Symbol Min Max Unit
SD9 SD_DQS[3:2] input hold relative to SD_CLK
SD10
Data (D[31:0]) Input Setup relative to SD_CLK (reference
8
only)
SD11 Data Input Hold relative to SD_CLK (reference only) t
SD12
Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid
SD13 Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold t
1
The FlexBus and SDRAM clock operates at the same frequency of the internal bus clock. See the PLL chapter of the MCF5329 Reference Manual for more information on setting the SDRAM clock rate.
2
SD_CLK is one SDRAM clock in (ns).
3
Pulse width high plus pulse width low cannot exceed min and max clock period.
4
Pulse width high plus pulse width low cannot exceed min and max clock period.
5
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat.
6
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.
7
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller.
8
Because a read cycle in SDR mode uses the DQS circuit within the device, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup spec is provided as guidance.
7
t
DQISDCH
t
DVSDCH
DISDCH
t
SDCHDMV
SDCHDMI
Does not apply. 0.5×SD_CLK fixed width.
0.25 ×
SD_CLK
—ns
1.0 ns
0.75 × SD_CLK + 0.5
1.5 ns
ns
Figure 9. SDR Write Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor24
Electrical Characteristics
SD_CLK
SD_CSn,
SDDM
D[31:0]
A[23:0],
SD_RAS
,
SD_BA[1:0]
CMD
ROW
SD1
SD4
COL
WD1 WD2 WD3 WD4
SD9
3/4 MCLK
SD_SDR_DQS
SD_DQS[3:2]
Delayed
SD10
SD7
Board Delay
SD8
Board Delay
SD6
tDQS
Reference
SD_CLK
from
Memories
(Measured at Output Pin)
(Measured at Input Pin)
SD5
NOTE: Data driven from memories relative
to delayed memory clock.
SD_WE
SD_CAS,
SD2
SD3
Figure 10. SDR Read Timing

5.7.2 DDR SDRAM AC Timing Characteristics

When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte lanes.
Table 11. DDR Timing Specifications
Num Characteristic Symbol Min Max Unit
Frequency of Operation t
DD1 Clock Period
DD2 Pulse Width High
DD3 Pulse Width Low
Address, SD_CKE, SD_CAS
DD4
SD_CS
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
DD5
SD_CS[1:0] - Output Hold
[1:0] - Output Valid
DD6 Write Command to first DQS Latching Transition t
Data and Data Mask Output Setup (DQ-->DQS) Relative
DD7
to DQS (DDR Write Mode)
Freescale Semiconductor 25
1
2
3
, SD_RAS, SD_WE,
3
4, 5
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
DDCK
t
DDSK
t
DDCKH
t
DDCKL
t
SDCHACV
t
SDCHACI
CMDVDQ
t
DQDMV
TBD 80 Mhz
12.5 TBD ns
0.45 0.55 SD_CLK
0.45 0.55 SD_CLK
2.0 ns
1.25 SD_CLK
1.5 ns
0.5 × SD_CLK +1.0
ns
Electrical Characteristics
Table 11. DDR Timing Specifications (continued)
Num Characteristic Symbol Min Max Unit
Data and Data Mask Output Hold (DQS-->DQ) Relative to
DD8
DQS (DDR Write Mode)
DD9 Input Data Skew Relative to DQS (Input Setup)
DD10
Input Data Hold Relative to DQS
6
7
8
DD11 DQS falling edge from SDCLK rising (output hold time) t
DD12 DQS input read preamble width t
DD13 DQS input read postamble width t
DD14 DQS output write preamble width t
DD15 DQS output write postamble width t
1
SD_CLK is one SDRAM clock in (ns).
2
Pulse width high plus pulse width low cannot exceed min and max clock period.
3
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature,
t
DQDMI
t
DVD Q
t
DIDQ
DQLSDCH
DQRPRE
DQRPST
DQWPRE
DQWPST
1.0 ns
—1ns
0.25 × SD_CLK
—ns
+0.5ns
0.5 ns
0.9 1.1 SD_CLK
0.4 0.6 SD_CLK
0.25 SD_CLK
0.4 0.6 SD_CLK
and voltage variations.
4
This specification relates to the required input setup time of today’s DDR memories. The processor’s output setup should be larger than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
5
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
6
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
7
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
8
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor26
Electrical Characteristics
SD_CLK
SD_CS
n,SD_WE,
DM3/DM2
D[31:24]/D[23:16]
A[13:0]
SD_RAS
, SD_CAS
CMD
ROW
DD1
DD5
DD4
COL
WD1 WD2 WD3 WD4
DD7
SD_DQS3/SD_DQS2
DD8
DD8
DD7
SD_CLK
DD3
DD2
DD6
Figure 11. DDR Write Timing
Freescale Semiconductor 27
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Electrical Characteristics
SD_CLK
SD_CS
n,SD_WE,
SD_DQS3/SD_DQS2
D[31:24]/D[23:16]
A[13:0]
SD_RAS
, SD_CAS
CMD
ROW
DD1
DD5
DD4
WD1 WD2 WD3 WD4
SD_DQS3/SD_DQS2
DD9
SD_CLK
DD3
DD2
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DD10
CL=2
CL=2.5
COL
DQS Read
Preamble
DQS Read Postamble
DQS Read
Preamble
DQS Read Postamble
CL = 2.5 CL = 2
Figure 12. DDR Read Timing

