Fairchild FEBFAN7688SJXA_CP14U306 User Manual

Page 1
User Guide for
FEBFAN7688SJXA_CP14U306
Evaluation Board
306 W/12 V PC Application
with 12 VSB Module
Evaluation Board
Featured Fairchild Product:
FAN7688
Direct questions or comments
about this evaluation board to:
“Worldwide Direct Support”
Fairchild Semiconductor.com
© 2015 Fairchild Semiconductor Corporation 1 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 2
Table of Contents
1. Introduction ............................................................................................................................... 3
1.1. Features ............................................................................................................................ 3
2. Evaluation Board Specifications ............................................................................................... 4
3. Photograph ................................................................................................................................ 4
4. Printed Circuit Board (PCB) ..................................................................................................... 5
5. Schematic .................................................................................................................................. 6
6. Bill of Materials ........................................................................................................................ 7
7. Transformer and Winding Specifications ............................................................................... 12
7.1. Main Transformer (TX1) ............................................................................................... 12
7.2. Resonant Inductor (L4) .................................................................................................. 13
7.3. Pulse Transformer (TX2) ............................................................................................... 14
7.4. Current Transformer (TX4) ............................................................................................ 15
7.5. PFC Inductor (L3) .......................................................................................................... 16
7.6. 12 V Standby Transformer (TX3) .................................................................................. 17
7.7. EMI Choke (L1, L2)....................................................................................................... 18
8. Test Conditions & Test Equipment......................................................................................... 19
8.1. Features .......................................................................................................................... 19
9. Performance of Evaluation Board ........................................................................................... 20
9.1. Current Harmonic Test: .................................................................................................. 20
9.2. AC Trim Up & Trim Down............................................................................................ 23
9.3. Efficiency ....................................................................................................................... 23
9.4. Output Transient Response ............................................................................................ 24
9.5. 390 V to 358 V && 358 V to 390 V at Loading ............................................................ 25
9.6. 390 V to 358 V && 358 V to 390 V at Vrms ................................................................ 25
9.7. Hold up Time ................................................................................................................. 25
9.8. AC Cycle Drop ............................................................................................................... 26
9.9. AC Transient .................................................................................................................. 26
9.10. Surge & ESD .................................................................................................................. 27
9.11. EMI Conduction ............................................................................................................. 27
10. Revision History ..................................................................................................................... 28
© 2015 Fairchild Semiconductor Corporation 2 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 3
This user guide supports the 306 W evaluation board for the 80Plus Platinum solution based on a Continuous Conduction Mode (CCM) PFC and LLC convertor using the FAN6982 with the FAN7688. It should be used in conjunction with the FAN7688 datasheet as well as Fairchild’s application notes and technical support team. Please visit Fairchild’s website at www.fairchildsemi.com.
1. Introduction
The LLC converter in this Evaluation Board (EVB) is controlled by the FAN7688; it’s a 16-pin controller and locates in secondary side. The FAN7688 includes PFM and PWM controls to optimization efficiency for all loading, its combine advantage SR control improves efficiency. It employs a current mode control technique based on charge control; this provides a better control-to-output and line-to-output transfer function of the power stage, simplifying the feedback loop design while allowing true input power limit capability. The PFC is controlled by the FAN6982, based on Continuous Conduction Mode (CCM), which employs leading edge modulation for average current control and has a number of advanced features for better performance and reliability.
