Fairchild HUF76129D3, HUF76129D3S service manual

查询HUF76129D3S供应商查询HUF76129D3S供应商
HUF76129D3, HUF76129D3S
Data Sheet January 2003
20A, 30V, 0.016 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
These N-Channel pow er MOSFETs are manufactured using the innovati ve UltraFET™ process.
This advanced process technology achieves the lowest possible on-resistance per silicon ar ea, resultin g in outstanding performance. This device is capab le of withstanding hi gh energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was design ed for use in applicati ons where power efficiency is important, such as switching regulators, switchi ng converters, motor drivers, relay drivers , low­voltage bus switches, and power manage me nt i n po rtab le and battery-operated products.
Formerly developmental ty pe TA76129.
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76129D3 TO-251AA 76129D HUF76129D3S TO-252AA 76129D
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-252AA variant in tape and reel, e.g., HUF76129D3ST.
Features
• Logic Level Gate Drive
• 20A, 30V
• Ultra Low On-Resistance, r
• Temperatur e Compensating PSPICE
• Temperatur e Compensating SABER
DS(ON)
= 0.016
®
Model
©
Mode
• Thermal Impedance SPICE Model
• Thermal Impedance SABER Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
Packaging
(FLANGE)
DRAIN
JEDEC TO-251AA JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN
(FLANGE)
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
HUF76129D3, HUF76129D3S
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gat e Voltage (R
= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
GS
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
DGR
GS
30 V 30 V
±20 V
Drain Curr e nt
Continuous (T
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
C
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
, T
J
STG
D D D
DM
AS
D
20 20 20
Figure 4
Figures 6, 17, 18
105
.83
-55 to 150
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Rati ngs” may cause permane nt damage to the device. This is a stress only rating and oper ation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
300 260
A A A
W
W/oC
o
C
o
C
o
C
NOTE:
= 25oC to 150oC.
1. T
J
Electrical Specifications TA = 25
o
C, Unless Othe r wis e Specifi ed
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain t o Source Breakdown Voltage BV Zero Gat e V ol tag e D rain Curre nt I
Gate to Sour c e Le ak ag e C urr e nt I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V Drain to Source On Resistance r
GS(TH)VGS
DS(ON)ID
THERMAL SPECIFICATIONS
Thermal R esis ta nc e Ju ncti on to Case R Thermal Resistance Junction to Ambient R SWITCHING SPECIFICATIONS (V
GS
= 4.5V) Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t
DSSID
DSS
GSS
θJC θJA
ON
r
f
OFF
= 250µA, VGS = 0V (Figure 12) 30 - - V VDS = 25V, VGS = 0V - - 1 µA V
= 25V, VGS = 0V, TC = 150oC--250µA
DS
VGS = ±20V - - ±100 nA
= VDS, ID = 250µA (Figur e 11) 1 - 3 V
= 20A, VGS = 10V (Figure 9, 10) - 0. 014 0.01 6 I
= 20A, VGS = 5V (Figure 9) - 0.0175 0.02 1
D
I
= 20A, VGS = 4.5V (Figure 9) - 0.0195 0.023
D
(Figur e 3) - - 1. 20 TO-251, TO-252 - - 100
VDD = 15V, ID 20A, RL = 0.75Ω, V
= 4.5V, RGS = 10
GS
(Figures 15, 21 , 22)
--275ns
-20-ns
o o
C/W C/W
-165- ns
-30-ns
-54-ns
--125ns
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
HUF76129D3, HUF76129D3S
Electrical Specifications TA = 25
o
C, Unless Othe r wis e Specifi ed (Continued)
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charg e Q Gate Charge at 5V Q Threshold Gat e Ch arg e Q Gate to Source Gate Charg e Q Gate to Drain “M ill er ” Cha tg e Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C
ON
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(5)
g(TH)
ISS OSS RSS
VDD = 15V, ID 20A, RL = 0.75Ω, V (Figures 16, 21 , 22)
r
f
VGS = 0V to 5V - 22 26 nC VGS = 0V to 1V - 1.4 1.7 nC
gs gd
VDS = 25V, VGS = 0V, f = 1MHz (Figur e 13 )
= 10V, RGS = 10
GS
= 0V to 10V VDD = 15V, ID 20A,
R
= 0.75
L
I
= 1.0mA
g(REF)