5.8 General Purpose I/O Timing

Num Characteristic Symbol Min Max Unit
G1 FB_CLK High to GPIO Output Valid t
G2 FB_CLK High to GPIO Output Invalid t
G3 GPIO Input Valid to FB_CLK High t
G4 FB_CLK High to GPIO Input Invalid t
1
GPIO pins include: IRQn, PWM, UART, FlexCAN, and Timer pins.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Table 12. GPIO Timing1
CHPOV
CHPOI
PVCH
CHPI
—10ns
1.5 ns
9—ns
1.5 ns
Freescale Semiconductor28
Electrical Characteristics
G1
FB_CLK
GPIO Outputs
G2
G3 G4
GPIO Inputs
R1
R2
FB_CLK
RESET
RSTOUT
R3
R4
R8
R7R6R5
Configuration Overrides*:
R4
(RCON, Override pins])
Figure 13. GPIO Timing

5.9 Reset and Configuration Override Timing

Table 13. Reset and Configuration Override Timing
Num Characteristic Symbol Min Max Unit
R1 RESET
R2 FB_CLK High to RESET
R3 RESET
R4 FB_CLK High to RSTOUT Valid t
R5 RSTOUT
R6 Configuration Override Setup Time to RSTOUT
R7 Configuration Override Hold Time after RSTOUT invalid t
R8 RSTOUT
1
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to
Input valid to FB_CLK High t
Input invalid t
Input valid Time
1
valid to Config. Overrides valid t
invalid t
invalid to Configuration Override High Impedance t
RVCH
CHRI
t
RIVT
CHROV
ROVCV
COS
COH
ROICZ
9—ns
1.5 ns
5—t
—10ns
0—ns
20 t
0—ns
—1t
the system. Thus, RESET must be held a minimum of 100 ns.
CYC
CYC
CYC
Freescale Semiconductor 29
Refer to the CCM chapter of the MCF5329 Reference Manual for more information.
Figure 14. RESET and Configuration Override Timing
NOTE
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Electrical Characteristics
T1
T2
T3
LCD_LSCLK
LCD_LD[17:0]
Line 1 Line Y
T1
T4
T3
(1,1)
(1,2)
(1,X)
T5 T7
T6
XMAX
LCD_VSYNC
LCD_HSYNC
LCD_OE
LCD_LD[17:0]
LCD_LSCLK
LCD_HSYNC
LCD_OE
LCD_LD[15:0]
T2
Display regionNon-display region
Line Y