1.1. Features
LLC:
Secondary Side PFM Controller with Synchronous Rectifier Control Charge Current Control for better Transient Response and Simplified Feedback Loop
Design
Adaptive Synchronous Rectification Control with Dual Edge Tracking Closed Loop Soft-Start Green Functions to Improve Light Load Efficiency
- Symmetric PWM Control at Light Load to Limit the Switching Frequency while
Reducing Switching Losses
- Disabling SR During Light Load Operation
Complete Protection Functions with Auto-Restart PFC:
Continuous Conduction Mode and Average-Current-Mode Control Power-On Sequence Control Brownout Protection Fulfills Class-D Requirements of IEC 61000-3-2 Universal AC Input Voltage Efficiency Optimization by External Output Voltage Adjustable Circuit
© 2015 Fairchild Semiconductor Corporation 3 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 4
Description
Symbol
Value
Comments
Output Power
PO
306 W
Efficiency
Eff, η
Meet 80PLUS Platinum
Input Voltage
VAC
90~264 V
Input Frequency
47~63 Hz
PFC Output Voltage
V
PFC
356 V / 392 V
Output Voltage
V
OUT
12 V
100% Load = 300 W
12 V Standby Output
V
12VSB
12 V
100% Load = 6 W
Brown-In / Out Voltage
VAC
85 V / 73 V
PFC Frequency
fSW
65 kHz
LLC Frequency
f
LLC
39 k~150 kHz
EVB Size
L * W * H
145 mm*122 mm*48 mm
Does not include the
metal case
PFC
LLC
Standby
AC Input
DC Ounput
2. Evaluation Board Specifications
All data for this table was measured at an ambient temperature of 25°C.
Table 1. Summary of Features and Performance
3. Photograph
© 2015 Fairchild Semiconductor Corporation 4 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Figure 1. Top View of Evaluation Board (EVB does not include the metal case)
Page 5
4. Printed Circuit Board (PCB)
Figure 2. Top Side of Evaluation Board
Figure 3. Bottom Side of Evaluation Board
© 2015 Fairchild Semiconductor Corporation 5 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 6
5. Schematic
Figure 4. Evaluation Board Schematic
© 2015 Fairchild Semiconductor Corporation 6 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 7
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
Part No.
Value
Description
Manufacturer
1
JP
1
JUMPER WIRE 0.6ψ
2
C13
1 47 pF
C0603 X7R ±10% 50 V
3 C42
1 100 pF
C0603 X7R ±10% 50 V
4 C38
1 470 pF
C0603 X7R ±10% 50 V
5
C51
1 680 pF
C0603 X7R ±10% 50 V
6
C21, C35, C46, C50, C64, C65,
C66, C67, C73
9 1 nF
C0603 X7R ±10% 50 V
7
C24
1 2.2 nF
C0603 X7R ±10% 50 V
8
C40, C41
2 3.3 nF
C0603 X7R ±10% 50 V
9 C47
1 4.7 nF
C0603 X7R ±10% 50 V
10
C31, C52
2 47 nF
C0603 X7R ±10% 50 V
11
C33, C34
2 10 nF
C0603 X7R ±10% 50 V
12
C39
1 22 nF
C0603 X7R ±10% 50 V
13
C20, C36, C37
3 100 nF
C0603 X7R ±10% 50 V
14
C48
1 220 nF
C0603 X7R ±10% 50 V
15
C32, C49
2 470 nF
C0603 X7R ±10% 16 V
16
C57, C58, C59, C60, C61, C62, C63, C68, C69, C70, C71, C72,
C74
13 1 μF
C0603 X7R ±10% 50 V
17
C8
1 1 μF
C0805 X7R ±10% 50 V
18
C23
1 10 μF
C0805 X7R ±10% 25 V
19
C43
1 22 μF
C0805 X7R ±10% 25 V
20
R11, R16, R21
3 0 Ω
R0603 ±1%
21
R30, R31
2 2.2 Ω
R0603 ±1%
22
R10, R15, R20,
R58
4 10 Ω
R0603 ±1%
23
R26
1 17.4 Ω
R0603 ±1%
24
R25
1 42.2 Ω
R0603 ±1%
25
R8
1 51 Ω
R0805 ±1%
26
R69, R70, R71,
R72
4 100 Ω
R0603 ±1%
27
R19, R24, R112
3 220 Ω
R0603 ±1%
28
R107
1 330 Ω
R0603 ±1%
29
R41
1 1.24
R0603 ±1%
30
R63
1 1.5
R0603 ±1%
31
R90, R93
2 2
R0603 ±1%
32
R111
1 2.2
R0603 ±1%
33
R34
1 3
R0603 ±1%
6. Bill of Materials
© 2015 Fairchild Semiconductor Corporation 7 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 8
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
Part No.