(Figures 14, 1 9, 20)
--80ns
-7-ns
-47-ns
-60-ns
-54 -ns
--110ns
-3846nC
-3.70- nC
-11.20- nC
-1425- pF
-720- pF
-170- pF
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Vol tage V Reverse Recovery Time t Reverse Recovered Charge Q
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
TA, AMBIENT TEMPERATURE (oC)
SD
rr
RR
ISD = 20A - - 1.25 V ISD = 20A, dISD/dt = 100A/µs--72ns ISD = 20A, dISD/dt = 100A/µs - - 107 nC
25
20
VGS=10V
VGS=4.5V
150
125
15
10
, DRAIN CURRENT (A)
D
I
5
0
25 50 75 100 125
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED PO WER DISSIPATION vs CASE
TEMPERATURE
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
HUF76129D3, HUF76129D3S
Typical Performance Curves (Continued)
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
JC
θ
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
2000
100
, PEAK CURRENT (A)
DM
I
-5
10
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
10
-5
10
VGS = 10V
-4
10
-3
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
VGS = 5V
-4
10
10
-3
-2
10
t, RECT ANGULAR PULSE DURATION (s)
-2
10
t, PULSE WIDTH (s)
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-1
10
-1
10
P
DM
t
1
t
2
1/t2
x R
JC
JC
θ
θ
0
10
TC = 25oC
FOR TEMPERATURE S ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
150 - T
I = I
25
10
C
125
0
+ T
C
1
10
1
10
FIGURE 4. PEAK CURRENT CAPABILITY
, AVALANCHE CURRENT (A) I
500
100
AS
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
DSS
- VDD)
DSS
- VDD) +1]
STARTING TJ = 25oC
10
STARTING TJ = 150oC
1
0.01
0.1
1 10 100
tAV, TIME IN AVALANCHE (ms)
1000
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE
LIMITED BY r
1
DS(ON)
BV
DSS MAX
= 30V
10
, DRAIN TO SOURCE VOLT AGE (V)
V
DS
TJ = MAX RATED
= 25oC
T
C
100µs
1ms
10ms
1001
NO TE: Refer to Fairchild App lication Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
HUF76129D3, HUF76129D3S
Typical Performance Curves (Continued)
60
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
45
30
, DRAIN CURRENT (A)
D
I
15
0
0231
, GATE TO SOURCE VOLTAGE (V)
V
GS
25oC
-55oC
V
DD
150oC
= 15V
4
60
45
30
, DRAIN CURRENT (A)
, DRAIN CURRENT (A)
15
D
D
I
I
0
012345
VDS, DRAIN TO SOURCE VOLTAGE (V)
VDS, DRAIN TO SOURCE VOLTAGE (V)
= 10V
V
GS
= 5V
V
GS
V
= 4.5V
GS
VGS = 4V
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
30
27
24
ID = 5A
21
, DRAIN TO SOURCE
18
ON RESISTANCE (mΩ)
DS(ON)
r
15
12
26108
ID = 20A
ID = 10A
4
, GATE TO SOURCE VOLTAGE (V)
V
GS
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
1.6
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
V
= 10V, ID = 20A
GS
1.4
1.2
1.0
ON RESISTANCE
0.8
NORMALIZED DRAIN TO SOURCE
0.6
-80 0 40
-40 TJ, JUNCTION TEMPERATURE (oC)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 3.5V
VGS = 3V
80
120
160
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
1.2
1.1
1.0
0.9
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.7
0.6
-80 0 40 160
-40 TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
80
120
FIGURE 11. NORMALIZED GATE THRESHOLD VOL TAGE vs
JUNCTION TEMPERATURE
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.15 ID = 250µA
1.10
1.05
1.00
BREAKDOWN VOLTAGE
0.95
NORMALIZED DRAIN TO SOURCE
0.90
-80 0 40 160
-40 T
, JUNCTION TEMPERATURE (oC)
J
80
120
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF76129D3, HUF76129D3S
Typical Performance Curves (Continued)
2000
1600
1200
C
C
ISS
OSS
V
= 0V, f = 1MHz
GS
= CGS + C
C
ISS
C
= C
RSS
C
CDS + C
OSS
GD
GD
GD
800
C, CAPACITANCE (pF)
400
C
RSS
0
0101520
5
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
25
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
500
VGS = 4.5V, VDD = 15V, ID = 20A, RL= 0.75
400
300
200
SWITCHING TIME (ns)
100
0
10
20 30 40 500
RGS, GATE TO SOURCE RESISTANCE (Ω)
t
d(OFF)
t
r
t
d(ON)
t
f
10
VDD = 15V
8
6
4
WAVEFORMS IN DESCENDING ORDER:
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
30
0
10
Q
, GATE CHARGE (nC)
g
20
ID = 20A
= 10A
I
D
= 2A
I
D
300
40
NOTE: Refer to Fairchild Application Notes 7254 and 7260.