5.10 LCD Controller Timing Specifications

This sections lists the timing specifications for the LCD Controller.
Table 14. LCD_LSCLK Timing
Num Parameter Minimum Maximum Unit
T1 LCD_LSCLK Period 25 2000 ns
T2 Pixel data setup time 11 ns
T3 Pixel data up time 11 ns
Note: The pixel clock is equal to LCD_LSCLK / (PCD + 1). When it is in CSTN, TFT or monochrome mode with
bus width is set and LCD_LSCLK is equal to the pixel clock. When it is in monochrome with other bus width settings, LCD_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD_LSCLK and LCD_LD signals can also be programmed.
Figure 15. LCD_LSCLK to LCD_LD[17:0] timing diagram
Figure 16. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor30
Electrical Characteristics
D1
D2
D320
LCD_LSCLK
LCD_LD
LCD_SPL_SPR
LCD_HSYNC
LCD_CLS
LCD_PS
LCD_REV
XMAX
T2
D320
T1
T3
T5
T4
T7
T6
T2
T4
T7
Table 15. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing
Number Description Minimum Value Unit
T1 End of LCD_OE to beginning of LCD_VSYNC T5+T6+T7-1 (VWAIT1·T2)+T5+T6+T7-1 Ts
T2 LCD_HSYNC period XMAX+T5+T6+T7 Ts
T3 LCD_VSYNC pulse width T2 VWIDTH·T2 Ts
T4 End of LCD_VSYNC to beginning of LCD_OE 1 (VWAIT2·T2)+1 Ts
T5 LCD_HSYNC pulse width 1 HWIDTH+1 Ts
T6 End of LCD_HSYNC to beginning to LCD_OE 3 HWAIT2+3 Ts
T7 End of LCD_OE to beginning of LCD_HSYNC 1 HWAIT1+1 Ts
Note: Ts is the LCD_LSCLK period. LCD_VSYNC, LCD_HSYNC and LCD_OE can be programmed as active high or active
low. In Figure 16, all 3 signals are active low. LCD_LSCLK can be programmed to be deactivated during the LCD_VSYNC pulse or the LCD_OE deasserted period. In Figure 16, LCD_LSCLK is always active.
Note: XMAX is defined in number of pixels in one line.
Freescale Semiconductor 31
Figure 17. Sharp TFT Panel Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Electrical Characteristics
T1
T2
T4
T3
XMAX
LCD_VSYNC
LCD_LSCLK
LCD_HSYNC
LCD_LD[15:0]
T2
T1
Ts
Table 16. Sharp TFT Panel Timing
Num Description Minimum Value Unit
T1 LCD_SPL/LCD_SPR pulse width 1 Ts
T2 End of LCD_LD of line to beginning of LCD_HSYNC 1 HWAIT1+1 Ts
T3 End of LCD_HSYNC to beginning of LCD_LD of line 4 HWAIT2 + 4 Ts
T4 LCD_CLS rise delay from end of LCD_LD of line 3 CLS_RISE_DELAY+1 Ts
T5 LCD_CLS pulse width 1 CLS_HI_WIDTH+1 Ts
T6 LCD_PS rise delay from LCD_CLS negation 0 PS_RISE_DELAY Ts
T7 LCD_REV toggle delay from last LCD_LD of line 1 REV_TOGGLE_DELAY+1 Ts
Note: Falling of LCD_SPL/LCD_SPR aligns with first LCD_LD of line. Note: Falling of LCD_PS aligns with rising edge of LCD_CLS. Note: LCD_REV toggles in every LCD_HSYN period.
Note: Ts is the LCD_LSCLK period while Tpix is the pixel clock period. LCD_VSYNC, LCD_HSYNC and LCD_LSCLK
Figure 18. Non-TFT Mode Panel Timing
Table 17. Non-TFT Mode Panel Timing
Num Description Minimum Value Unit
T1 LCD_HSYNC to LCD_VSYNC delay 2 HWAIT2 + 2 Tpix
T2 LCD_HSYNC pulse width 1 HWIDTH + 1 Tpix
T3 LCD_VSYNC to LCD_LSCLK 0 T3 Ts
T4 LCD_LSCLK to LCD_HSYNC 1 HWAIT1 + 1 Tpix
can be programmed as active high or active low. In Figure 18, all three signals are active high. When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in monochrome mode with bus width = 2, 4 and 8, T3 = 1, 2 and 4 Tpix respectively.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor32
Electrical Characteristics
TSC
THC
TSD
TDC
TDD
ULPI_CLK
ULPI_STP
ULPI_DATA
ULPI_DIR/ULPI_NXT
ULPI_DATA
THD
(Output)
(Input)
(Input-8bit)
(Output-8bit)

5.11 USB On-The-Go

The MCF5329 device is compliant with industry standard USB 2.0 specification.

5.12 ULPI Timing Specification

Control and data timing requirements for the ULPI pins are given in Table 18. These timings apply in synchronous mode only. All timings are measured with either a 60 MHz input clock from the USB_CLKIN pin. The USB_CLKIN needs to maintain a 50% duty cycle. Control signals and 8-bit data are always clocked on the rising edge.
The ULPI interface on the MCF5329 processor is compliant with the industry standard definition.