Value
Description
Manufacturer
34
R64
1 3.3
R0603 ±1%
35
R60, R105
2 4.7
R0603 ±1%
36
R95, R96
2 4.99
R0603 ±1%
37
R40
1 5.1
R0603 ±1%
38
R55
1 6.98
R0603 ±1%
39
R92, R94
2 8.25
R0603 ±1%
40
R38, R65, R87,
R108, R117,
R118
6 10
R0603 ±1%
41
R89
1 12
R0603 ±1%
42
R120
1 12.4
R0603 ±1%
43
R115
1 13.3
R0603 ±1%
44
R88, R106, R114
3 15
R0603 ±1%
45
R12, R17, R22, R32, R33, R39,
R54, R57, R102,
R104, R110
11 20
R0603 ±1%
46
R68, R101
2 24.9
R0603 ±1%
47
R59, R119
2 27
R0603 ±1%
48
R52
1 27.4
R0603 ±1%
49
R51
1 36
R0603 ±1%
50
R37
1 38.3
R0603 ±1%
51
R44
1 43.2
R0603 ±1%
52
R103
1 47
R0603 ±1%
53
R66
1 51
R0603 ±1%
54
R129
1 73.2
R0603 ±1%
55
R122, R126
2 75
R0603 ±1%
56
R125
1 91
R0603 ±1%
57
R99
1 147
R0603 ±1%
58
R67, R97, R98,
R127
4 200
R0603 ±1%
59
R56
1 357
R0603 ±1%
60
R130 (Parallel
with R55)
1 1
R0603 ±5%
61
R113, R116,
R121, R128
4 4.3
R0603 ±5%
62
R47
1 0 Ω
R0805 ±1%
63
R61
1 10
R0805 ±1%
64
R50
1 200
R0805 ±1%
65
R49
1 3
R1206 ±1%
66
R45, R46
2 100
R1206 ±1%
67
R1, R2
2 470
R1206 ±1%
© 2015 Fairchild Semiconductor Corporation 8 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 9
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
Part No.
Value
Description
Manufacturer
68
R13, R14
2 499
R1206 ±1%
69
R3, R4, R123,
R124
4 1
R1206 ±5%
70
R5, R6
2 3
R1206 ±5%
71
R9A, R9B
2 0.15 Ω
R2512 ±1% 2 W
72
R100
1 10
VR
73
C1
1 0.68 μF
X2 Capacitor 275 V ±10%
(11.5*19.5*17.5 mm
Pitch=15 mm)
74
C2
1 0.47 μF
X2 Capacitor 275 V ±10%
(18*8.5*16.5 mm,
Pitch=15 mm)
75
C53, C54
2
CD12-E2GA222MYASA
2.2 pF
Y1 Capacitor 250 V ±20%
UNIVERSE
CONDENSER
76
C3, C4
2 0.22 pF
Y1 Capacitor 250 V ±20%
77
C9
1 4.7 pF
Y1 Capacitor 250 V ±20%
(19x8x10 mm)
78
C10
1
MP3S104J0630DB1151H
0.1 μF
MP3S Capacitor DC630V
FUH BANG
79
C25
1 22 μF
Electrolytic Capacitor 50 V
105°C 5*11 mm LHK
HONJU
80
C29
1 220 μF
Electrolytic Capacitor 16 V
105°C 6.3*11 mm GF
SAMXON
81
C7
1 270 μF
Electrolytic Capacitor
450 V 105°C 25*45 mm LP
SAMXON
82
C27
1 470 μF
Solid Capacitor 16 V
8*11.5 mm ULR
HE SHEN TANG
83
C28
1 1000 μF
Electrolytic Capacitor 16 V
105°C 8*18 mm
84
C17, C18, C19
3 2200 μF
Electrolytic Capacitor 16 V
105°C 10*25 mm
85
C16
1 470 μF
Solid Capacitor 16 V
10*11.5 mm PSF
HE SHEN TANG
86
C5
1
TF105K2Y159L270D9R
1 μF
MTF Capacitor 450 V
±10%
KENJET
TECHNOLOGY
87
BD1
1
DFB2560
Bridge 25 A/600 V
TS-6P
Fairchild
88
D1
1
ISL9R860P2
Diode 8 A/600 V TO-220
Fairchild
89
D10
1
UF4007
Diode 1 A/1000 V DO-41
Fairchild
90
D12
1
1N4935
Diode 1 A/200 V DO-41
Fairchild
91
D14
1
EGP30D Diode 3 A/200 V
Fairchild
92
D19, D20, D21,
D22
4
1N4148WS
Diode SOD-32F
Fairchild
93
D2
1
S3J Diode 3 A/600 V SMC
Fairchild
94
D3, D4, D5, D11,
D15, D16, D17,
D18
8
LL4148
Diode 200 mA/100 V
SOD80
Fairchild
© 2015 Fairchild Semiconductor Corporation 9 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 10
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
Part No.