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
300
VGS = 10V, VDD = 15V, ID = 20A, RL= 0.75
250
t
200
150
100
SWITCHING TIME (ns)
50
0
10
20 30 40 500
RGS, GATE TO SOURCE RESISTANCE (Ω)
d(OFF)
t
f
t
r
t
d(ON)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
t
P
I
AS
t
AV
V
DS
V
DD
HUF76129D3, HUF76129D3S
Test Circuits and Waveforms (Continued)
V
DS
R
L
V
GS
DUT
I
g(REF)
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
+
V
-
DD
V
DD
V
0
I
g(REF)
0
GS
V
= 1V
GS
Q
g(TH)
Q
g(TOT)
V
DS
Q
g(5)
V
= 10
GS
VGS = 5V
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
t
10%
r
PULSE WIDTH
FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHING TIME WAV EFORM
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
E
HUF76129D3, HUF76129D3S
PSPICE Electrical Model
SUBCKT HUF76129D 2 1 3 ; REV April 1998
CA 12 8 1.95 e - 9 CB 15 14 1.85e-9 CIN 6 8 1.31e-9
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 32 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
GATE
IT 8 17 1 LDRAIN 2 5 1e- 9
LGATE 1 9 2.20e- 9 LSOURCE 3 7 3.03e-9
MMED 16 6 8 8 MMEDM OD MSTR O 16 6 8 8 M S T ROMOD MWEAK 16 21 8 8 MWE AKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.9e-3 RGATE 9 20 3.5 RLDRAIN 2 5 10 RLGATE 1 9 22 RLSOURCE 3 7 30.3 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 10e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
LGATE
1
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
13
6 8
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CIN
CB
-
+
5 8
-
5
RSLC1
51
+
5
51
-
50 RDRAIN
21
MSTRO
14
ESLC
16
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
LDRAIN
RLDRAIN
11
+
17 18
DBODY
DRAIN
2
-
LSOURCE
7
RLSOURCE
RVTEMP 19
SOURC
3
-
VBAT
+
22
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*1000),3.5))} .MODEL DBOD Y M OD D (IS = 1.2e-12 IKF = 8 TIKF = 1e-2 RS = 7.7 e-3 TRS1 = 3e-4 TRS2 = 1e-6 CJO = 2.23e-9 TT = 35e-9 M = 4e-1 XTI =4.75 )
.MODEL DBR EAKMOD D (RS = 9.5e-2 TRS1 = 4e-3 TRS2 = 3e-5 IKF = 1e-1) .MODEL DPLC A PMOD D (CJO = 1.12e-10 IS = 1e-30 N = 10 M = 6.5e-1 VJ = 1. 45) .MODEL MMEDMOD NMOS (VTO = 1.87 KP = 5.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1) .MODEL MSTROM OD NMOS (VTO = 2. 15 K P = 90 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.49 KP =2e-2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10) .MODEL RBR EA K M OD RES (TC1 = 9.8e-4 TC2 = -1e-10) .MODEL RD RAINMOD RES (TC1 = 1e -2 TC2 = 1e-5) .MODEL RSLC M OD RES (TC1 = 1e-6 T C2 = 1.05e-6) .MODEL RSOURCEMOD RES (TC1 = 2.5e-3 TC2 = 2e-6) .MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -1.1e-5) .MODEL RVTE MPMOD RES (T C1 = -1.65e-3 TC2 = 1.45e- 6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -10.0 VOFF= -0.50) .MODEL S1BM OD V S WITCH (RON = 1e- 5 ROFF = 0.1 VON = -0.50 VOFF= -10.0) .MODEL S2AM OD V SWITCH (RO N = 1e- 5 ROFF = 0.1 VON = 0.00 VOFF= 0.50) .MODEL S2BM OD V SWITCH (RO N = 1e- 5 ROFF = 0.1 VON = 0.50 VOFF= 0.00)
.ENDS
NOTE: For further discussi on of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global T emperature Opti ons; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
HUF76129D3, HUF76129D3S
SABER Electrical Model
nom temp=25 deg c 30v LL Ultraf et
REV April 1998 template huf76129D n2 ,n1,n3
electrical n2,n1,n3 { var i iscl d..model db odymod = (is=1. 2e-12, xti=4.75, cjo=2.23e-9,tt=35e-8, m=4e-1) d..model dbreakmod = (is=1e-14) d..model dp lcapmod = (cjo=1.12e-9,is=1e-30,n=10, m =6.5e-1, vj=1 .45, fc=5e-1) m..model mmedmod = (type=_n,vto=1.87,kp=5.75,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.15,kp=90,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.49,kp=2e-2,is=1e-30, tox=1) sw_vcsp.. mo del s1amod = (ron= 1e-5,roff=0. 1,von=-10.0,voff=-0. 5) sw_vcsp.. mo del s1bmod = (ron= 1e-5,roff=0.1,von=-0.5,voff=10 .0) sw_vcsp.. mo del s2amod = (ron= 1e-5,roff=0.1,von=0,v off=0.5) sw_vcsp.. mo del s2bmod = (ron= 1e-5,roff=0.1,von=0.5,voff=0)
c.ca n12 n8 = 1.95e-9 c.cb n15 n14 = 1.85e-9 c.cin n6 n8 = 1.31 e-9
d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbr eakmod d.dplcap n10 n5 = m odel=dplcapmod