5.13 SSI Timing Specifications

This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync (SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.
Freescale Semiconductor 33
Figure 19. ULPI Timing Diagram
Table 18. ULPI Interface Timing
Parameter Symbol Min Max Units
Setup time (control in, 8-bit data in) TSC, TSD 3.0 ns
Hold time (control in, 8-bit data in) THC, THD −1.5 ns
Output delay (control out, 8-bit data out) TDC, TDD 6.0 ns
t
MCLK
t
BCLK
1
8 × t
8 × t
SYS
SYS
—ns
MCLK
—ns
BCLK
Table 19. SSI Timing – Master Modes
Num Description Symbol Min Max Units
S1 SSI_MCLK cycle time
S2 SSI_MCLK pulse width high / low 45% 55% t
S3 SSI_BCLK cycle time
S4 SSI_BCLK pulse width 45% 55% t
S5 SSI_BCLK to SSI_FS output valid 15 ns
2
3
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Electrical Characteristics
Num Description Symbol Min Max Units
S6 SSI_BCLK to SSI_FS output invalid -2 ns
S7 SSI_BCLK to SSI_TXD valid 15 ns
S8 SSI_BCLK to SSI_TXD invalid / high impedence -4 ns
S9 SSI_RXD / SSI_FS input setup before SSI_BCLK 15 ns
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK 0 ns
1
All timings specified with a capactive load of 25pF.
2
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (SYSCLK).
3
SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the minimum divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure that SSI_BCLK does not exceed 4 x f
Table 19. SSI Timing – Master Modes1 (continued)
.
SYS
Table 20. SSI Timing – Slave Modes
1
Num Description Symbol Min Max Units
S11 SSI_BCLK cycle time t
BCLK
8 × t
—ns
SYS
S12 SSI_BCLK pulse width high/low 45% 55% t
S13 SSI_FS input setup before SSI_BCLK 10 ns
S14 SSI_FS input hold after SSI_BCLK 3 ns
S15 SSI_BCLK to SSI_TXD/SSI_FS output valid 15 ns
S16 SSI_BCLK to SSI_TXD/SSI_FS output invalid/high
-2 ns
impedence
S17 SSI_RXD setup before SSI_BCLK 10 ns
S18 SSI_RXD hold after SSI_BCLK 3 ns
1
All timings specified with a capactive load of 25pF.
BCLK
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor34
Figure 20. SSI Timing – Master Modes
SSI_MCLK
(Output)
SSI_BCLK
(Output)
SSI_FS
(Output)
SSI_TXD
SSI_RXD
S1 S2 S2
S3
S4 S4
S5
S6
S7
S8
S8
S9 S10
S7
SSI_FS
(Input)
S9
S10
SSI_BCLK
(Input)
SSI_FS
(Input)
SSI_TXD
SSI_RXD
S11
S12
S12
S14
S15
S16
S16
S17 S18
S15
S13
SSI_FS (Output)
S15
S16
Electrical Characteristics

5.14 I2C Input/Output Timing Specifications

Table 21 lists specifications for the I2C input timing parameters shown in Figure 22.
Freescale Semiconductor 35
Figure 21. SSI Timing – Slave Modes
Table 21. I
Num Characteristic Min Max Units
I1 Start condition hold time 2 t
I2 Clock low period 8 t
I3 I2C_SCL/I2C_SDA rise time (VIL= 0.5 V to VIH=2.4 V) 1 ms
I4 Data hold time 0 ns
2
C Input Timing Specifications between SCL and SDA
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
cyc
cyc
Electrical Characteristics
I2
I6
I1
I4
I7
I8
I9
I5
I3
I2C_SCL
I2C_SDA
Table 21. I2C Input Timing Specifications between SCL and SDA (continued)
Num Characteristic Min Max Units
I5 I2C_SCL/I2C_SDA fall time (VIH= 2.4 V to VIL=0.5 V) 1 ms
I6 Clock high time 4 t
I7 Data setup time 0 ns
I8 Start condition setup time (for repeated start condition only) 2 t
I9 Stop condition setup time 2 t
Table 22 lists specifications for the I2C output timing parameters shown in Figure 22.
Num Characteristic Min Max Units
1
I1
I2 1Clock low period 10 t
2
I3
1
I4
3
I5
1
I6
I7 1Data setup time 2 t
I8 1Start condition setup time (for repeated start condition only) 20 t
I9 1Stop condition setup time 10 t
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Ta b le 2 2 . The I designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Ta b le 2 2 are minimum values.
2
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.
3
Specified at a nominal 50-pF load.
Table 22. I2C Output Timing Specifications between SCL and SDA
Start condition hold time 6 t
I2C_SCL/I2C_SDA rise time (V
Data hold time 7 t
I2C_SCL/I2C_SDA fall time (V
Clock high time 10 t
= 0.5 V to VIH=2.4 V) µs
IL
= 2.4 V to VIL= 0.5 V) 3 ns
IH
cyc
cyc
cyc
2
C interface is
cyc
cyc
cyc
cyc
cyc
cyc
cyc
Figure 22 shows timing for the values in Table 22 and Table 21.
2
Figure 22. I
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
C Input/Output Timings
Freescale Semiconductor36
Electrical Characteristics
M1 M2
FEC_RXCLK (input)
FEC_RXD[3:0] (inputs)
FEC_RXDV
FEC_RXER
M3
M4