Value
Description
Manufacturer
95
D9
1
P6KE200A TVS
Fairchild
96
Q1, Q6, Q7
3
FCP170N60
MOS 22 A/ 600 V TO-220
Fairchild
97
Q13, Q14, Q27,
Q28, Q29
5
2N7002 SOT-23
Fairchild
98
Q15, Q17, Q19,
Q21, Q25
5
MMBT2222A SOT-23
Fairchild
99
Q24
1
NDS0605
-0.18 A/ -60 V SOT-23
Fairchild
100
Q3, Q4, Q5, Q12,
Q16, Q18, Q20,
Q22, Q23, Q26
10
MMBT2907A SOT-23
Fairchild
101
Q8, Q9
2
FDMS8320L
100 A /40 V, Power56
Fairchild
102
U1
1
FAN6982MY
IC SO-14L
Fairchild
103
U2
1
FAN7688SJX IC
Fairchild
104
U3
1
FSL137MRIN
MDIP 8L
Fairchild
105
U4, U6
2
FODM121C MFP 4L
Fairchild
106
U5
1
KA431LZTA TO-92R
Fairchild
107
U8, U9, U10
3
LM358M SO-8L
Fairchild
108
L1, L2
2
SN20128A EMI Choke
FORMOSA
SHING GA
109
L3
1
Inductor QP2920H 420 μH
YUJING
110
L4
1
102Q553
Inductor EQ20 120 μH
SUMIDA
111
L5
1
Inductor 0.75 μH
SHOWWELL
112
TX1
1
FPQ032014175V-PF
Transformer
PQ3230 (PC44)
SHOWWELL
113
TX2
1
750342754
Transformer EE13
Würth Elektronik
114
TX3
1
078Q561
Transformer EQ20
SUMIDA
115
TX4
1
750342753
Transformer EE8.3
Würth Elektronik
116
L6
1
TRN-00199
117
TR
1
TTC104
100 KΩ
NTC
118
FAN
1
Connect WAFER
(2530HHS) 2P 2.5 mm
180°
119
F1
1
FUSE GLASS 7 A/250 V
QUICK 5*20 mm
120
MOV1
1
TVR10471KSY
Varistor ATOM MOV
121
NTC1
1
SCK132R56MYS
NTC 13ψ SCK2R56
122
HS1
1
MCH0146 Heat Sink
123
HS2, HS3
2
Heat Sink
124 2
Power Cable
1007#16AWG +3.2ψ
HOOK
YIYI
125
12VSB, GND
2
Test Pin
© 2015 Fairchild Semiconductor Corporation 10 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 11
FEBFAN7688SJXA_CP14U306 BOM (PLM0320 REV.3)
Item
Reference
Qty.
Part No.