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 2.2e-9 l.lsource n3 n7 = 3.03e-9
GATE
LGATE
1
RLGATE
RGATE
9
m.mmed n16 n6 n8 n8 = m odel=mmed m od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=m strongmod, l= 1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w =1u
res.rbreak n17 n18 = 1, tc1=9.8e-4,tc2=-1e-10 res.rdbody n71 n5 =7.7e-3, tc 1=2.5e-3, tc2=1e-6 res.rdbreak n72 n5 =9.5e -2, tc 1=4e-3, tc2=3e-5 res.rdrain n50 n16 = 1.9e-3, tc 1=1e-2,tc2=1e-5 res.rgate n9 n20 = 3.6e-1 res.rldrai n n2 n5 = 10 res.rlgate n1 n9 = 22
CA
res.rlsource n3 n7 = 30.3 res.rslc1 n5 n51 = 1e-6, tc1=1e-6,tc2= -1. 05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 10e-3, tc1=2.5e-3,tc2=2e-6 res.rvtemp n18 n19 = 1, tc1=-1.8e-3,tc2=1.1e-5 res.rvthres n22 n8 = 1, tc1=-1.65e-3,tc2=-1.45e-6
-
ESG
+
EVTEMP +
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
6 8
13
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CB
CIN
-
+
5 8
-
5
RSLC1
51
50
RDRAIN
21
MSTRO
14
ISCL
16
8
MMED
RDBREAK
72
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17 18
-
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
RDBODY
71
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
spe.ebreak n11 n7 n17 n18 = 37 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1 a n6 n12 n13 n8 = model=s 1amod sw_vcsp.s1 b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2 b n13 n15 n14 n13 = mod el= s2bmod
v.vbat n22 n19 = dc=1 equations {
i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v (n5,n51))))*((abs(v (n5,n51)*1e6/1000))** 3.5 )) } }
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
HUF76129D3, HUF76129D3S
SPICE Thermal Model
REV April 1998
HUF76129D
CTHERM1 th 6 1.10e-5 CTHER M 2 6 5 2.70e- 2 CTHER M 3 5 4 3.90e- 2 CTHER M 4 4 3 1.00e- 2 CTHER M 5 3 2 2.30e- 2 CTHERM6 2 tl 1.80
RTHERM1 th 6 1.00e-4 RTHER M 2 6 5 5.00e- 4 RTHER M 3 5 4 2.90e- 2 RTHER M 4 4 3 4.80e- 1 RTHER M 5 3 2 2.80e- 1 RTHERM6 2 tl 1.00e-1
SABER Thermal Model
Saber thermal model HUF76129D template thermal_model th tl
thermal_c th, tl { ctherm.ctherm1 th c2 = 1.10e-5 ctherm.ctherm2 c2 c3 = 2.70e-2 ctherm.ctherm3 c3 c4 = 3.90e-2 ctherm.ctherm4 c4 c5 = 1.00e-2 ctherm.ctherm5 c5 c6 = 2.30e-2 ctherm.ctherm6 c6 tl = 1.80
rtherm.rtherm1 th c2 = 1.00e-4 rtherm.rtherm2 c2 c3 = 5.00e-4 rtherm.rtherm3 c3 c4 = 2.90e-2 rtherm.rtherm4 c4 c5 = 4.80e-1 rtherm.rtherm5 c5 c6 = 2.80e-1 rtherm.rtherm6 c6 tl = 1.00e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
RTHERM6
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
CASE
tl
©2003 Fairchild Semiconductor Corporation HUF76129D3, HUF76129D3S Rev. B1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™
2
E
CMOS™ EnSigna™ Across the board. Around the world.™ The Power F ranchise™ Programma ble Active Droop™
FACT™ FACT Quiet Series™
®
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
2
I
C™
ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
®
OPTOPLANAR™
PACMAN™ POP™ Power247™ PowerTrench
®
QFET™ QS™ QT Optoelectronics™ Quiet Se ries™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™
SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic TruTranslation™ UHC™ UltraFET
®
VCX™
®
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) ar e int ende d fo r s urgic al i mpla nt into the bo dy, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A c r it ic al c om ponen t i s an y c om po nent o f a l ife su pp ort device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Adva nce Information Formative or In
Design
Preliminary First Production This datasheet contains preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Producti on This datasheet contains specifications on a product
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supple m entary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the right to make changes at any time without notice in order to improve design.
that has been disco ntinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I2
Loading...