5.15 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.

5.15.1 MII Receive Signal Timing

The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FEC_RXCLK frequency.
Table 23 lists MII receive channel timings.
Table 23. MII Receive Signal Timing
Num Characteristic Min Max Unit
M1 FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup 5 ns
M2 FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold 5 ns
M3 FEC_RXCLK pulse width high 35% 65% FEC_RXCLK period
M4 FEC_RXCLK pulse width low 35% 65% FEC_RXCLK period
Figure 23 shows MII receive signal timings listed in Table 23.

5.15.2 MII Transmit Signal Timing

Table 24 lists MII transmit channel timings.
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FEC_TXCLK frequency.
Num Characteristic Min Max Unit
M5 FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid 5 ns
M6 FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid 25 ns
M7 FEC_TXCLK pulse width high 35% 65% FEC_TXCLK period
M8 FEC_TXCLK pulse width low 35% 65% FEC_TXCLK period
Figure 24 shows MII transmit signal timings listed in Table 24.
Freescale Semiconductor 37
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Figure 23. MII Receive Signal Timing Diagram
Table 24. MII Transmit Signal Timing
Electrical Characteristics
M6
FEC_TXCLK (input)
FEC_TXD[3:0] (outputs)
FEC_TXEN FEC_TXER
M5
M7
M8
FEC_CRS
M9
FEC_COL
Figure 24. MII Transmit Signal Timing Diagram

5.15.3 MII Async Inputs Signal Timing

Table 25 lists MII asynchronous inputs signal timing.
Table 25. MII Async Inputs Signal Timing
Num Characteristic Min Max Unit
M9 FEC_CRS, FEC_COL minimum pulse width 1.5 FEC_TXCLK period

5.15.4 MII Serial Management Channel Timing

Table 26 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5
MHz.
Num Characteristic Min Max Unit
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay) 25 ns
M12 FEC_MDIO (input) to FEC_MDC rising edge setup 10 ns
M13 FEC_MDIO (input) to FEC_MDC rising edge hold 0 ns
M14 FEC_MDC pulse width high 40% 60% FEC_MDC period
M15 FEC_MDC pulse width low 40% 60% FEC_MDC period
propagation delay)
Figure 25. MII Async Inputs Timing Diagram
Table 26. MII Serial Management Channel Timing
0— ns
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor38
Figure 26. MII Serial Management Channel Timing Diagram
M11
FEC_MDC (output)
FEC_MDIO (output)
M12 M13
FEC_MDIO (input)
M10
M14
M15
Electrical Characteristics

5.16 32-Bit Timer Module Timing Specifications

Table 27 lists timer module AC timings.

5.17 QSPI Electrical Specifications

Table 28 lists QSPI timings.
Name Characteristic Min Max Unit
QS1 QSPI_CS[3:0] to QSPI_CLK 1 510 t
QS2 QSPI_CLK high to QSPI_DOUT valid. 10 ns
QS3 QSPI_CLK high to QSPI_DOUT invalid. (Output hold) 2 ns
QS4 QSPI_DIN to QSPI_CLK (Input setup) 9 ns
QS5 QSPI_DIN to QSPI_CLK (Input hold) 9 ns
Table 27. Timer Module AC Timing Specifications
Name Characteristic Min Max Unit
T1 DT0IN / DT1IN / DT2IN / DT3IN cycle time 3 t
T2 DT0IN / DT1IN / DT2IN / DT3IN pulse width 1 t
CYC
CYC
Table 28. QSPI Modules AC Timing Specifications
CYC
Freescale Semiconductor 39
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Electrical Characteristics
QSPI_CS[3:0]
QSPI_CLK
QSPI_DOUT
QS5
QS1
QSPI_DIN
QS3
QS4
QS2
Figure 27. QSPI Timing