Value
Description
Manufacturer
126 1
Heat Shrinkable Tubing
3*15 mm
127 1
Heat Shrinkable Tubing
6*20 mm
128 3
MCH0040 Bead Core C8B
3.5*3.2*1.0
129 4
Bushing TO220 602M
130 4
Silicone Sheet TO-220
131 2
Screws 3ψ12 mm
132 6
Nut
133 4
Copper Tube M3
6.5*6 mm
134 1
CANADA Silicone
ES2482W 333 ml
135 2
Heat Shrinkable Tubing
3*7.5 mm (for YS-201M)
136
SPG1, SPG2
2
Surge Absorber
YS-201M
© 2015 Fairchild Semiconductor Corporation 11 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 12
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
5 4
0.7φ×1
20
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
3
N2
10 → 9
Copper foil
0.3 mm (3T), W=15 mm Copper Foil to Pin, 0.7φ*2
3
N2, N3 are the same
copper foil
4
N3
9 11, 12
3
5
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
6
N4
4 3
0.7φ×1
20
Solenoid Winding
7
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
8
0.8T Open loop shielding to PIN2
9
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
10
1.2T Close loop shielding on outside to PIN2
11
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Pins
Specifications
Inductance
3 - 5
1.75 mH ±5%
10
5
3
11, 12
N2
N1
N4
4
N3
9
7. Transformer and Winding Specifications
7.1. Main Transformer (TX1)
Core: PQ3230 (PC44) Bobbin: 12 Pins
Figure 5. Transformer Specifications of TX1
Table 2. Winding Specifications
Table 3. Electrical Characteristics
© 2015 Fairchild Semiconductor Corporation 12 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 13
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
1 5
0.1φ×40
24
Solenoid Winding
Pins
Specifications
Inductance
1 - 5
120 μH ±5%
1
Top View
Cut off
N1
12345
109876
5
7.2. Resonant Inductor (L4)
Core: EQ20 (TP5) Bobbin: 10 Pins
Table 4. Winding Specifications
Figure 6. Transformer Specifications of L4
Table 5. Electrical Characteristics
© 2015 Fairchild Semiconductor Corporation 13 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 14
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
3 5
0.2φ×1
15
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
3
N2
9 10
0.15φ×1
18
Solenoid Winding
Transformer Triple
Wire
4
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
5
N2
7 6
0.2φ×1
18
Solenoid Winding
6
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Pins
Specifications
Inductance
3 – 5
>200 μH
9
3
6
N2
N1
5
N3
10
7
Top View
Cut off
12345
109876
7.3. Pulse Transformer (TX2)
Core: EE13 (3C90) Bobbin: 10 Pins
Table 6. Winding Specifications
Figure 7. Transformer Specifications of TX2
Table 7. Electrical Characteristics
© 2015 Fairchild Semiconductor Corporation 14 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 15
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
4 3
0.1φ×50
0.75
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
3
N2
2 1
0.15φ×1
80
Solenoid Winding
4
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Pins
Specifications
Inductance
1 – 2
> 4 mH
2
4
N2
N1
3
1
Top View
Cut off
12
43
7.4. Current Transformer (TX4)
Core: EE8.3 (3C90) Bobbin: 4 Pins
Figure 8. Transformer Specifications of TX4
Table 8. Winding Specifications
Table 9. Electrical Characteristics
© 2015 Fairchild Semiconductor Corporation 15 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 16
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
1 3
0.1φ×50
40
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Pins
Specifications
Inductance
1 – 2
420 μH ± 5%
1
N1
3
Bottom View
7.5. PFC Inductor (L3)
Core: QP2920H (3C94) Bobbin: 4 Pins
Table 10. Winding Specifications
Figure 9. Transformer Specifications of L3
Table 11. Electrical Characteristics
© 2015 Fairchild Semiconductor Corporation 16 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 17
No.