5.18 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing
Num Characteristics
J1 TCLK Frequency of Operation f
J2 TCLK Cycle Period t
J3 TCLK Clock Pulse Width t
J4 TCLK Rise and Fall Times t
J5 Boundary Scan Input Data Setup Time to TCLK Rise t
J6 Boundary Scan Input Data Hold Time after TCLK Rise t
J7 TCLK Low to Boundary Scan Output Data Valid t
J8 TCLK Low to Boundary Scan Output High Z t
J9 TMS, TDI Input Data Setup Time to TCLK Rise t
J10 TMS, TDI Input Data Hold Time after TCLK Rise t
J11 TCLK Low to TDO Data Valid t
J12 TCLK Low to TDO High Z t
J13 TRST
J14 TRST
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
Assert Time t
Setup Time (Negation) to TCLK High t
1
Symbol Min Max Unit
JCYC
JCYC
JCW
JCRF
BSDST
BSDHT
BSDV
BSDZ
TAPBST
TAPBHT
TDODV
TDODZ
TRSTAT
TRSTST
DC 1/4 f
4— t
sys/3
CYC
26 ns
03 ns
4— ns
26 ns
033 ns
033 ns
4— ns
10 ns
026 ns
08 ns
100 ns
10 ns
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor40
Figure 28. Test Clock Input Timing
TCLK
V
IL
V
IH
J4
J4
(input)
J2
J3 J3
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
Data Inputs
Data Outputs
Data Outputs
Data Outputs
V
IL
V
IH
J7
J8
J7
J6J5
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
TDI
TDO
TDO
TDO
TMS
V
IL
V
IH
J9 J10
J11
J12
J11
TCLK
TRST
J13
J14
Electrical Characteristics
Figure 29. Boundary Scan (JTAG) Timing
Figure 30. Test Access Port Timing
Freescale Semiconductor 41
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Figure 31. TRST
Timing
Current Consumption
PSTCLK
PSTDDATA[7:0]
D0
D1
D2
Past
Current
DSCLK
DSI
DSO
Next
Current
D5
D3
D4

5.19 Debug AC Timing Specifications

Table 30 lists specifications for the debug AC timing parameters shown in Figure 32.
Table 30. Debug AC Timing Specification
Num Characteristic Min Max Units
D0 PSTCLK cycle time 2 2 t
D1 PSTCLK rising to PSTDDATA valid 3.0 ns
D2 PSTCLK rising to PSTDDATA invalid 1.5 ns
DSI-to-DSCLK setup 1 PSTCLK
D3
1
D4
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized
DSCLK input relative to the rising edge of PSTCLK.
DSCLK-to-DSO hold 4 PSTCLK
D5 DSCLK cycle time 5 PSTCLK
D6 BKPT assertion time 1 PSTCLK
SYS
Figure 32. Real-Time Trace AC Timing
= 1/f
SYS

6 Current Consumption

All current consumption data is lab data measured on a single device using an evaluation board. Table 31 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.
Figure 33. BDM Serial Port AC Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor42
Current Consumption
0
50
100
150
200
250
300
350
400
450
58 64 72 80 80(peak)
fsys/3 (MHz)
Power Consumption (mW)
Stop 0 - Flash
Stop 1 - Flash
Stop 2 - Flash
Stop 3 - Flash
Wait/Doze - Flash
Run - Flash
Table 31. Current Consumption in Low-Power Modes
Mode Voltage
3.3 V 3.9 3.92 4.0 4.0 4.0
Stop Mode 3 (Stop 11)
Stop Mode 2 (Stop 10)
Stop Mode 1(Stop 01)
Stop Mode 0 (Stop 00)
Wait/Doze
Run
1
All values are measured with a 3.30V EVDD, 3.30V SDVDD and 1.5V IVDD power supplies. Tests performed at room temperature with pins configured for high drive strength.
2
Refer to the Power Management chapter in the MCF532x Reference Manual for more information on low-power modes.
3
All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port off before entering low power mode. All code executed from flash.
4
All peripheral clocks on before entering low power mode. All code is executed from flash.
5
See the description of the low-power control register (LCPR) in the MCF532x Reference Manual for more information on stop modes 0–3.
5
1.5 V 1.04 1.04 1.04 1.04 1.08
3.3 V 4.69 4.72 4.8 4.8 4.8
4
1.5 V 2.69 2.69 2.70 2.70 2.75
3.3 V 4.72 4.73 4.81 4.81 4.81
4
1.5 V 15.28 16.44 17.85 19.91 20.42
3.3 V 21.65 21.68 24.33 26.13 26.16
4
1.5 V 15.47 16.63 18.06 20.12 20.67
3.3 V 22.49 22.52 25.21 27.03 39.8
1.5 V 26.79 28.85 30.81 34.47 97.4
3.3 V 33.61 33.61 42.3 50.5 62.6
1.5 V 56.3 60.7 65.4 73.4 132.3
58 MHz
(Typ)
3
64 MHz
(Typ)
3
72 MHz
(Typ)
3
1,2
80 MHz
(Typ)
3
80 MHz
(Peak)
4
Units
mA
Figure 34. Current Consumption in Low-Power Modes
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 43
Current Consumption
Estimated Power Consumption vs. Core Frequency
0
50
100
150
200
250
300
0 40 80 120 160 200 240
Core Frequency (MHz)
)
Table 32. Typical Active Current Consumption Specifications
Frequency Voltage
f
sys/3
1.333 MHz
2.666 MHz
58 MHz
64 MHz
72 MHz
80 MHz
1
All values are measured with a 3.30 V EVDD, 3.30 V SDVDD and 1.5 V IVDD power supplies. Tests performed at room temperature with pins configured for high drive strength.
2
CPU polling a status register. All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port disabled.
3
Peak current measured while running a while(1) loop with all modules active.
3.3V 7.73 7.74
1.5V 2.87 3.56
3.3V 8.57 8.60
1.5V 4.37 5.52
3.3V 40.10 49.3
1.5V 65.90 91.70
3.3V 44.40 54.0
1.5V 69.50 97.0
3.3V 53.6 63.7
1.5V 74.6 104.7
3.3V 63.0 73.7
1.5V 79.6 112.9
Typical
2
Active
(Flash)
Peak
3
1
Unit
mA
Figure 35 shows the estimated maximum power consumption.
Power Consumption (mW
Figure 35. Estimated Maximum Power Consumption
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor44
Package Information
X
Y
D
E
Laser mark for pin A1 identification in this area
0.20
Metalized mark for pin A1 identification in this area
M
M
3
A
B C D
E
F G H
J
K
L M N
P R
T
123456710111213141516
e15X
e15X
b256X
M
0.25 YZ
M
0.10XZ
S
Detail K
View M-M
Rotated 90° Clockwise
S
A
Z
Z
A2
A1
4
0.15
Z0.30
256X
5
K
Notes:
1. Dimensions are in millimeters.
2. Interpret dimensions and tolerances per ASME Y14.5M, 1994.
3. Dimension b is measured at the maximum solder ball diameter, parallel to datum plane Z.
4. Datum Z (seating plane) is defined by the spherical crowns of the solder balls.
5. Parallelism measurement shall exclude any effect of mark on top surface of package.
Dim Min Max
Millimeters
A 1.25 1.60
A1
0.27 0.47
A2
1.16 REF
b
0.40 0.60
D
17.00 BSC
E
17.00 BSC
e 1.00 BSC S
0.50 BSC
Top View
Bottom View

7 Package Information

This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF532x devices.
NOTE
The mechanical drawings are the latest revisions at the time of publication of this document. The most up-to-date mechanical drawings can be found at the product summary page located at http://www.freescale.com/coldfire.
7.1 Package Dimensions—256 MAPBGA
Figure 36 shows MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 package dimensions.
Figure 36. 256 MAPBGA Package Outline
Freescale Semiconductor 45
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Package Information
X
0.20
Laser mark for pin 1 identification in this area
e
13X
D
E
M
S
A1
A2
A
0.15 Z
0.30 Z
Z
Rotated 90 Clockwise
Detail K
°
5
View M-M
e13X
S
M
X0.30 YZ
0.10 Z
3
b
196X
Metalized mark for pin 1 identification in this area
14 13 12 11 5 4 3 2
B
C
D
E
F
G
H
J
K
L
4
NOTES:
1. Dimensions are in millimeters.
2. Interpret dimensions and tolerances per ASME Y14.5M, 1994.
3. Dimension B is measured at the maximum solder ball diameter, parallel to datum plane Z.
4. Datum Z (seating plane) is defined by the spherical crowns of the solder balls.
5. Parallelism measurement shall exclude any effect of mark on top surface of package.
DIM Min Max
Millimeters
A 1.32 1.75 A1 0.27 0.47 A2 1.18 REF
b 0.35 0.65 D 15.00 BSC E 15.00 BSC
e 1.00 BSC S 0.50 BSC
Y
K
M
N
P
A
1610 9
Top View
Bottom View
7.2 Package Dimensions—196 MAPBGA
Figure 37 shows the MCF5327CVM240 package dimensions.
Figure 37. 196 MAPBGA Package Dimensions (Case No. 1128A-01)
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor46