Winding
Pin (S → F)
Wire
Turns
Winding Method
1
N1
10 8
0.2φ×1
49
Solenoid Winding
2
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
3
N2
6 7
0.25φ×2
11
Solenoid Winding
Transformer Triple
Wire
4
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
5
N2
8 9
0.2φ×1
22
Solenoid Winding
6
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
7
N2
2 1
0.15φ×1
15
Solenoid Winding
8
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
9
N2
5 4
0.2φ×1
16
Solenoid Winding
10
Insulation: Polyester Tape t = 0.025 mm, 2-Layer
11
1.2T Close loop shielding on outside to PIN1
12
Insulation: Polyester Tape t = 0.025 mm, 3-Layer
Pins
Specifications
Inductance
10 – 9
820 μH ± 5%
9
1
Bottom View
N4 2 7
N2
N1
12345
109876
N3
8
N5
5
4
Cut off
10
6
7.6. 12 V Standby Transformer (TX3)
Core: EQ20 (TP5) Bobbin: 10 Pins
Figure 10. Transformer Specifications of TX3
Table 12. Winding Specifications
Table 13. Electrical Characteristics
© 2015 Fairchild Semiconductor Corporation 17 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 18
7.7. EMI Choke (L1, L2)
Figure 11. Transformer Specifications of L1 and L2
© 2015 Fairchild Semiconductor Corporation 18 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 19
Test Mode
FEBFAN7688SJXA_CP14U306
Test Date
May 29, 2015
Test Temperature
Ambient 25ºC
Test Equipment
AC Source: EXTECH 6800 AC/DC Electronic Load: Chroma 63030 Power Meter: Chroma 6630 Oscilloscope: Lecroy 24MXs-B
Test Items
1. Current Harmonic
2. AC Trim up & Trim down
3. Efficiency
4. Output Transient Response
5. 392 V to 354 V && 354 V to 392 V @Loading
6. 392 V to 354 V && 354 V to 392 V @Vrms
7. Hold-up time
8. AC Cycle Drop
9. AC Transient
10. SURGE & ESD
11. EMI
Test Loading
306 W (Loading shown in Amps)
Loading
12V1
12V2
12Vsb
100%
12.5
12.5
0.5
50%
6.25
6.25
0.25
20%
2.5
2.5
0.1
Min.
1.25
1.25
0.05
8. Test Conditions & Test Equipment
8.1. Features
Table 14. Test Conditions & Test Equipment
© 2015 Fairchild Semiconductor Corporation 19 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 20
Figure 12. Input Current Waveform and THD Test Result in 115 V
AC
75 W Load, 100 V/50 Hz
Figure 13. Input Current Waveform and THD Test Result in 115 VAC, Mid. Load
Input Voltage
Condition
PF
THD (%)
Class D
100 V/50 Hz
Input 75 W
0.983
14.170
Pass
Mid. Load
0.980
13.390
Pass
100% Load
0.992
8.310
Pass
230 V/50 Hz
Input 75 W
0.879
17.330
Pass
Mid. Load
0.939
16.410
Pass
100% Load
0.976
11.560
Pass
9. Performance of Evaluation Board
9.1. Current Harmonic Test:
Test Condition:
Measure input current power factor (PF) and total harmonic distortion (THD, IEC61000­3-2, Class D) at various line and output loading.
A PF less than 0.95 in 230 V/50 Hz can cause a fast response of PFC voltage loop in some test requirement; it can be fine tuned to meet PF > 0.95 when it is needed.
Test Results:
© 2015 Fairchild Semiconductor Corporation 20 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 21
Figure 14. Input Current Waveform and THD Test Result in 115 VAC, 100% Load
Figure 15. Input Current Waveform and THD Test Result in 230 V
AC,
75 W Load,
230 V/50 Hz
© 2015 Fairchild Semiconductor Corporation 21 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 22
Figure 16. Input Current Waveform and THD Test Result in 230 VAC, Mid. Load
Figure 17. Input Current Waveform and THD Test Result in 230 VAC, 100% Load
© 2015 Fairchild Semiconductor Corporation 22 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 23
90 V264 V
264 V 90 V
50% Load
50% Load
Pass
Pass
Ch1:12Vo, Ch2: Iin, Ch3: VAC, Ch4:Vbulk
90 V264 V
264 V90 V
Input
Watts
(W)
Output Watts (W)
12V
FAN
Efficiency
Standard
12V1
12V2
12Vsb
When VIN= 115 V, at 100% Load
344.00
152.31
152.28
6.00
ON
90.28%
> 89%
When VIN= 115 V, at 50% Load
167.30
76.37
76.39
3.01
OFF
93.10%
> 92%
When VIN= 115 V, at 20% Load
69.00
30.63
30.67
1.21
OFF
90.59%
> 90%
When VIN= 230 V, at 100% Load
336.80
152.31
152.31
6.00
ON
92.22%
> 91%
When VIN= 230 V, at 50% Load
165.30
76.37
76.39
3.01
OFF
94.23%
> 94%
When VIN= 230 V, at 20% Load
68.50
30.63
30.66
1.21
OFF
91.24%
> 90%
9.2. AC Trim Up & Trim Down
Test Condition:
Switch the input voltage from 90 V to 264 V or from 264 V to 90 V. The output voltages should be normal and the output of PFC bus should be less than 450 V.
Test Results:
Figure 18. Test Waveform of AC Trim Up & Trim Down
9.3. Efficiency
Test Condition:
Measure input current Power Factor (PF) and Total Harmonic Distortion (THD, Class D) at various line and output loading.
Test Results:
© 2015 Fairchild Semiconductor Corporation 23 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 24
VIN=115 V
0~7.2 A (mV)
4.8~12 A (mV)
12V1
448
462
12V2
452
465
12V1, 0~7.2 A
12V1, 4.8~12 A
12V2, 0~7.2 A
12V2, 4.8~12 A
9.4. Output Transient Response
Test Condition:
Figure 19 summarizes the expected output transient step sizes for each output. Input =115 VAC; IO= 0~7.2 A or IO= 4.8~12 A. The transient load slew rate is = 1.0 A/µS.
Test Result:
© 2015 Fairchild Semiconductor Corporation 24 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Figure 19. Test Waveform of Output Transient Response
Page 25
Input Voltage
Loading (A)
Loading (%)
115 V / 60 Hz 390 V to 358 V
15.37
61.5
230 V / 60 Hz 390 V to 358 V
16.09
64.4
115 V / 60 Hz 358 V to 390 V
17.9
71.6
230 V / 60 Hz 358 V to 390 V
18.7
74.8
Loading & Bulk Voltage
Input Voltage
Loading = 100% 390 V to 358 V
235 V
Loading = 100% 358 V to 390 V
253 V
Hold up Time
90 V/60 Hz
264 V/50 Hz
100% Load
50% Load
20% Load
100% Load
50% Load
20% Load
17.09 ms
23.56 ms
66.51 ms
17.61 ms
68.59 ms
134.68 ms
Vbulk 395 V
Vbulk 352 V
Vbulk 352 V
Vbulk 395 V
Vbulk 395 V
Vbulk 395 V
Ch2: VAC, Ch3:12Vo, Ch4:Vbulk
90 V / 60 Hz, 100% Load
264 V / 50 Hz, 100% Load
9.5. 390 V to 358 V && 358 V to 390 V at Loading
Test Condition:
Load: 100% load, during the loading-point to change, the PFC bulk voltage steps up to 390 V from 358 V or steps down to 358 V from 390 V.
Test Results:
9.6. 390 V to 358 V && 358 V to 390 V at Vrms
Test Condition:
Load: 100%. Load, during the AC input to change, the PFC bulk voltage steps up to 390 V from 358 V or steps down to 358 V from 390 V.
Test Results:
9.7. Hold up Time
Test Condition:
After AC power off, the output voltages should stay at nominal value for at least 17 ms.
Test Results:
© 2015 Fairchild Semiconductor Corporation 25 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Figure 20. Test Waveform of Hold up Time
Page 26
9.8. AC Cycle Drop
115 V0 V115 V
230 V0 V230 V
100% Load
100% Load
Pass
Pass
Ch1: 12Vo, Ch2: Iin, Ch3: VAC, Ch4: Vbulk
115 V0 V115 V, Max. Load
230 V0 V230 V, Max. Load
115 V80 V115 V
230 V160 V230 V
100% Load
100% Load
Pass
Pass
Ch1: 12VO, Ch2: Iin, Ch3: VAC, Ch4: Vbulk
115 V80V115 V, Max. Load
230 V160 V230 V, Max. Load
Test Condition:
After AC input drop 0.5 cycle, check system to ensure that no damage occurred and behavior is correct. If the AC drop time increases to 1 cycle, the Vbulk will drop too much to make the 12 V VO also drop. So, its also about min. frequency of controller.