8 Revision History

Table 33. MCF5329DS Document Revision History
Rev. No. Substantive Changes Date of Release
0 • Initial release. 11/2005
Revision History
0.1 • Added not to Section 7, “Package Information.”
• Added top view and bottom view where appropriate in mechanical drawings and pinout figures.
Figure 6: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)”
1 • Corrected MCF5327 196MAPBGA ball map locations in Ta b l e 5 for
the following signals: RCON, D1, D0, OE, R/W, SD_DQS2, PSTCLK, DDATA[3:0], PST[3:0], EVDD, IVDD, and SD_VDD. Figure 5 was correct.
• Updated thermal characteristic values in Ta b le 5 .
• Updated DC electricals values in Ta b le 7 .
• Updated Section 3.3, “Supply Voltage Sequencing and Separation
Cautions” and subsections.
• Updated and added Oscillator/PLL characteristics in Ta b le 8 .
Ta b le 9 : Swapped min/max for FB1; Removed FB8 & FB9.
• Updated SDRAM write timing diagram, Figure 9.
Ta b le 1 1 : Added values for frequency of operation and DD1.
• Reworded first paragraph in Section 5.12, “ULPI Timing
Specification.”
• Updated Figure 19.
• Replaced figure & table Section 5.13, “SSI Timing Specifications,” with slave & master mode versions.
• Removed second sentence from Section 5.15.2, “MII Transmit Signal
Timing,” regarding no minimum frequency requirement for TXCLK.
• Removed third and fourth paragraphs from Section 5.15.2, “MII
Transmit Signal Timing,” as this feature is not supported on this
device.
• Updated figure & table Section 5.19, “Debug AC Timing
Specifications.”
• Renamed & moved previous version’s Section 5.5 “Power Consumption” to Section 6, “Current Consumption.” Added additional real-world data to this section as well.
2 • Added MCF53281 device information throughout: features list, family
configuration table, ordering information table, signals description table, and relevant package diagram titles
• Remove Footnote 1 from Tab l e 1 1.
• Changed document type from Advance Information to Technical Data.
3/2006
7/2007
8/2007
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 47
Revision History
Rev. No. Substantive Changes Date of Release
Table 33. MCF5329DS Document Revision History (continued)
3 • Corrected MCF53281 in features list table. This device contains CAN,
but does not feature the cryptography accelerators.
• In pin-multiplexing table, moved MCF53281 label from the MCF5328 column to the MCF5329 column, because this device contains CAN output signals.
4 • Corrected pinouts in Ta bl e 5 for 196 MAPBGA device:
Changed D[15:1] entry from “F4–F1, G4–G2...” to “F4–F1, G5–G2...” Changed DSO/TDO entry from “P9” to “N9”
• Corrected D0 spec in Ta b le 3 0 from 1.5 x t
to 2 x t
sys
for min and
sys
max balues.
• Updated FlexBus read and write timing diagrams in Figure 7 and
Figure 8.
• Removed footnote 2 from the IRQ[7:1] alternate functions USBHOST VBUS_EN, USBHOST VBUS_OC, SSI_MCLK, USB_CLKIN, and SSI_CLKIN signals in Ta bl e 5 .
• Updated pinouts for 196 MAPBGA device, MCF5327CVM240 in both
Figure 5 and Ta b le 2 .
The following locations are affected: G10–12, H12–14, J11–14, K12–13, L12–13, M12–14, N13. The following signals are affected: USBOTG_VDD, USBHOST_VSS, USBOTG_M, USBOTG_P, USBHOST_M, USBHOST_P, DRAMSEL, PWM3, PWM1, IRQ TMS/BKPT
.
[7,4,3,2,1], RESET, TDI/DSI, JTAG_EN,
10/2007
4/2008
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor48
THIS PAGE INTENTIONALLY BLANK
Revision History
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor 49
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com
For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.
Document Number: MCF5329DS
Rev. 4 04/2008
Loading...