Test Results:
9.9. AC Transient
Test Condition:
AC Transient in 115 V80 V115 V and 230 V160 V230 V conditions, check
system to ensure that no damage occurred and behavior is correct.
Test Results:
Figure 21. Test Waveform of AC Cycle Drop
© 2015 Fairchild Semiconductor Corporation 26 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Figure 22. Test Waveform of AC Transient
Page 27
L-PE ±3k V
N-PE ±3k V
L-N ±1k V
AIR ±16k V
Contact ±8k V
Pass
Pass
Pass
Pass
Pass
115 V / 60 Hz CONDUCTION-L
115 V / 60 Hz CONDUCTION-N
230 V / 50 Hz CONDUCTION-L
230 V / 50 Hz CONDUCTION-N
1 P K
CLR WR
2 A V
CLR WR
TDF
6DB
dBµ V dBµ V
15 0 kH z
30 M Hz
MT
1 0 ms
RB W
9 k Hz
PR EA MP
OF F
At t
1 0 dB
PRN
1 MH z
10 M Hz
0
10
20
30
40
50
60
70
80
90
100
EN 55 02 2A
EN 55 02 2Q
Da te : 1 7.MA R.20 15 16:3 5:11
1 P K
CLR WR
2 A V
CLR WR
TDF
6DB
dBµ V dBµ V
15 0 kH z
30 M Hz
MT
1 0 ms
RB W
9 k Hz
PR EA MP
OF F
At t
1 0 dB
PRN
1 MH z
10 M Hz
0
10
20
30
40
50
60
70
80
90
100
EN 55 02 2A
EN 55 02 2Q
Da te : 1 7.MA R.20 15 16:3 2:05
1 P K
CLR WR
2 A V
CLR WR
TDF
6DB
dBµ V dBµ V
15 0 kH z
30 M Hz
MT
1 0 ms
RB W
9 k Hz
PR EA MP
OF F
At t
1 0 dB
PRN
1 MH z
10 M Hz
0
10
20
30
40
50
60
70
80
90
100
EN 55 02 2A
EN 55 02 2Q
Da te : 1 7.MA R.20 15 16:3 7:27
1 P K
CLR WR
2 A V
CLR WR
TDF
6DB
dBµ V dBµ V
15 0 kH z
30 M Hz
MT
1 0 ms
RB W
9 k Hz
PR EA MP
OF F
At t
1 0 dB
PRN
1 MH z
10 M Hz
0
10
20
30
40
50
60
70
80
90
100
EN 55 02 2A
EN 55 02 2Q
Da te : 1 7.MA R.20 15 16:3 9:31
9.10. Surge & ESD
9.11. EMI Conduction
Test Condition:
EMI conduction test in 100% Load.
Test Results:
Figure 23. Test Waveform of EMI
Figure 24 shows, this EVB is design and test with the metal case. If the user wants to perform an EMI conduction test, connect power earth (PE) to secondary ground point and flowing point of Y-cap C9.
Figure 24. Setting of EMI Test
© 2015 Fairchild Semiconductor Corporation 27 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Page 28
Rev.
Date
Description
1.0.0
May 2015
Initial release
1.1
September 2015
Correct Output power, page 4 306 kW to 306 W
10. Revision History
WARNING AND DISCLAIMER
Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users’ Guide. Contact an authorized Fairchild representative with any questions.
This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User’s Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild’s published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild’s standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.
DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO
IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
EXPORT COMPLIANCE STATEMENT
These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.
U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
© 2015 Fairchild Semiconductor Corporation 28 FEBFAN7688SJXA_CP14U306 • Rev. 1.1
Loading...